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Abstract. Enumeration and reconstruction of certain types of polyomi-
noes, according to several parameters, are frequently studied problems
in combinatorial image processing. Polyominoes with fixed projections
play an important role in discrete tomography. In this paper, we provide
a linear-time algorithm for reconstructing hv-convex polyominoes with
minimal number of columns satisfying a given horizontal projection. The
method can be easily modified to get solutions with any given number of
columns. We also describe a direct formula for calculating the number of
solutions with any number of columns, and a recursive formula for fixed
number of columns.

Keywords: discrete tomography, reconstruction, enumeration, polyomino,
hv-convexity.

1 Introduction

Projections of binary images are fundamental shape descriptors that are widely
used in tasks of pattern recognition and image processing (see, e.g., [1, [10, [L1],
and the references given there). In binary tomography |8, 9], projections are used
to reconstruct binary images from them. Several theoretical results are known,
regarding the efficient reconstruction and the number of solutions, using just the
horizontal and vertical projections. From theoretical point of view, hv-convex
polyominoes form an extensively studied class of binary images. Although, we
know quite a lot about the reconstruction complexity and the number of solutions
in this class when the horizontal and vertical projections are available |2, 13, 5],
surprisingly, those problems have not yet been investigated if only one projection
is given. In this paper, we fill this gap by describing a linear-time reconstruction
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algorithm and providing formulas for the number of solutions with minimal and
with any given number of columns.

The paper is structured as follows. In Section [2] we give some preliminaries. In
Section Bl we provide a linear-time algorithm for reconstructing hv-convex poly-
ominoes from the horizontal projection. Section M describes formulas for enu-
merating hv-convex polyominoes with given horizontal projection, for arbitrary,
and also for fixed number of columns. The conclusions are given in Section

2 Preliminaries

A binary image is a digital image where each pixel is either black or white. Binary
images having m rows and n columns can be represented by binary matrices of
size m x n, where the value in the position of the matrix is 1 (respectively, 0) if
the corresponding pixel in the image is black (respectively, white).

The horizontal projection of a binary image F is a vector representing the
number of black pixels in each row of F'. Using the matrix representation, it is
the vector H(F') = (h1,...,hm), where

n
hi:zfij (z:l,,m)
j=1

The vertical projection of the image can be defined analogously. Throughout the
paper, without loss of generality, we assume that each projection component of
the binary image is positive.

Two positions P = (p1,p2) and Q = (q1,¢=2) in a binary image are said to be
4-adjacent if |p1 — q1| + |p2 — q2|] = 1. The positions P and @ are 4-connected
if there is a sequence of distinct black pixels Py = P, ..., P, = @ in the binary
image such that P, is 4-adjacent to P,_1, respectively, for each I = 1,... k. A
binary image F' is 4-connected if any two points in F' are 4-connected. The 4-
connected binary images are also called polyominoes [1]. The binary image F is
horizontally and vertically convex, or shortly hv-convez if the black pixels are
consecutive in each row and column of the image (see the polyomino T in Fig.[d]).
Upper stack polyominoes are special hv-convex polyominoes which contain the
two bottom corners of their minimal bounding rectangles. Similarly, lower stack
polyominoes are hv-convex polyominoes that contain the two top corners of their
minimal bounding rectangles. Finally, parallelogram polyominoes are hv-convex
polyominoes that contain both their top left and bottom right, or both their
top right and bottom left corners of their minimal bounding rectangles. Any hv-
convex polyomino can be constructed (not necessarily uniquely) from an upper
stack, a parallelogram and a lower stack polyomino. Figure [I] shows examples
for the special types of polyominoes, and such a construction.

3 Reconstruction from the Horizontal Projection

Let H = (h1,...,hy) € N™ be a vector of size m. We first give an algorithm,
called GreedyRec which constructs an F' binary image with m rows and the
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Fig. 1. An hv-convex polyomino 7' composed of an upper stack S, a parallelogram P,
and a lower stack S polyomino

minimal possible number of columns. Due to h-convexity, the 1s are consecutive
in each row of the binary image to reconstruct. We will refer to them as the i-th
strip of the image (i = 1,...,m). The sketch of the algorithm is the following
(Fig. Bal shows an example result of the algorithm).

