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Abstract. This paper deals with the problem of effective test suite re-
duction. In its original form this problem is equivalent to the set covering
problem, which has already been extensively studied and many strategies
such as greedy or branch and bound for computation of an approximative
optimal solution to this NP-complete problem are known. All of these
algorithms only focus on one objective which is the minimization of the
number of action calls within the test suite reduction. However, practi-
cal experience shows that balancing out the distribution of action calls is
another objective which should be considered when choosing an efficient
test suite. We will therefore introduce and evaluate different extensions
of the standard techniques which incorporate action call distribution. We
will see that these adjusted strategies can compute a reduced test suite
with a smoother distribution over function calls within an acceptable
amount of additional time in comparison to the classic algorithms.

1 Introduction

Automatically generating tests suites from formal specifications as advertised
by Model-based Testing (MBT) is regarded as a potential innovation leap in
industrial software quality assurance. Most MBT approaches are running in two
phases. In the first phase vast amount of test cases are generated for an inserted
model until a coverage of model entities is achieved. In the second phase a subset
of these test cases is selected with the aim to preserve the targeted coverage and
therefore the assumed fault-uncovering capabilities [11]. This activity is called
test suite reduction.

The problem of test suite reduction is largely discussed in the literature. There
are papers, where the general test suite reduction activity is described [3,9]. Fur-
ther work on how to apply 0/1-Integer linear programming to the test suite
reduction problem [12] or how to improve the Greedy heuristics [5,6,2] can be
found. In [1,14] there are approaches using multi-objective optimization func-
tions, whereas in [8] an approach based on genetic algorithms is introduced.
Some empirical results for test suite reductions have been reported in [11].
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In this paper we propose a test suite reduction approach that aims for a
smoother test case distribution, as required by our industrial MBT users. The
mathematical definition of the problem as well as proposed algorithmic modi-
fications are the main contributions of this paper. Further we present experi-
mental results that demonstrate the applicability and efficiency of the proposed
approaches.

The paper is structured as follows. In Section 2 we briefly introduce the stan-
dard algorithms for test suite reduction. Section 3 gives a definition of test case
distribution, describes its practical relevance and details how we incorporated it
in the standard reduction algorithms. In Section 4 we illustrate the impact of
our algorithmic modifications on concrete industrial cases and finally discuss our
conclusions in Section 5.

2 Test Suite Reduction

In order to describe the test suite reduction problem, we assume a finite set of
coverage requirements R = {r1, . . . , rn} which is guiding the test generation. All
requirements have to be met by a complete test suite. Each test case tc either
satisfies a given requirement (ri(tc)) or does not, that is
ri(tc) ∈ {true, false}. For convenience we also define

cov(tc) = {ri : ri(tc) = True, 1 ≤ i ≤ n}. (1)

Now a test suite TS = {tc1, . . . , tcm} is complete, if R =
⋃m

i=1 cov(tci) and the
test suite reduction problem can be reformulated as follows:

Given: A test suite TS and a set of requirements R, such that TS is complete
with respect to these requirements.

Problem: Find a complete test suite TS0 ⊆ TS that is minimal with respect to

value (TS0) =
∑

tc∈TS0

|tc|. (2)

In the remainder of this section we present two classical approaches, the
Greedy- and the Branch and Bound-algorithm, to solve this problem. Later we
will describe how these algorithms can be modified in order to obtain a better
test case distribution.

2.1 Greedy Algorithm

Even though the Greedy algorithm computes an approximation, [4] showed that
the result cannot become arbitrarily bad. In fact the upper bound for the error
only depends on the number of requirements.

The algorithm stores two objects: An iteratively constructed subset TS0 of
TS, which will be a complete test suite after termination of the algorithm and
a set R0 of all those requirements that are already met by this subset (l. 1–
2). While not all requirements are met (l. 3), the algorithm does the following:
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It computes the set of all test cases tc, for which the ratio wtc of the number of
additionally satisfied requirements and the number of additional action calls is
maximal (l. 4–6). Then it picks one of these at random (l. 7). This test case is
afterwards added to TS0 and R0 is updated appropriately (l. 8–9).

Input: test suite TS = {tc1, . . . , tcm}, set of requirements R
Output: approximated minimal test suite TS0 ⊆ TS which is complete
1: TS0 = ∅
2: R0 = ∅
3: while |R0| < |R| do
4: for tc ∈ TS \ TS0 do
5: wtc = 1

|tc| · |cov(tc) \ R0|
6: TS′

0 = {tc ∈ TS \ TS0 : wtc is maximal}
7: Pick tc ∈ TS′

0

8: TS0 = TS0 ∪ {tc}
9: R0 = R0 ∪ cov(tc)
10: return TS0

Algorithm 1. Greedy

2.2 Branch and Bound – Algorithm

We use the Branch and Bound variation (Balas-algorithm) described in [7] to
compute an optimal result.

The algorithm identifies all possible subsets of TS = {tc1, . . . , tcm} with arrays
(n1, . . . , nm). Here ni = 1 means, that tci is part of the subset, while ni = 0
means, that it is not. To check these arrays systematically, they are organized
as a binary tree. At the root node no decisions have been made, as any node
on level i represents a certain choice of the first i bits. For simplicity it is also
denoted as array (n1, . . . , ni) and identified with the test suite {tcj : nj = 1}.
We denote the level of a node by level(n1, . . . , ni) = i. Now (2) can be extended
to nodes by

value(n1, . . . , ni) =

i∑

j=1

|tcj | · nj . (3)

The Branch and Bound algorithm stores two objects: The best solution found
so far, nres, and a stack S of nodes that has to be checked. Obviously nres is
initialized with the array that represents whole TS and S with the stack that
only contains the root node (l. 1–2). As long as additional nodes have to be
checked, one of them is popped from S (l. 3–4). Then child nodes n0 and n1

are generated, where n0 rejects the next test case and n1 includes it. To decide,
whether it is necessary to check these as well, the following rules are applied:

– n0 is expanded if it has a successor which represents a complete test suite
(l. 7) and if appending the smallest remaining test case results in a suite that
is smaller than the one represented by nres (l. 8). (To be able to efficiently
evaluate the second condition, we presume TS to be sorted ascending by
length.)
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– n1 is expanded if it is smaller than nres (l. 11), but not if it is complete (l. 12,
15).

Finally nres is updated, if n1 is smaller than nres and complete. In this case all
nodes bigger than n1 are removed from S afterwards (l. 11–14).

Input: test suite TS = {tc1, . . . , tcm} sorted ascending by length,
redundant test cases eliminated

Output: exact minimal test suite TS0 ⊆ TS
1: nres = (1, . . . , 1)
2: Stack S = {()}
3: while S �= ∅ do
4: n = S.pop
5: if level(n) < m− 1 then
6: n0 = (n, 0)
7: if {tci : (n0)i = 1 or i > level(n0)} is complete test suite then
8: if value(n0) + |tci+1| < value(nres) then
9: S.push(n0)
10: n1 = (n, 1)
11: if value(n1) < value(nres) then
12: if {tci : (n1)i = 1} is complete test suite then
13: nres = n1

14: S = {n′ ∈ S : value(n′) < value(n1)}
15: else if level(n1) < m then
16: S.push(n1)
17: return {tci : (nres)i = 1}

Algorithm 2. Branch and Bound

3 Test Case Distribution

In this section we formulate the test case distribution problem and describe it
mathematically by introducing a sequence of functions that measures distribu-
tion quality in terms of variances. Using these functions we show how to modify
both Greedy and Branch and Bound algorithms in order to improve test case
distribution.

TS1 = {(A, C, D), (A, C, E),
(A, C, F), (B, C, G)}

TS2 = {(A, C, D), (A, C, E),
(B, C, F), (B, C, G)}

Fig. 1. Test Model Example 1
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Let us start with the simple example depicted in Figure 1 together with two
test suites TS1 and TS2. Both test suites are minimal with respect to action
coverage and vary only in one action, which is denoted in bold font. Actions A
and B are used an equal number of times in TS2, while they are not in TS1.

TS3 = {(A, C, E, F), (A, C, E, G),
(B, D, E, H), (B, D, E, I)}

TS4 = {(A, C, E, F), (A, D, E, G),
(B, D, E, H), (B, C, E, I)}

Fig. 2. Test Model Example 2

Let us now move on to the more complex example depicted in Figure 2,
which again comes with two test suites TS3 and TS4. As before, both test suites
are minimal and their difference is marked in bold font. However this time all
actions are called the same number of times in TS3 as in TS4. Nevertheless the
second suite can be regarded as having a smoother test case distribution since
it includes four different variations for the first two actions, while the first one
only includes two. In a similar fashion one could obtain larger examples, where
distribution quality only depends on the number of occurrences of even larger
test case subsequences.

3.1 Industrial Relevance

In the last few years, development paradigms like lean and agile, propagating
the empowerment of developers [10], have found broad adoption in industrial IT
organizations. While previously development processes were defined on a global
scale and based on an assumed overall efficiency, todays industrial developers
have a much bigger degree of freedom in choosing their development approaches
and tools. Based on our experience, on individual level of decision making effi-
ciency is often traded for lower learning effort, better user experience and other
partially subjective reasons.

Concretely, in a case study [13] that aimed to validate an MBT framework
with industrial testers we observed that uneven test case distribution may cause
negative assessments on individual level. In interview sessions, most of the case
study participants stated that the distribution resulting from standard test suite
reduction made them less confident in the effectiveness of the test suite and the
correctness of the test generation approach. While no concrete evidence for su-
perior qualities of evenly distributed test suites were found in our experiments,
they assumed that a better distribution may be beneficial in the test data as-
signment, test maintenance and selection of test cases for regression. As a con-
sequence, most participants required smoothly distributed test suites in order to
apply MBT in their test routines.
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In summary, from our industrial experience a smooth test suite is more desir-
able as it increases confidence of MBT users. Whether it also has direct effects
on the quality of the test suite remains subject of future investigations.

3.2 Formalization

We now want to give a mathematical description of the problem. Therefore we
propose a way how to measure the distribution quality of a given test suite
TS0 ⊆ TS.

Given that a test case is composed of a sequence of action calls, a simple
approach is to evaluate their variance in a test suite. For any test case tc =

(a1, . . . , ak) ∈ TS we define a counting function d
(1)
tc , which assigns to each

action a ∈ A the number of times it is called by tc:

d
(1)
tc : A → N, a �→ ∣

∣
{
i ∈ {1, . . . , k} : ai = a

}∣
∣ . (4)

Equivalently for any test suite TS0 = {tc1, . . . , tcm} ⊆ TS we define a counting

function d
(1)
TS0

, which assigns to each action a ∈ A the number of times it is called
by whole TS0. This can be formalized as

d
(1)
TS0

: A → N, a �→
m∑

i=1

d
(1)
tci (a). (5)

Now the mean number of calls per action in TS0 is given as

d
(1)
TS0

=
1

|A|
∑

a∈A
d
(1)
TS0

(a)

(

=
1

|A|
m∑

i=1

|tci|
)

. (6)

If TS0 is well distributed, we would expect d
(1)
TS0

(a) not to vary much, but to stay

near its mean value for all a ∈ A. Hence, the variance of d
(1)
TS0

or the variance of
action calls in TS0 will be our first measure for distribution quality:

Var1(TS0) =
1

|A|
∑

a∈A

(
d
(1)
TS0

(a)− d
(1)
TS0

)2

. (7)

Let us apply this definition to the examples from above. The values obtained

for d
(1)
TSi

are denoted in table 1. Further calculations show, that for the first
example Var1(TS1) = 1.35, while Var1(TS2) = 1.06. As expected TS2 has a
better distribution quality than TS1. Nevertheless for the second example we get
Var1(TS3) = Var1(TS4) = 0.84, i. e we cannot determine the difference between
TS3 and TS4 by Var1. This is not surprising, since the counting functions for
both test suites are identical.

To circumvent this problem we generalize our ideas in order to construct a
variance of action-sequence calls for sequences of a fixed length p: Let A(p) be
the set of all action-sequences of length p that are part of at least one test
case in TS. To ease notation we will use the symbol a to denote such sequences.
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Table 1. Values of d
(1)
TSi

Example 1

Suite A B C D E F G

TS1 3 1 4 1 1 1 1

TS2 2 2 4 1 1 1 1

Example 2

Suite A B C D E F G H I

TS3 2 2 2 2 4 1 1 1 1

TS4 2 2 2 2 4 1 1 1 1

First for any test case tc = (a1, . . . , ak) ∈ TS we again define a counting function

d
(p)
tc , which assigns to each action-sequence a ∈ A(p) the number of times it is

called by tc:

d
(p)
tc : A(p) → N, a �→ ∣

∣
{
i ∈ {p, . . . , k} : (ai−p+1, . . . , ai) = a

}∣
∣ . (8)

