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Abstract. Encoding an object essence in terms of self-similarities be-
tween its parts is becoming a popular strategy in Computer Vision. In
this paper, a new similarity-based descriptor, dubbed Structural Simi-
larity Cross-Covariance Tensor is proposed, aimed to encode relations
among different regions of an image in terms of cross-covariance matri-
ces. The latter are calculated between low-level feature vectors extracted
from pairs of regions. The new descriptor retains the advantages of the
widely used covariance matrix descriptors [I], extending their expres-
siveness from local similarities inside a region to structural similarities
across multiple regions. The new descriptor, applied on top of HOG, is
tested on object and scene classification tasks with three datasets. The
proposed method always outclasses baseline HOG and yields significant
improvement over a recently proposed self-similarity descriptor in the
two most challenging datasets.

Keywords: object recognition, scene classification, covariance.

1 Introduction

In pattern recognition, the representation of an entity can be addressed following
two complementary paradigms: feature-based and similarity-based. In the first
case the characteristics of the entity, or of parts of it, are encoded by descriptors
concerning for example shape and color. Most descriptors (e.g. SIFT [4], LBP
histograms [5], HOG [6]) are enclosed in this class. In the latter case the focus
is on a similarity measure allowing to relate new entity to a set reference ones.

Whenever an entity can be structurally represented by its parts, the similarity
philosophy can be applied to the internal relationship among parts, each one
represented in terms of features. In other words, a self-similarity descriptor can be
constructed on top of feature descriptors related to different entity parts, joining
the advantages of the two approaches. An example of this strategy, applied to
the pedestrian detection task, can be found in [7]: each image is subdivided in
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Fig. 1. Building process of the SS-CCT: each region is described by a set of local feature
descriptors; the pairwise similarity among two regions is encoded by a cross-covariance
matrix of the feature descriptors.

regions from which HOG are extracted; similarity among these regions are then
encoded by Euclidean pairwise distances among HOG descriptors. This approach
is effective and computationally efficient but has some drawbacks, which are
shared by all the similarity-based approaches relying on point-wise distances.
In particular, if entities to be detected are not aligned, i.e. the entity’s parts
do not occupy the same image regions across the images, point-wise distance
approaches are not statistically robust, as the single distance may undergo too
much variability in the same entity class. Moreover, all the information on the
similarity among two descriptors (i.e. two vectors) collapses in a single scalar
value, potentially obscuring discriminative relations between single elements of
the descriptor (e.g. the single bins of an HOG).

In order to overcome these limitations a different self-similarity approach is
here proposed: the key idea is to provide a rich and, at the same time, statisti-
cally robust notion of similarity among different regions of an image, exploiting
covariance measures among couples of low-level features across different regions.

Covariances of low-level features, in the form of covariance matrices, bear sev-
eral advantages when used as single region descriptors, as pointed out in [TI2l3].
The representation provides a natural way of fusing multiple features that might
be correlated. The single pixel noise is largely filtered out with the average op-
eration intrinsic to the covariance calculation. In comparison to other statistical
descriptors, such as multi-dimensional histograms, covariances are intrinsically
low-dimensional as their size is only O(N?), with N being the number of fea-
tures. Since covariance matrix is invariant with respect to pixels position inside
the region, the descriptor has also some degree of robustness against pose change
and object rotation.

Till now covariances of low-level features have been employed essentially as a
single region descriptors [1I2/3]. What we propose here is to employ covariances
as a measure of similarity across different regions. Thus, covariance matrices
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have to be generalized with the Cross-Covariance matrices, which capture the
covariance among two generally different feature vectors, in our case related to
two different regions. In particular, a Structural Similarity Cross-Covariance
Tensor (SS-CCT) is here proposed, which encodes all the pairwise similarities
among regions by means of Cross-Covariance matrices, each one encoding all the
pairwise relationships between the single features extracted in a given couple of
regions. Any region descriptor can be ideally adopted (e.g. HOG [6], SIFT [4],
LBP [5]).

As a proof of concept and for computational reasons, the proposed method
is applied to the well-known HOG feature descriptor, implemented according
to [0], and tested on two different classification tasks: objects and scenes. The
classification results show significant performance improvements with respect to
both the simple feature-based descriptors and the point-wise similarity based
approach in [7].

The remaining of the paper is organized as follows: in Section 2] the SS-CCT
descriptor is introduced; in Section [l some information on the object model is
provided; in Section [ the SS-CCT performance on Caltech 101 [§], Caltech-256
[9) and SenseCam ([I0]) datasets is displayed and compared with two literature
methods; finally, in Section ] some conclusions are drawn.

2 Proposed Method

Given an image I, we define R regions each one of size W x H pixels (see Fig.
). Each region is divided into M patches and, for each patch, a given feature
descriptor is applied, obtaining M feature vectors of size N.
The global Feature Level descriptor (F'L) of the image I is obtained stacking
together the feature vectors for all the regions and all the patches as follows:
FL:[Z{I...ZT ~-~Z£,M] (1)

r,m

where z, ., is the feature vector obtained applying the descriptor to the patch
m in the region r.

The proposed Similarity Level structural descriptor is built on top of FL,
encoding the similarity among each couple of regions. In order to achieve a
statistically robust and highly invariant description of this similarity, we calculate
the covariance among each couple of features, using the patches of the two regions
as spatial samples (Fig. [II).

In detail, given two regions r1 and ry, we calculate the N X N cross-covariance
matrix Ccov,, ,, among the feature vectors z, ,,, in the following way:

1 M
M—1 Z (Zry,m — Zry ) (Zram — zrz)Ta (2)

m=1

Ccov,, r, =

where Z,, and Z,, are the mean of the feature vectors inside regions r; and 2,
respectively. In practice the 4, j-th element of Ccov,, ,, is the spatial covariance
of feature 7 in region 1 and feature j in region r5. Notice that Cross-Covariance
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matrices do not share the same properties of covariance matrices. In particu-
lar, Ccov,, ,, are not symmetric and, consequently, not semi-definite positive.
Therefore cross-covariance matrices do not live on the Riemannian manifold
defined by the set of semi-definite positive matrices [I], and the only known
modality to use these descriptors in a machine learning framework is to vector-
ize them.

Calculating Eq. ([2) across all the possible region pairs, we define a block
matrix CcovBlock of size NR x NR as follows:

Ccovy, -+ Ccovy g
CcovBlock(I) = : . (3)

Ccovp,1 -+ CcovpRr

It can be noticed from Eq. @) that this matrix is block-symmetric, i.e.
Ccov,, ,, = Ccov,,,,. Therefore the final structural descriptor, named
Structural-Similarity Cross Covariance Tensor (SS-CCT), is built vectorizing
CcovBlock(I) in the following manner:

SS-CCT = [Vec(Ccovy 1) Vec(Ccovyg) ... (4)
Vec(Ccovy r) Vec(Ccovsyyga) ... Vec(Ccovp r)l.

where Vec is the standard vectorization operator.

The length of the SS-CCT descriptor is therefore (R + 1)(R/2)N?. The final
descriptor is obtained joining together the Feature Level (Eq.[) and the Similar-
ity Level (Eq.H]) descriptors, with a final length equal to (R+1)(R/2)N?+RMN.

3 Object Model

The adopted object model is dependent on the size of the images considered
and on the general characteristics of the dataset. In general, given an image
I, containing the object of interest, we calculate the low-level descriptor on a
uniformly sampled set of MR patches, of size w x w, whose overlap is w/2
in both z and y dimensions. For every patch, we encoded the appearance of
an object through the use of Histograms of Oriented Gradients descriptor, as
defined in [6]. We adopted this descriptor since it is relatively fast to compute
and still considered one of the most expressive one.

After that, we defined a set of R regions, subdividing the M R patches in
R corresponding subsets of size M. The region size is defined considering the
following criteria: 1) each region should contain a number of patches sufficient to
yield a significant statistics in the cross-covariance matrix calculus; 2) the patch
size should be sufficiently large so as to retain the descriptor expressiveness; 3)
finally, the region size should match the size of significant parts of the objects
to be detected or classified.

In this way, we calculate the SS-CCT descriptor evaluating the cross-covariance
between all the couples of regions as formalized in Eq. Bland Eq.[d The final de-
scriptor, here dubbed SS-CCT(HOG), is given by the concatenation of SS-CCT
and the HOG descriptors.
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4 Experiments

In this section, we report experimental results obtained on two different tasks,
using three datasets: object classification (Caltech-101 [§] and Caltech-256 [9]),
and scene classification (SenseCam Dataset [I0]). In all the experiments, we
employ a multiclass one-vs-all linear Support Vector Machine classifier [I1].