1. The first strip must be aligned to the left.
2. The position of the i-th strip of F' depends on the position of the (i — 1)-th
strip (¢ =2,...,m):
(a) if h; = h;—1, then the i-th strip is just below the (i — 1)-th strip (see
Fig. 2al),
(b) if h; < hi_1, then the i-th strip is aligned to the right of the (¢ — 1)-th
strip (see Fig. 2h),
(c) if h; > h;_1, then the 4-th strip is aligned to the left of the (i — 1)-th

strip (see Fig. 2d).

(a) (b) ()

Fig. 2. Steps of GreedyRec with the (i — 1)-th and the i-th rows. Cases: (a) h; = hi_1,
(b) h; < hi_l, and (C) hi > hi—1

Theorem 1. GreedyRec constructs an hv-convex polyomino satisfying the hor-
izontal projection with minimal number of columns, in O(m) time.

Proof. Tt is clear that the resulted image is an hv-convex polyomino with the
required horizontal projection. We prove by induction that no solution exists
with less number of columns.
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Fig. 3. (a) The minimum-size output of GreedyRec for H = (2,3,5,3,3,7,5,1) with 9
columns, and (b) another solution with 13 columns

Let n((,k) be the number of columns in a minimal-column solution of the prob-
lem (i.e., an hv-convex polyomino satisfying the projections with minimal num-
ber of columns), considering only the first & components of the input (hq, ..., hx)

(k < m). Similarly, let n_gk) be the number of columns in the result of GreedyRec

for the first £ components of the input. For k = 1, nél) = ngl) = hq, so GreedyRec

is optimal. For k > 1 assume that nék_l) = ngk_l).

If by, < hg—1, then n_gk) = n_gk_l) (Cases 2(a) and 2(b) of GreedyRec), therefore

the number of columns does not change. Since ngk) > ngk_l), therefore n_gk) =

n((,k), and GreedyRec is still optimal.

If hy > hg—1, then n_gk) = n_gk*l) + hi — hi—1 (Case 2(c) of GreedyRec).
Assume to the contrary that an arbitrary optimal algorithm provides a better
result, hence ngk) < ngk_l) 4+ hg — hg_1.

For a further analysis, let us call a column k-simple if its (k — 1)-th element is
0 and its k-th element is 1. The number of k-simple columns is at least hy —hyp_1,
and due to vertical convexity, in a k-simple column there can be no 1s above the
k-th row. Therefore, the first k—1 number of strips must fit into ngk) —(hg—hi—1)
number of non-k-simple columns at most. Due to h-convexity and connectivity,
non-k-simple-columns must be successive. Therefore, the first £k — 1 number of
strips fit into a matrix with a column number of n((,k) — (hie — hg—1) < n((,k_l) +

hi — hi—1 — (hg — hg—1) = n((,k_l), which is a contradiction to the minimality of
(k1)

Mo . Hence, GreedyRec is still optimal.
The complexity of the algorithm is straightforward, if the polyomino is rep-
resented by the first positions of its strips. a

One can easily modify the output of GreedyRec to expand it to have a prede-
fined number of columns (if possible) by moving the k-th, (k + 1)-st, ..., m-th
strips further to the right, if the previous strip allows it (i.e., when the image
remains hv-convex and 4-connected). The smallest possible number of columns
(provided by GreedyRec) is Nuyin = Ny, where

hi ifi=1,
N;i =< Ni1 if hy <hi_1, (1)
Nioi+hi—hi—y ifhy > hiq .
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This formula can be easily derived from the steps of the algorithm GreedyRec.
The biggest possible number of columns is

