Planning Support for Enterprise Changes

Florian Lautenbacher!, Philipp Diefenthaler!?, Melanie Langermeier?,

Mariana Mykhashchuk!, and Bernhard Bauer?

1 Softplant GmbH, Munich, Germany
firstname.lastname@softplant.de
2 University of Augsburg, