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Abstract. This paper refers to the application of higher-order statistical signal 
processing techniques (cumulant calculation) on Gaussian noise cancellation. 
The performed procedure, joined to a convolution process and Fast Fourier 
Transform (FFT) application, results in the complete estimation (i.e., amplitude, 
frequency and phase recovery) of any corrupted periodic signal. Whereas tone 
frequency estimation is performed by 4th-order cumulant calculation, phase re-
covery is achieved by the convolution of the cumulant calculation and the cor-
rupted signal. At last, the original signal amplitude is recovered by means of 
modification of the resulting amplitude spectrum. In this paper, higher-order 
statistics foundations are presented and the validation of the proposed algorithm 
is revealed in both theoretical and practical sense. Obtained results are highly 
satisfactory. 
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1 Introduction 

Methods for noise cancellation using higher-order statistics, in particular those based 
on cumulants, have demonstrated to be very effective [1]. This is mainly due to the 
properties that state, from one hand, that higher-order cumulants of a normal dis-
tribution random signal is 0 and, on the other hand, that cumulant of the sum of sig-
nals is equal to the sum of the cumulants of each signal, then higher-order cumulant 
of a signal corrupted by normal distribution random signal (noise) is equal to the 
higher-order cumulant of the signal without noise.  

Several works have been approached to the harmonics retrieval problem [2], [3] 
and [4]. However all of these papers only reach to recover harmonic amplitude and 
frequency; phase cannot be retrieved. Other works, as in [5] and [6], use higher-order 
statistics (fourth-order cumulant) for adaptive estimation of amplitude and frequency 
of harmonics in real zero-mean random signals. Some methods, developed for phase 
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estimation, are based on higher-order spectra [7] [8] and Bayes Theorem [9]. However, 
tools proposed in these works exhibit a high computational complexity (higher-order 
spectral parameters are results of multidimensional functions calculation) that makes 
them no suitable for practical use and cannot be directly or simply applied on the 
problem of estimation of amplitude, frequency and phase of a periodic signal in noise.  

Methods for phase estimation using Polyspectrum Slice [10] have also been re-
ported but these ones are just approached to phase recovery in linear time-invariant 
systems, thus they are out of the scope of this work. In order to obtain a complete 
algorithm for periodic signals estimation corrupted by noise, a new algorithm is pro-
posed in this work. 

2 Removing Noise from Periodic Signal through Higher-Order 
Statistics   

For real value signals, in the problem that concerns removing noise from harmonic 
signal, observed data is described as follows:  
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where )(tx  is the useful signal (signal to be detected) and )(tw  is additive zero 

mean Gaussian noise. Besides, kA , kf  and kφ are the amplitude, frequency and 

phase, respectively, of the signal. Since higher-order cumulants of a zero mean Gaus-
sian noise is equal to zero, the estimation of cumulants for noise cancellation can be 
made starting from the third order, but from [11] all third-order cumulants of complex 
harmonic are always zero. Consequently this research continues with the use of 
fourth-order cumulant. 

2.1 Fourth-Order Cumulant Calculation  

For a zero-mean stationary random process z(t), and for k=3,4, the kth order cumulant 
of  z(t) can be defined in term of its joint moments as [12]: 
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Where g(t) is a Gaussian random process with the same second-order statistic as z(t). 
If z(t) is Gaussian, the cumulants are all zero. Then, for zero-mean real random va-
riables the fourth-order cumulant can be calculated in agreement to [12] as follows: 
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According to the process described in equation (1), since )(tw  is a zero-mean Gaus-

sian random signal, 0),,( 3214 =τττwC  . Then,  ),,(),,( 32143214 ττττττ xy CC =  .  

Using equation (3) and working with only the one-dimensional component of the 

fourth-order cumulant, )0,0,( 14 τyC , by setting 032 ==ττ , leads to a result simi-

lar to that obtained in [11] by setting ττττ === 321 . This one-dimensional 

component contains original amplitude and frequency of the signal to detect, )(tx  , 

although the phase is missed; on the other hand, the noise is entirely removed: 
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Then, developing the left term of the equation (4) by substituting )(tx  declared  

in (1): 
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Substituting, in the equation (6), the result obtained in the expression (5): 
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obtaining as result (similar to that obtained in [11]):  
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It is clear from equation (7), that the waveform of the original signal is not pre-
served, which is due to the loss of the phase information of the original signal in the 
noise cancellation procedure. This is the problem to face in the following section. 

3 Phase Recovery Method    

In order to preserve the phase information of the original signal (deterministic) in

)0,0,( 14 τyC , a method based on the convolution between corrupted signal, y(t), and 

)0,0,( 14 τyC  is proposed. In order to theoretically prove the proposed method,  

let )(ta be a sinusoidal signal corrupted by Gaussian noise,
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(i.e., an equivalent of the free-noise periodic signal, the phase of which is equal to 0). 
The convolution procedure is developed as follows: 
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Equation (9) reveals that an equivalent of the original periodic signal, preserving 
phase information, is achieved. 