The comparisons are carried out with the HOG baseline descriptor [6] and
the Self-Similarity Tensor described in [7]. The latter, named SST(HOG), is
built joining together the HOG descriptor and the pairwise Euclidean distances
between all the patches, sharing the mixed feature-based and similarity-based
philosophy of SS-CCT.

4.1 Object Classification

In the object classification community, Caltech-101 [§] dataset represents an im-
portant benchmark. It consists of 102 classes (101 object categories plus back-
ground) with a number of images per class ranging from 31 to 800. Despite its
importance, Caltech-101 has some cues, notably the presence of strongly aligned
object classes, which significantly ease the classification process. To overcome
such limitation, the larger Caltech-256 dataset was subsequently introduced. It
consists of 256 classes (256 + Clutter class) with a minimum of 80 images per
class and a total number of images equal to 30607. In Caltech-256 objects po-
sition inside the image is significantly varying for a lot of classes, as can be
seen observing the average images for the 256 classes in Fig. Bl so making the
classification task more challenging with respect to Caltech-101.

To test our descriptor, the object model introduced in Sec. [3is adopted. The
HOG descriptor is calculated on dense patches of size 32 x 32 with an overlap
of 16 pixels. The number of regions R is set to 9, 3 along both the horizontal
and vertical image direction. For Caltech-101 we considered 15 images per class
for training and 15 images per class for testing, repeating the experiments with
five different splits according to a standard procedure [I2]. The same was done
for Caltech-256 except for the number of training images which ranged from 5
to 30 with a step of 5.

Experimental results on the Caltech-101 are displayed in Tab. [l As can be
seen both SS-CCT(HOG) and SST(HOG) outperform the baseline HOG with
a 6% increment in the overall accuracy. On the other hand, SS-CCT(HOG)
and SST(HOG) yield roughly the same performance: this is easily explainable
considering that in Caltech-101 images are strongly aligned, reducing the need
for robustness against position variation.

Results on the Caltech-256 in terms of accuracy vs the number of training
images per class, are displayed in Fig.[Bl As figure shows, our method outperforms
both HOG and SST(HOG) in all the cases and the gap between our method and
the others increases with the increase of the training set size. Differently from the
Caltech-101 case, the higher complexity of the dataset highlights the superiority
of our method with respect to SST(HOG).
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Table 1. Classification results on the Caltech-101 dataset

HOG SST(HOG) SS-CCT(HOG)
Accuracy % 41.3 47.6 47.77

Fig. 2. Average of the images of the Caltech-256 dataset

4.2 Scene Classification

In the second experiment, the proposed framework is tested on the SenseCam
Dataset [10]. This dataset consists of images acquired with a SenseCam, a wear-
able camera which automatically shoots a photo every 20 secs. It consists of
912 images labeled according to 32 classes (e.g. Bathroom Home, Car, Garage
Home, Biking...). The images are divided into 479 images for training and 433
for testing. The dataset is challenging because most images present dramatic
viewing angle, translational camera motions and large variations in illumination
and scale: Fig. @l shows four images belonging to two classes extracted from the
dataset.

The HOG descriptor has been calculated on dense patches of size 32 x 32 with
an overlap of 16 pixels. The number of regions was set to 15 : 5 along the x axis
and 3 along the y axis. Experimental results are displayed in Tab.

Our method outperforms both HOG and SST(HOG) with a difference in
accuracy of about 8% and 3% respectively, so confirming its effectiveness in
classifying images containing objects with an high degree of position variability.
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Fig. 3. Results obtained on the Caltech-256 dataset

Table 2. Classification results for the SenseCam dataset

HOG SST(HOG) SS-CCT(HOG)
Accuracy % 36.72 41.10 44.12

Fig. 4. Four images extracted from the SenseCam Dataset: (a) Bathroom Home and
(b) Kitchen

5 Conclusions and Future Works

This paper proposes a novel similarity-based descriptor for image classification
purposes. The idea is to encode similarities among different image regions by
means of cross-covariance matrices calculated on low level feature vectors, ob-
taining a robust and compact representation of structural (dis)similarities of a
given entity. The final descriptor, obtained joining together the low-level features
(HOG in our case) and their structural similarities, has proven to outperform
baseline HOG, on all the datasets tested, and a recent literature similarity-based
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method [7], on the two most challenging datasets. This is a seminal work, and,
despite the encouraging results obtained, needs further study for setting the
best object model (number, shape and displacement of the parts) and the best
features in a given context. This will allow the comparison with popular state-
of-the-art approaches for detection and classification.
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