As before we can use these functions to define a counting function d
(p)
TS0

for a
whole test suite TS0 = {tc1, . . . , tcm} ⊆ TS, i. e.

d
(p)
TS0

: A(p) → N, a �→
m∑

i=1

d
(p)
tci (a). (9)

The mean amount of calls per p-action-sequence is given by

d
(p)
TS0

=
1

|A(p)|
∑

a∈A(p)

d
(p)
TS0

(a) (10)

and we can finally define the variance of d
(p)
TS0

or the variance of p-action-
sequences by

Varp(TS0) =
1

|A(p)|
∑

a∈A(p)

(
d
(p)
TS0

(a)− d
(p)
TS0

)2

. (11)

Let us apply this definition with p = 2 to example 2 from above. The val-

ues obtained for d
(2)
TSi

are denoted in table 2. Further calculation shows, that
Var2(TS3) = 0.56, while Var2(TS4) = 0.16. This means that Var2 rates the sec-
ond test suite better than the first one, as demanded by the motivation from the
beginning of this section.

Table 2. Values of d
(2)
TSi

Example 2

Suite (A,C) (A,D) (B,C) (B,D) (C,E) (D,E) (E,F) (E,G) (E,H) (E,I)

TS3 2 0 0 2 2 2 1 1 1 1

TS4 1 1 1 1 2 2 1 1 1 1
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3.3 Lexicographical Approaches

Greedy. We present concrete implementations that respect distribution quality
as described in section 3.2. The approaches proposed here optimize with respect
to the total number of action calls first and with respect to distribution quality
afterwards.

In order to modify the Greedy algorithm, we have to rate distribution quality
not of a complete test suite, but of a partially constructed one. More precisely,
we have to determine how well an additional test case tc = (a1, . . . , ak) would
fit in a non-complete test suite TS0. This is done by the quality functions

q
(p)
TS0

(tc) =

k∑

i=p

d
(p)
TS0

(ai−p+1, . . . , ai). (12)

Using them we can modify the Greedy algorithm in order to achieve better
distribution quality by exchanging line 7 with the following steps:

for i = 1 → p do

TS′
i =

{
tc ∈ TS′

(i−1) : q
(i)
TS0

(tc) is minimal
}

Pick tc ∈ TS′
p

Branch and Bound. To modify the Branch and Bound algorithm from section
2.2, just some simple modifications have to be made in lines 8, 11 and 13–14,
so that the set of all optimal nodes N (0) is returned instead of just one optimal
node nres. For example we have to exchange the sharp inequality (<) in line 8
with a weak one (≤). We will come back to this particular replacement when
discussing experimental results.

More importantly, we have to choose a single node from N (0) when the main
loop is finished. This is done such that the according test suite has optimal dis-
tribution quality. Therefore we extend definition (11) to nodes n = (n1, . . . , ni)
by

Varp(n) = Varp
({tcj : nj = 1}) (13)

and insert the following steps between lines 16 and 17:

1: for i = 1 → p do
2: N (i) = {n ∈ N (i−1) : Vari(n) is minimal}
3: Pick nres ∈ N (p)

3.4 Multi-objective Greedy Approach

In this subsection we present another approach to the problem, which is based
on the Greedy algorithm from section 2.1. The strategy proposed here optimizes
with respect to both objectives (test suite size and distribution quality) simul-
taneously and allows arbitrary weighting between them.
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As discussed in 3.2, the requirement of TS0 ⊆ TS having a good distribution
quality is equivalent to the one that its variances are minimal. To simplify mat-
ters we will only consider Var1 here. Therefore this objective can be stated as

Var1(TS0) =
1

|A|
∑

a∈A

(
d
(1)
TS0

(a)− d
(1)
TS0

)2

→ min! (14)

To combine it with the goal of minimizing the number of action calls we use
a probabilistic approach. The probability of being contained in an optimal test
suite with respect to distribution quality is greater for some tc ∈ TS \TS0, if its
distribution variance contribution is small. This contribution can be expressed
by the value of Var1 that would result when including tc into TS0, Var1(TS0 ∪
{tc}), in relation to the sum of variances for all elements in TS \ TS0, namely∑

t̃c∈TS\TS0
Var1

(
TS0 ∪ {t̃c}).

