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Abstract. Multi-label learning has been becoming an increasingly ac-
tive area into the machine learning community since a wide variety of real
world problems are naturally multi-labeled. However, it is not uncommon
to find disparities among the number of samples of each class, which con-
stitutes an additional challenge for the learning algorithm. Smote is an
oversampling technique that has been successfully applied for balancing
single-labeled data sets, but has not been used in multi-label frameworks
so far. In this work, several strategies are proposed and compared in or-
der to generate synthetic samples for balancing data sets in the train-
ing of multi-label algorithms. Results show that a correct selection of
seed samples for oversampling improves the classification performance of
multi-label algorithms. The uniform generation oversampling, provides
an efficient methodology for a wide scope of real world problems.

1 Introduction

Multi-label learning refers to classification problems where each sample can be
associated to more than one class at the same time. A high number of real world
applications such as image classification [1] or protein sequence annotation [2] are
multi-labeled. Methods for classifying multi-label data can be grouped into two
categories: transformation of the problem and adaptation of the algorithm [3].
The former kind of methods searches to transform the multi-label problem into
a single-label one. For that purpose, they employ intuitive strategies such as
considering each different set of labels in the multi-label data set as a single
label [1] or learning one binary classifier for each different label (one-against-
all) [4]. Although those strategies have reached acceptable performances and they
are very commonly used nowadays, none of them considers existing correlations
among classes, thus discarding potentially useful information that could help to
properly solve the problem.

On the other hand, methods based on adaptation of the algorithm are intended
to modify existing algorithms in order to explode those correlations among classes.
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Some of the most recent and successful general purpose algorithms in this category
are Ml-knn [5], Ml-loc [6], and TraM [7]. However, it is common to find that
the number of elements belonging to each class significantly differ from each other.
This “class imbalance” is a well known problem for most standard algorithms
that assume balanced class distributions and thus, when presented with complex
imbalanced data sets, fail to properly represent the distributive characteristics
of the data and provide unfavorable accuracies [8]. Common strategies to man-
age imbalanced data comprise sub-sampling and over-sampling methods. Among
them, Smote ( Synthetic Minority Over-sampling Technique) [9] is an oversam-
pling tool that has been successfully applied to several real world problems, but
has not been applied so far to multi-label algorithms. Moreover, standard Smote
does not consider correlations among classes and therefore it only could generate
synthetic samples belonging to single classes. Although some studies have tackled
the balance of classes in multi-label problems [10,11], these follow follow a scheme
one vs all to adapt the balancing technique, lossing information about the corre-
lations that exist between the classes. In [12] the imbalance is treated from the
classification point of view, causing lack of flexibility of the method when this is
intended to be adapted to other classifiers.

This work presents a series of strategies for applying class balance tools in
conjunction with multi-label algorithms. The strategies are tested over several
real-world problems, proving to be a valuable tool to improve classification per-
formance in multi-label problems. The rest of the paper is organized as follows:
section ii presents the basis of Smote; section iii explains the proposed strate-
gies to apply Smote in conjunction with multi-label algorithms. Experimental
framework and results are shown in section iv and discussion and conclusions
are presented in sections v and vi, respectively.

2 Synthetic Minority Oversampling Technique - Smote

Basic strategies to manage class imbalance are: random sub-sampling and ran-
dom over-sampling. However, these techniques provide disappointing results in
several cases because the former one causes lose of potentially useful information,
while the latter induces overfitting due to the exact replication of samples. As
an alternative to improve these limitations, Smote [9] is an over-sampling strat-
egy that avoids the overfitting because synthetic samples are not exact copies
of the original ones. Instead, synthetic samples are interpolated along the line
segments connecting seed samples, forcing the decision region of the minority
class to become more general. Algorithm 1 describes this procedure.

3 Proposed Framework for Balancing Multi-label Data

Generating synthetic data from multi-labeled instances requires a careful selec-
tion of inputs for the Smote algorithm. For explanatory purposes, consider a
set of training samples associated to a set of three possible labels T = {(xi,yi)},
i = 1, 2, . . . ,m, with xi ∈ R

d and yi ⊆ Y, being Y = {a, b, c}. Let Tγ ⊂ T ,
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Algorithm 1. SMOTE (S, r, k)
Input: S : Seed samples, samples of the minority class xi ∈ R

d, i = 1, 2, . . . ,m
Input: r: Imbalance percentage
Input: k: Number of nearest neighbors
1: for i = 1, 2, ..., m do
2: Compute distances ‖xi − xj‖2,∀i �= j
3: Find the k nearest neighbors asociated to the k minimum distances
4: Compute the number of synthetic samples to be generated from xi,

n = round(r/100)
5: for z = 1, 2, ..., n do
6: Select a random integer ε between 1 and k
7: Draw a random vector from a uniform multivarite distribution λ ∼ Ud(0, 1)
8: Compute the synthetic sample szi = λ ◦ (xi − xε) + xi where ◦ is the