Nmaxzzhi*m“i’la (2)
=1

where every strip is connected with the previous and the next strips through
only one element. The modified GreedyRec can construct any solution between
Npin and Nyax in linear time. An example result of the modified algorithm is
given in Fig. BH

4 Enumerating hv-Convex Polyominoes with Fixed
Horizontal Projection

Enumeration of polyominoes according to several parameters (e.g., area, perime-
ter, size of the bounding rectangle, etc.) is an extensively studied field of com-
binatorial geometry. Regarding the number of hv-convex polyominoes satisfying
two projections, in |2H5] several results have been published. In [6] a method
was proposed to determine the number of hv-convex polyominoes that fit into
discrete rectangle of given size. In this section, we provide formulas to enumerate
hv-convex polyominoes satisfying the given horizontal projection.

4.1 Arbitrary Number of Columns

We first give a formula to calculate the number of hv-convex polyominoes with

a given horizontal projection H = (hq, ..., hy,), if there is no restriction on the
number of colums of the resulted image.
Given an hwv-convex polyomino, the smallest integer k for which fi; = 1

is called the smallest left anchor position. Similarly, the greatest right anchor
position is the greatest integer [ for which fj, = 1. Furthermore, let K denote
the greatest integer for which h; < hy < --- < hg. Similarly, let L be the
smallest integer for which hy, > hptq > -+ > hy,. Figure M illustrates these
definitions.

First, assume that K < L. Then, K < k,l < L cannot hold, due to v-
convexity. Also note that for every k < [ solution, a vertically mirrored image
is also a solution with [ < k, and vice versa. For this reason, we only count the
cases with k <1 (i.e., 1 <k < K and L <! < m), and multiply the result by 2.

Let Si(H) denote the number of upper stack polyominoes having the hori-
zontal projection (hy,...,hy). Similarly, let S;(H) denote the number of lower
stack polyominoes having the horizontal projection (h, ..., hy,). Furthermore,
let Py ;(H) denote the number of parallelogram polyominoes with the horizon-
tal projection (hy,...,h;), having the smallest left anchor position k& and the
greatest right anchor position .

Lemma 1. Sy (H) =1, and Si.(H) = [Ti_,(hi —hi_1+1) (k> 2). S
and Sy(H) =TI (hi — higa +1) (I <m).

(H) =1,

m
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Fig.4. An hv-convex polyomino with H = (1,2,4,6,6,2,5,4,4,3,2), where K = 5,
and L = 7. The smallest left anchor position is k£ = 3, the greatest right anchor position
is I = 9. The (k — 1)-th strip can be placed on the top of the k-th strip in 2 different
ways, and cannot occupy the position marked by x, since the k-th strip must be the
leftmost strip

Proof. The formula Sy (H) = 1is trivial. If £ > 2, then the (k—1)-th strip can be
placed on the top of the k-th strip in hx — hx—1 + 1 different ways. Similarly, the
(k—2)-th strip can be placed on the top of the (k—1)-th strip, in hx—1 —hg_2+1
different ways. And so on. Finally, the first strip can be placed in ho — h; + 1
ways on the top of the second strip. The formula for the lower stack polyominoes
can be proven analogously. a

Lemma 2. P, (H) = HZ wmin{hi, hip1}.

Proof. The k-th strip is fixed (it is in the leftmost position), and we can place
the (k + 1)-th strip under the k-th strip in min{hg, hxt1} ways. The (k + 2)-th
strip can be placed under the (k + 1)-th strip in min{hg41, hxt2} ways. And so
on. Finally the I-th strip can be placed under the (I —1)-th strip in min{h;_1, h;}
ways. O

In the rest of the paper, we will use the convention that empty (non-defined)
factors of a product will be always 1.