Thus, we start with an initially empty set of test cases TS0 and iteratively add
test cases tc ∈ TS to TS0 such that distribution variance increase is minimized.
This leads to the following definition of probabilities for each tc ∈ TS \ TS0:

pvar(tc) :=

1− Var1(TS0∪{tc})
∑

t̃c∈TS\TS0
Var1(TS0∪{t̃c})

|{t̃c ∈ TS \ TS0}| − 1
. (15)

Obviously, 0 ≤ pvar(tc) ≤ 1 for all tc ∈ TS\TS0 by construction and the expres-
sions defined in equation (15) can be interpreted as probabilities.

For our primary objective of minimizing the number of action calls we will
construct probabilities in an analogous way by using the same decision criterion
as for the Greedy algorithm from section 2.1. Referring to line 5 of the algorithm
we denote wtc = 1

|tc| · |cov(tc) \ R0| as the weight for each tc ∈ TS \ TS0.

The weight of a test case tc is the total number of requirements r ∈ R that
are satisfied by tc but not yet covered by any test case in TS0. This value is
normalized by the length of tc. It is clear that test cases with a high weight will
more probably be contained in a test suite that is optimal with respect to test
suite size than test cases with a lower weight. See [4] for more details. We can
thus define probabilities for each tc ∈ TS \ TS0 as follows:

prate(tc) :=
wtc∑

t̃c∈TS\TS0
wt̃c

. (16)

So, given a rate proportion coefficient δ ∈ [0, 1] we can construct a weighted
probability distribution by defining

p(tc) := δ · prate(tc) + (1 − δ) · pvar(tc) (17)

for each tc ∈ TS \ TS0.
A resulting Greedy strategy would be to iteratively sort test cases by their

combined probability descending and add the test case with highest probability
value to the final solution set. These preliminary considerations yield to a Greedy
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algorithm like the one presented in section 2.1, except that lines 4 to 6 have to
be replaced by the following steps1:

for tc ∈ TS \ TS0 do
Compute p(tc)

TS′
0 = {tc ∈ TS \ TS0 : p(tc) is maximal}

4 Experimental Results

In this section we present experimental results for the optimization techniques
described above. Due to computational constraints we only considered p = 2 for
the lexicographical algorithms. All computations were performed on an AMD
Opteron (tm) Quad Core with 2.60 GHz and 32 Gigabytes of RAM. As input
we derived 13 different transition state machines which were designed on the
basis of industrial case studies. To get realistic statements for the context of our
work, most of our use cases are small- or intermediate-sized (I-IX). Nevertheless
we included some larger models as well (X-XIII). Actually (XII) and (XIII)
have proven to be too large to be optimized with algorithms of the Branch and
Bound-type.

Table 3. Use cases

# |TS| AC AC(2) |A| |A(2)|
I 15 84 69 13 26

II 21 123 102 10 15

III 32 128 96 13 28

IV 41 164 123 15 31

V 30 189 159 25 35

VI 36 190 154 31 40

VII 46 317 271 40 52

VIII 45 374 329 23 36

IX 120 600 480 15 33

X 132 1306 1174 26 40

XI 512 6656 6144 30 54

XII 284 1600 1316 140 422

XIII 625 4375 3750 23 86

For detailed information about the use cases consider table 3. It contains the
number of test cases (|TS|), the number of action calls (AC), the number of

action-pair calls (AC(2)), the number of actions (|A|) and the number of action-
pairs (|A(2)|) for each of our use cases. Nevertheless the full model definitions
must not be published due to legal reasons.

1 Note that for δ = 1 this algorithm is equivalent to the one proposed by [4].



Variations over Test Suite Reduction 159

4.1 Greedy Based Approaches

In the following we compare experimental results for the original Greedy algo-
rithm from [4] with our proposed extensions. As parameters we choose p = 2 for
the lexicographical variation and δ = 0.5 for the multi-objective one. Our results
are displayed in Table 4.

The second column (AC) contains the number of action calls in the unmodified
test suite TS, while columns 4, 8, and 12 (AC0) in each case contain the number
of action calls in the resulting test suite TS0. Columns 3, 7, and 11 (Time)
denote the computation time in seconds needed to run the specific algorithm
and columns 5–6, 9–10, and 13–14 present the variance values as defined by
equations (7) and (11) for the corresponding reduced suite TS0.