Hadamard product between vectors
9: end for
10: end for
11: returnThe set of n×m synthetic samples {szi }, i = 1, 2, . . . , m−, z = 1, 2, . . . , n

γ ∈ Y, be the set of samples associated to a given class, Tγ = {(xi,yi)|γ ∈ yi}.
Balancing the classes means generating a number of synthetic samples of the
three classes such that |Ta| = |Tb| = |Tc|, where | · | denotes the number of
elements of the set.

Three strategies are proposed in order to apply Smote to imbalanced multi-
label data. In the first place, it is important to properly define the set of seed
samples for each class, Sγ ⊆ Tγ , γ ∈ Y. Strategies are depicted with graphs in
figures 1 2 3, highlighting in each case the nodes of the graph corresponding to
seed samples of the class a. After defining the set of seed samples, the second
input parameter of the Smote algorithm is the imbalance percentage r. The
imbalance percentage ra drives the decision of how many synthetic samples from
class a must be generated (known as over-sampling). Equations (2), (4) and (6)
show the calculus for strategies OG, PG and UG, respectively.

One-against-All Generation The first strategy, depicted in figure 1, is defined
as a “one-against-all generation” (OG). In this case, all the samples belonging
to the minoritary class are considered as seed samples, that is, seed samples of
class a are defined on equation (1)

Fig. 1. one-against-all generation

SOG
a = {(xi,yi)|a ∈ yi} (1)

rOG
a =

⎛
⎝

max
γ

|Tγ | − |Ta|

|Ta|

⎞
⎠ ∗ 100% (2)
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This strategy is inspired from transformation method called binary relevance,
used in [4]. This approach is widely employed, however, it is criticized for not
taking into account the correlation between classes.

Pure Samples Generation The second strategy, termed “pure samples gener-
ation” (PG) is depicted in figure 2. It takes as seed samples only those samples
associated to a single label. Thus, the seed samples for class a are selected ac-
cording to equation 3.

Fig. 2. pure samples generation

SPG
a = {(xi,yi)|a = yi} (3)

rPG
a =

⎛
⎝

max
γ

|Tγ | − |Ta|

|Sa|

⎞
⎠ ∗ 100% (4)

This strategy is inspired from transformation method called PT2 described
in [3], those were used successfully in problems with low cardinality levels.

Uniform Generation. The third strategy, depicted in figure 3 divides the whole
set Ta into several subsets, and over-samples each set individually. The subsets
are defined on , by each different set of labels and are depicted in figure 3 with
different intensities of green. This strategy is termed “uniform generation” (UG).

Fig. 3. uniform generation

SUG
al

=
{
(xi,yi)|(a ⊆ P(Y)l) ∈ yi

}
(5)

rUG
a =

⎛
⎝

max
γ

|Tγ | − |Sal |

|Sal |

⎞
⎠ ∗ 100% (6)

4 Experimental Setup

Experiments were performed over four datasets from the Mulan [13] repository
and a fifth dataset from [14]. The first dataset, Emotion, comprises 593 songs
belonging to several music genres. The second dataset, Scene, is a natural scene
classification problem [1]. It consists of 2407 natural scene images belonging to six
different classes. The third dataset, the Enron database, is a subset of the Enron
email corpus [15], including 1702 emails with 53 possible labels. Each message
was labeled by two people, but no claims of consistency, comprehensiveness, nor
generality are made about these labelings. Due to the large number of classes,
only those that have more than 300 samples were selected. Also, the principal
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component analysis (PCA) was used in order to decrease the number of features.
The fourth dataset, Image, consists of 2000 natural scene images, where a set of
labels is artificially assigned to each image. The number of images belonging to
more than one class (e.g. sea+sunset) comprises over 22% of the dataset [14].
Finally, the Yeast database is designed to predict functional classes in the genome
of yeast Saccharomyces cerevisiae. The whole data set has 2417 instances of genes
and 14 possible class labels; only the classes 1, 3, 4, 5 and 6 are considered and
the first 250 principal components were used as features. Table 1 summarizes the
datasets. The cardinality of the database is an average of the number of labels
associated to each sample, given an estimate of the difficulty of the multi-label
problem.

Table 1. Databases summary

Database Classes Samples Features Cardinality Database Classes Samples Features Cardinality

Emotion 6 593 72 1.869 Image 5 2000 135 1.24
Scene 6 2407 294 1.074 Yeast 14 2417 103 4.237
Enron 52 1702 1001 3.378

The strategies are used in conjunction with three state-of-the-art multi-label
methods: TraM,Ml-knn andMl-loc. Parameters are fixed for all the datasets
as: 10 nearest neighbors for the first two methods (values suggested in [5, 7]),
and λ1 = 1, λ2 = 100, m = 15 for Ml-loc (suggested by [6]). A lineal kernel is
used for evading extra tuning parameters. The number of nearest neighbors for
Smote is set to 5, by literature recommendations [9].

All the reported results are obtained with a 10-fold cross-validation scheme.
It is important to point out that, since the Yeast database has the highest
cardinality and some of its classes have no pure samples (samples belonging
exclusively to that class), the “pure samples regeneration” strategy (PG) could
not be applied for such database.

Table 2. Results for the Emotion dataset

Classifier Measure WO OG PG UG

ML-kNN

H loss ↓ 0.197 ± 0.020 0.255 ± 0.021 ◦ 0.239 ± 0.019 ◦ 0.207 ± 0.019 ◦
F measure ↑ 0.621 ± 0.037 0.459 ± 0.051 ◦ 0.536 ± 0.041 ◦ 0.646 ± 0.030 •
G mean ↑ 0.700 ± 0.031 0.567 ± 0.046 ◦ 0.635 ± 0.035 ◦ 0.734 ± 0.029 •
Recall ↑ 0.596 ± 0.050 0.401 ± 0.053 ◦ 0.480 ± 0.047 ◦ 0.646 ± 0.051 •

TRAM

H loss ↓ 0.218 ± 0.022 0.247 ± 0.027 ◦ 0.240 ± 0.026 ◦ 0.218 ± 0.026

F measure ↑ 0.640 ± 0.032 0.540 ± 0.045 ◦ 0.579 ± 0.044 ◦ 0.652 ± 0.040

G mean ↑ 0.729 ± 0.028 0.649 ± 0.035 ◦ 0.678 ± 0.035 ◦ 0.743 ± 0.035 •
Recall ↑ 0.656 ± 0.037 0.496 ± 0.042 ◦ 0.546 ± 0.047 ◦ 0.683 ± 0.050 •

MLLOC

H loss ↓ 0.248 ± 0.024 0.285 ± 0.023 ◦ 0.255 ± 0.022 0.253 ± 0.016

F measure ↑ 0.450 ± 0.076 0.231 ± 0.074 ◦ 0.424 ± 0.070 ◦ 0.471 ± 0.045

G mean ↑ 0.545 ± 0.074 0.313 ± 0.089 ◦ 0.520 ± 0.067 ◦ 0.574 ± 0.046

Recall ↑ 0.389 ± 0.074 0.166 ± 0.062 ◦ 0.345 ± 0.070 ◦ 0.413 ± 0.051
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Table 3. Results for the Scene dataset

Classifier Measure WO OG PG UG

ML-kNN

H loss ↓ 0.086 ± 0.009 0.089 ± 0.008 ◦ 0.087 ± 0.008 0.087 ± 0.008

F measure ↑ 0.742 ± 0.028 0.731 ± 0.025 ◦ 0.738 ± 0.026 0.741 ± 0.026

G mean ↑ 0.812 ± 0.020 0.807 ± 0.018 ◦ 0.815 ± 0.019 0.817 ± 0.019

Recall ↑ 0.691 ± 0.031 0.688 ± 0.026 0.701 ± 0.029 • 0.705 ± 0.030 •

TRAM

H loss ↓ 0.090 ± 0.010 0.093 ± 0.009 0.092 ± 0.010 0.092 ± 0.010

F measure ↑ 0.746 ± 0.027 0.736 ± 0.027 ◦ 0.740 ± 0.029 0.740 ± 0.028

G mean ↑ 0.831 ± 0.019 0.825 ± 0.018 ◦ 0.828 ± 0.018 0.829 ± 0.019

Recall ↑ 0.730 ± 0.028 0.725 ± 0.027 0.729 ± 0.026 0.731 ± 0.028

MLLOC

H loss ↓ 0.155 ± 0.009 0.153 ± 0.008 0.152 ± 0.008 • 0.151 ± 0.006 •
F measure ↑ 0.355 ± 0.047 0.339 ± 0.051 0.356 ± 0.045 0.350 ± 0.043