Theorem 2. Let H € N™. If K < L then the number of hv-convex polyominoes
with the horizontal projection H is

K m
Prer(H) =2 > <Sk 1(H) - (hi = hi—1) - Pk,l(H)'(hz—hl+1)'sl+1(H>) :
k=1 I=L
3)
If K > L, then the number of solutions is
Pr>p(H) = Px<r(H) = SL(H) - S (H) . (4)

Proof. We observe that an hv-convex polyomino with the smallest left anchor
position k£ and the greatest right anchor position [ can be uniquely decomposed
into a (possibly empty) upper stack polyomino consisting of the first k—1 rows, a
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(possibly empty) lower stack polyomino of consisting of the last rows from {+1 to
m, and a parallelogram polyomino consisiting of the k-th, k+ 1-th, ..., [-th rows.
If k is the smallest left anchor position, then the (k — 1)-th strip (the bottom
strip of the upper stack polyomino) cannot reach the leftmost position (see the
position marked by x, in Fig. ), therefore the upper stack can be connected to
the parallelogram in (hy — hr—1) ways. With a similar argument, the lower stack
can be connected to the bottom row of the parallelogram in (h; — hj4+1) ways.
Thus, using lemmas [ and 2] for fixed k£ and [ the number of possible solutions is
Sk—1(H)(hx —hg—1)-Pry(H)- (hi —hi41)- S, (H). Including also the mirrored
cases we get ().

If K > L, then the same formula as in (3] can be applied. However, in this case,
it counts some of the solutions twice through symmetry (where the parallelogram
poliominoes are rectangular). Note that the longest strips in H are hy, = hp+1 =
--+ = hg, and (3] counts all the cases twice when these strips are right under each
other. Regarding that the L-th strip is the bottom of the upper stack polyomino,
and the K-th strip is the uppermost row of the lower stack polyomino, the
number of cases counted twice is SL(H) - Sy (H), using Lemma [1 O

4.2 Fixed Number of Columns

Now, we give a recursive formula to calculate the number P,(H) of hv-convex
polyominoes having the horizontal projection H = (hq, ..., hy,), when the num-
ber of columns is fixed to n. First, assume again that K < L. Let r > 1
and P(p1,...,pr,n) denote the number of parallelogram polyominoes with n
columuns, having the horizontal projection (p1, ..., p,)-

Lemma 3. P(p1,n) =1 if p1 = n. P(p1,n) = 0 if p1 # n. Furthermore, for
r > 1 we have the following recursion

P2, prn—i+1) if p1 < pa,
P(pla"'apfvn) =
P P(p2,...,pr,n—(p1—p2) —i+1) if pr >po.

Proof. If r = 1, then either the strip itself of length p; occupies n number of
columns (and should be counted as a solution) or not. If » > 1 and p; < po, then
we count recursively every possible solution where the second strip is shifted to
the right under the first strip, and the number of remaining columns decreases
proportionately. If > 1 and p; > p2, then additionally, we have to substract the
difference from the number of required columns, since the second strip must be
shifted with at least p; — po positions to the right, relatively to the first position
of the first strip. O

Therefore, including the possible stack polyominoes and the mirrored cases, the
number of solutions for a fixed n is

K m
P.(H) =23 <Sk,1(H)~(hk7hk,1)~P(hk, N .,hl,n)-(hﬁhm).slﬂ(H)) ,
k=1 I=L

where P(hy,...,h;,n) =01if k> [.
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If K > L then we have to substract some of the solutions in the same way
as in (). Note that this concerns only Py, (H) (where n is minimal), since for
every other case a mirrored solution is truly a different solution.

P, (H) also provides a different formula for calculating the number of solu-
tions, if the size of the polyomino can be arbitrary, namely

Niax

> Pu(H),

Nn=Nmin

where Npyin and Ny is given by () and (2), respectively.

5 Conclusion

In this paper, we showed how to reconstruct hv-convex polyominoes from a
given horizontal projection with minimal number of columns in linear time. This
algorithm can easily be extended to give a solution with any required number of
columns, if such a solution exists. We also gave formulas for counting all possible
solutions, one for any number of columns, and another one for fixed number of
columns. The results can be used in various fields of pattern recognition, image
processing, and especially, in binary tomography.
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