Table 4. Results for Greedy algorithms

Original Lexicographical Multi-objective

# AC Time AC0 Var1 Var2 Time AC0 Var1 Var2 Time AC0 Var1 Var2

I 84 0.06 16 0.33 0.00 0.08 16 0.33 0.00 0.09 16 0.33 0.00

II 123 0.06 25 2.65 0.86 0.08 25 2.05 0.56 0.09 25 2.05 0.56

III 128 0.08 32 7.17 1.89 0.09 32 4.40 0.16 0.08 32 4.40 0.89

IV 164 0.08 32 4.78 0.76 0.08 32 3.45 0.08 0.08 32 3.45 0.12

V 189 0.08 41 1.83 0.18 0.08 41 1.83 0.18 0.08 41 1.83 0.18

VI 190 0.08 47 0.64 0.15 0.09 48 0.64 0.21 0.09 48 0.64 0.21

VII 317 0.08 69 1.30 0.40 0.09 69 1.30 0.40 0.09 69 1.30 0.40

VIII 374 0.08 47 2.22 0.45 0.09 47 2.22 0.45 0.08 47 2.22 0.45

IX 600 0.09 25 1.56 0.15 0.13 25 1.16 0.19 0.11 25 1.16 0.19

X 1306 0.14 44 1.37 0.30 0.16 44 1.14 0.17 0.17 44 1.14 0.15

XI 6656 0.50 65 1.87 1.00 0.52 65 1.61 0.72 0.52 65 1.61 0.72

XII 1600 0.28 429 92.66 4.63 0.31 425 90.09 4.37 0.30 425 89.95 4.28

XIII 4375 0.36 35 1.82 0.59 0.39 35 1.82 0.59 0.39 35 1.82 0.59

We can see that the computation time for the lexicographical as well as for the
multi-objective approach is always higher than the one for the original Greedy
algorithm. This is just as expected, since computation and consideration of ac-
tion call distribution takes additional time. Nevertheless we also note, that the
additional time consumption is usually not very significant. The number of action
calls is always equal for all algorithms except for the use cases VI and XII. The
variances are usually decreased when running a modified algorithm, although for
Var2 this does not always hold. This is reasonable as well, since the lexicograph-
ical Greedy optimizes with respect to Var1 first and the multi-objective Greedy
does not consider Var2 at all.

Another conclusion one can draw from the results is, that the two modifica-
tions of Greedy behave quite similarly except for use cases III and IV, where a
significant difference in Var2 can be noticed.
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To sum up this discussion, we present the average values over the eleven first
use cases in table 52. Here we can see, that the variance values obtained by
the original Greedy algorithm can be reduced by almost about 22% on average
when using the lexicographical or the multi-objective approach. The values for
Var2 can be even be improved by almost 50% or 37% on average when using the
lexicographical or the multi-objective approach, respectively.

Table 5. Comparison of Greedy algorithms

Algorithm Avg Time Avg AC0 Avg Var1 Avg Var2
Original 0.121 40.273 2.338 0.558

Lexicographical 0.135 40.364 1.828 0.283

Multi-objective 0.134 40.364 1.828 0.352

4.2 Branch and Bound Based Approaches

Now let us compare the standard Branch and Bound approach from section 2.2
with our extension from 3.3. As parameter we again choose p = 2. The use
cases are similar to the ones from the last section except that XII and XIII
are excluded since the algorithms did not terminate within a reasonable time
constraint. Additionally we have to remark that (in difference to the Greedy
algorithms) redundant test cases as described in 2.2 were removed from the test
suite prior to running the algorithms.

Our results are displayed in table 6. Here the second column (AC) contains the
number of action calls in test suite TS after performing the removal of redundant
test cases, but before running the Branch and Bound algorithms. The third
column (AC0) contains the number of action calls in the resulting test suite
TS0, i. e after performing Branch and Bound. By construction of the algorithms
these numbers are always minimal and thus equal. Columns 4–6 contain further
results for the unmodified standard algorithm, while columns 7–9 contain the
further results for the modification discussed in section 3.3.

Considering use cases IX and XI it is evident, that the lexicographical ap-
proach is totally outperformed by the original algorithm in time. Analyzing this
problem leads to the conclusion, that most of the additional time consumption
yields from the change in line 8 of the algorithm, where a sharp inequality (<)
is replaced with a weak one (≤) in order to return all minimal solutions. Hence,
we also tried to use another modified version, which uses sharp inequality (<)
and therefore does not return all minimal solutions, but only a subset of these.
Afterwards, the best suite with respect to distribution quality is chosen out of
this subset just as in the lexicographical approach. The results for this modified
lexicographical algorithm are displayed in columns 10–12 of table 6.