G mean ↑ 0.463 ± 0.049 0.441 ± 0.053 ◦ 0.456 ± 0.048 0.453 ± 0.046

Recall ↑ 0.270 ± 0.045 0.256 ± 0.048 0.274 ± 0.043 0.265 ± 0.040

Table 4. Results for the Enron dataset

Classifier Measure WO OG PG UG

ML-kNN

H loss ↓ 0.325 ± 0.021 0.393 ± 0.017 ◦ 0.356 ± 0.019 ◦ 0.336 ± 0.023 ◦
F measure ↑ 0.458 ± 0.036 0.283 ± 0.033 ◦ 0.385 ± 0.032 ◦ 0.533 ± 0.041 •
G mean ↑ 0.528 ± 0.033 0.391 ± 0.034 ◦ 0.496 ± 0.026 ◦ 0.616 ± 0.031 •
Recall ↑ 0.402 ± 0.044 0.255 ± 0.034 ◦ 0.301 ± 0.027 ◦ 0.509 ± 0.049 •

TRAM

H loss ↓ 0.268 ± 0.021 0.361 ± 0.020 ◦ 0.321 ± 0.025 ◦ 0.288 ± 0.016 ◦
F measure ↑ 0.623 ± 0.026 0.491 ± 0.029 ◦ 0.554 ± 0.029 ◦ 0.633 ± 0.021 •
G mean ↑ 0.664 ± 0.023 0.607 ± 0.023 ◦ 0.646 ± 0.026 ◦ 0.696 ± 0.018 •
Recall ↑ 0.618 ± 0.024 0.500 ± 0.024 ◦ 0.550 ± 0.032 ◦ 0.670 ± 0.025 •

MLLOC

H loss ↓ 0.299 ± 0.016 0.347 ± 0.025 ◦ 0.317 ± 0.021 ◦ 0.306 ± 0.020

F measure ↑ 0.556 ± 0.042 0.425 ± 0.051 ◦ 0.507 ± 0.039 ◦ 0.572 ± 0.039

G mean ↑ 0.601 ± 0.043 0.530 ± 0.046 ◦ 0.588 ± 0.038 0.624 ± 0.039 •
Recall ↑ 0.540 ± 0.047 0.340 ± 0.045 ◦ 0.446 ± 0.050 ◦ 0.572 ± 0.055 •

5 Results and Discussion

For comparisonpurposes, all test are also performedwithout over-sampling (WO).
Tables 2, 3, 4, 5 and 6 show the results for the Emotions, Scene, Enron Image and
Yeast datasets, respectively. Tables show Hamming Loss (H loss), F-meausure
(F measure), Geometric mean (G mean) and Recall (Recall) defined below.

F measure =
1

Q

∑
i∈T

2
|h (xj) ∩ Yi|

|Yi\h (xj)| + 2 |h (xj) ∩ Yi| + |h(xj)\Yi|

H loss =
1

Q (n − m)

∑
i∈T

|h(xj)ΔYi| Recall =
1

Q

∑
i∈T

( |h(xj) ∩ Yi|
|h(xj) ∩ Yi| + |Yi\h(xj)|

)

G mean =
1

Q

∑
i∈T

√
|h (xj) ∩ Yi| |h(xj)

c ∩ Yi
c|

(|h (xj) ∩ Yi|+ |Yi\h (xj)|) (|h(xj)\Yi| + |h(xj)
c ∩Yi

c|)

where \, Δ , c , |.| , h(xj) , Yi stands for the difference and symmetric difference
between two sets, complement and the cardinality of the set, the set of labels
predicted, the set of real labels, respectively; and Q is the number of labels.
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Table 5. Results for the Image dataset

Classifier Measure WO OG PG UG

ML-kNN

H loss ↓ 0.197 ± 0.010 0.201 ± 0.010 ◦ 0.200 ± 0.011 ◦ 0.202 ± 0.011 ◦
F measure ↑ 0.470 ± 0.029 0.458 ± 0.033 0.471 ± 0.037 0.481 ± 0.040

G mean ↑ 0.580 ± 0.025 0.575 ± 0.029 0.586 ± 0.032 0.598 ± 0.035 •
Recall ↑ 0.374 ± 0.033 0.380 ± 0.033 0.394 ± 0.040 • 0.404 ± 0.047 •