4 Spectral Amplitude Estimation 

As it can be seen in (9), the original harmonic amplitudes are affected during the 
whole process by a non linear factor equivalent to: 

                     5

3

16
oi AA =                                  (10) 

where iA  represents the original signal amplitude and oA correspond to the output 

signal amplitude. This represents a problem because each amplitude of harmonics in 
x(t) must be independently corrected by itself. Then, in order to fix the original ampli-
tude of harmonics in the periodic signal, in this paper every individual harmonic 
component is individually adjusted in the amplitude spectrum.  The process involves 
calculating the FFT of the signal resulting from the convolution process, and then, 
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applying expression (10) on every single spectral component. Then, the resulting 
spectral vector is anti transformed, leading to the original signal with noise removed. 
This spectral adjustment carries on an important inconvenience since noise brought 
out by the FFT application is also adjusted (depending on its magnitude, this noise 
could indeed be amplified). In practice, this inconvenience can be reduced by anti 
transforming the zero-mean adjusted spectrum instead of the original adjusted spec-
trum. The method diagram can be observed in figure 1. 

 

Fig. 1. Block Diagram of the Proposed Algorithm 

5 Experimental Results 

First, in order to verify the effectiveness of the proposed algorithm, an experiment 
using a multitone signal was performed. In this case, the superposition of six tones 
with different amplitudes (0.4, 0.5, 0.6, 0.6, 0.3, 0.1), frequencies (50 Hz, 200 Hz,  
400 Hz, 400 Hz, 600 Hz and 700 Hz) and phases (π/4 rad, π/6 rad, π/3 rad, π/2 rad, 
π/12 rad and π rad), corrupted by zero-mean Gaussian noise, was generated. Figure 2a 
and 2b show the corrupted signal and its spectrum, and the obtained results, applying 
the proposed algorithm on this signal, are shown in figure 2c. 

            

Fig. 2. Sketch of a) Original multitone signal plus noise b) Spectrum of original multitone signal 
plus noise. c) Comparison between useful signal (uncontaminated signal) and output signal 

a) 

c)

b) 
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- Periodic rectangular and triangular pulses.  
A train of rectangular pulses and a train of triangular pulses were also used during 

experimentations. The temporal approach of these signals in Fourier series representa-
tion can be described through equation (11, rectangular pulses) and (12, triangular 
pulses) respectively.  Figure 3a and 3b show the noisy rectangular pulse and its spec-
trum, and a comparison between such an output signal and the desired signal is shown 
in figure 3c. Furthermore, the figure 4a and 4b shows the noisy triangular pulse and 
its spectrum, and in the figure 4c it is shown a comparison between the signal at the 
noise canceller output and the original periodic signal. 
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Fig. 3. Sketch of a) Noisy rectangular pulse b) Noisy rectangular pulse spectrum c) Comparison 
between useful signal (uncontaminated signal) and output signal 

            
Fig. 4. Sketch of a) Noisy triangular pulse b) Noisy triangular pulse spectrum c) Comparison 
between useful signal (uncontaminated signal) and output signal 

a) 

b) 

c) 

a) 

b) 

c)
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6 Working with Real Signals  

This noise cancellation procedure was also applied on real experimental signals. In 
this case, a signal corresponding to the vibration produced by an unbalanced shaft, as 
part of an experimental rig, was processed. Since shaft rotates at constant speed, the 
sensed vibration is periodic by nature. The signal was digitized by a data acquisition 
system based on an A/D converter, 10 bits resolution, with sampling frequency equals 
to 20 kHz. Gaussian noise was generated in Matlab and added to the sensor signal. 
The resulting signal was given at the noise canceller input. Figure 5a and 5b show the 
sensor signal plus noise and its spectrum, and in the Figure 5c it is shown the output 
signal and the desired signal. In this experiment, only the correlation index was com-
puted in order to quantify the effectiveness of the noise cancellation procedure; in 
fact, computation of the SNR at the noise canceller input and output is hard to be 
accurately achieved. Table 1 summarizes all the results, verifying the effectiveness of 
the proposed algorithm. 
 

             

Fig. 5. Sketch of a) Sensor signal plus noise b) Spectrum of sensor signal plus noise c) Compar-
ison between original sensor signal (useful signal) and output signal 

Table 1. Results of the proposed noise canceller procedure 

Signal Input 
SNR(dB) 

Output 
SNR(dB) 

Input 
Correlation 

Output 
Correlation 

Multitone − 3.99 2.36 0.6332 0.8610 
Rectangular Pulse − 5.72 1.44 0.5976 0.9575 
Triangular Pulse − 6.09 1.54 0.5883 0.9326 

Sensor Signal - - 0.5891 0.7039 

7 Conclusions 

This research confirmed the advisability of the application of higher-order statistics 
combined to a convolution process and Fast Fourier Transform, for detection of peri-
odic signals in noise (Gaussian noise). In this work, the use of 4th-order cumulant, 

a) 

b) 

c)
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was proposed and argued. Experimental results performed in Matlab were presented 
using real and simulate signals, revealing not only the benefits of this application but 
also the problem it carries on. This problem was clearly defined as the loss of signal 
phase information because of the noise cancellation procedure. In order to solve this 
problem, a convolution procedure was proposed. Finally, an amplitude spectral mani-
pulation was performed in order to restore the original amplitude of each spectral 
component.  Results revealed a high effectiveness, given by the significant signal-to-
noise rate enhancement achieved, preserving the amplitude, frequency and phase 
information of the signals to be detected. 
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