To compare the algorithms with each other we again computed average values,
which are presented in table 7. One can see that standard Branch and Bound

2 The last two examples have been excluded to ensure comparability with Branch and
Bound results, see below.
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Table 6. Results for Branch and Bound algorithms

Original Lexicographical Lex. Mod.

# AC AC0 Time Var1 Var2 Time Var1 Var2 Time Var1 Var2

I 78 16 0.06 0.33 0.00 0.09 0.33 0.00 0.09 0.33 0.00

II 123 17 0.06 1.01 0.14 0.09 1.01 0.20 0.11 1.01 0.14

III 128 32 3.66 7.17 1.89 7.55 4.40 0.16 3.78 4.40 0.16

IV 164 32 9.05 5.32 1.25 24.06 3.45 0.08 9.56 3.45 0.08

V 189 38 0.39 1.45 0.16 0.47 1.45 0.16 0.42 1.45 0.16

VI 190 44 10.25 1.08 0.44 11.28 1.08 0.44 10.28 1.08 0.44

VII 317 64 239.61 0.89 0.28 271.66 0.89 0.27 234.02 0.89 0.27

VIII 185 47 0.06 2.22 0.31 0.11 2.22 0.28 0.11 2.22 0.28

IX 600 25 77.49 1.56 0.31 1755.37 1.16 0.05 81.72 1.16 0.10

X 1089 43 198.68 1.38 0.40 230.98 1.15 0.15 198.94 1.38 0.40

XI 4368 52 19.00 1.13 0.52 484.06 1.00 0.37 19.38 1.00 0.37

and the modified lexicographical version have almost equal computation time
on average (about 50 seconds). Nevertheless the average variance values for the
latter one are considerably better than those for standard Branch and Bound
(about 20% for Var1 and almost 60% for Var2). The average variance values for
the“exact” lexicographical version are of course even smaller, but do not advance
very much (only about 2% for Var1 and 10% for Var2). However, this benefit
comes with the cost of a significant increase in computation time (about 400%).

Table 7. Comparison of Branch and Bound algorithms

Algorithm Avg Time Avg AC0 Avg Var1 Avg Var2
Original 50.755 37.273 2.139 0.518

Lexicographical 253.248 37.273 1.648 0.197

Lex. Mod. 50.765 37.273 1.669 0.218

4.3 Comparison of Results

We can see that for the Greedy as well as for the Branch and Bound approaches
taking distribution of action calls into account can yield to considerably smaller
variances than for the standard versions. Nevertheless except for the lexico-
graphical Branch and Bound algorithm computational effort for the extended
approaches is not significantly higher.

When comparing the results for the extended Branch and Bound with the
extended Greedy approaches we see that the number of action calls for all Branch
and Bound approaches is about 7.5% less on average than the corresponding
numbers for the Greedy strategies. Furthermore, the variance of action calls can
be decreased by about 10% and the variance of action-pair calls even by 22% up
to 43% on average when using an extended Branch and Bound algorithm instead
of lexicographical or multi-objective Greedy. However, for the most examples this
is dearly bought with a dramatically higher computation time in comparison to
the Greedy strategies.
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5 Conclusion

In this paper we presented two classical solutions for the test suite reduction
problem, namely the Branch and Bound algorithm, which computes an exact
solution in exponential time, and the Greedy heuristic, which yields the best
approximation possible in polynomial time. Based on these algorithms we intro-
duced modifications to advance distribution quality.

A main contribution of this paper is the formalization of the term“distribution
quality” itself. With the variances Varp at hand a mathematical description of
the problem can easily be given. Our modifications of the algorithms introduce
simple but effective ways to use this description in order to solve the problem.

Experimental results support these approaches. At no time the result of a
modified algorithm was outperformed by the result of its unmodified counter-
part in distribution quality. Conversely the variances shrunk in most use cases,
at times tremendously. Both variations of the Greedy algorithm performed al-
most equally and were only marginally slower than the unmodified version. On
the other hand it showed that our first modification of Branch and Bound was
significantly slower, such that we would not advice to use it. Nevertheless we
also introduced a variation that comes with nearly the full advantage of a bet-
ter distribution quality, but computes insignificant longer compared to standard
Branch and Bound.
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