TRAM

H loss ↓ 0.218 ± 0.015 0.220 ± 0.014 ◦ 0.218 ± 0.016 0.222 ± 0.017 ◦
F measure ↑ 0.531 ± 0.031 0.517 ± 0.029 ◦ 0.524 ± 0.034 ◦ 0.526 ± 0.035

G mean ↑ 0.657 ± 0.025 0.649 ± 0.023 ◦ 0.655 ± 0.027 0.658 ± 0.027

Recall ↑ 0.496 ± 0.032 0.488 ± 0.029 0.494 ± 0.035 0.502 ± 0.036

MLLOC

H loss ↓ 0.231 ± 0.011 0.230 ± 0.010 0.230 ± 0.009 0.228 ± 0.011

F measure ↑ 0.161 ± 0.063 0.153 ± 0.058 0.150 ± 0.058 0.181 ± 0.058

G mean ↑ 0.249 ± 0.068 0.240 ± 0.064 0.239 ± 0.060 0.273 ± 0.065

Recall ↑ 0.104 ± 0.047 0.099 ± 0.046 0.096 ± 0.046 0.119 ± 0.045

Table 6. Results for the Yeast dataset

Classifier Measure WO OG UG

ML-kNN

H loss ↓ 0.240 ± 0.013 0.273 ± 0.015 ◦ 0.269 ± 0.016 ◦
F measure ↑ 0.575 ± 0.028 0.505 ± 0.033 ◦ 0.590 ± 0.029 •
G mean ↑ 0.648 ± 0.023 0.598 ± 0.027 ◦ 0.674 ± 0.024 •
Recall ↑ 0.491 ± 0.031 0.400 ± 0.037 ◦ 0.554 ± 0.039 •

TRAM

H loss ↓ 0.272 ± 0.016 0.295 ± 0.017 ◦ 0.288 ± 0.017 ◦
F measure ↑ 0.598 ± 0.024 0.551 ± 0.028 ◦ 0.601 ± 0.023

G mean ↑ 0.671 ± 0.02 0.645 ± 0.023 ◦ 0.685 ± 0.020 •
Recall ↑ 0.609 ± 0.023 0.518 ± 0.027 ◦ 0.623 ± 0.025 •

MLLOC

H loss ↓ 0.319 ± 0.019 0.346 ± 0.017 ◦ 0.319 ± 0.018

F measure ↑ 0.298 ± 0.068 0.153 ± 0.075 ◦ 0.307 ± 0.057

G mean ↑ 0.386 ± 0.070 0.245 ± 0.087 ◦ 0.394 ± 0.062

Recall ↑ 0.237 ± 0.058 0.101 ± 0.055 ◦ 0.246 ± 0.053

All tables depict (mean ± sd) for each metric. Additionally, •(◦) indicate wich
strategy is significantly higer (lower) than WO strategy, based on paired t−test
at 95% significance level. ↑(↓) implies the larger (smaller), the better.

Strategies OG and PG decrement the performance of classification, presum-
ably due to the fact that this strategy is only capable of generating synthetic
samples belonging to a single class instead of truly synthetic samples belong-
ing to multiple classes. In addition PG presents a decrease respecting to the
performance without over-sampling, possibly by the inability of this strategy to
generate samples with multiple labels, fact that results in the lack of exploitation
of the correlations between classes. Generation strategies based on OG, PG and
UG showed similar behaviors when applied to datasets with low cardinality (low
number of labels per sample), as it can be seen in Table 3, with variations of
less 2% in the performance for three classifier. The experiments carried out in
this paper show that the performance of Ml-knn can be significantly improved
when a balance of classes is made, due to the fact that the prior probabilities
on the Bayesian decision rule are computed from relative frequencies of samples
and are thus the minority class loses prominence.
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6 Conclusions

Three strategies for managing imbalanced data sets in multi-label problems are
proposed. Experimental analyses on several real-world problems showed that
“uniform generation” and classification by TraM, achieved high performance
on four of five tasks. Also, “uniform generation” is the most efficient strategy for
multi-label datasets with high cardinality, while ‘pure samples generation” and
“one against all” induce noise to the classification. It is important to note that the
proposed strategies can also be implemented with other class-balance techniques
based on classifier ensembles or undersampling. As future work, a broader study
including several class-balance methods can be conducted. Also, further studies
are needed for computing the optimal number of synthetic samples.
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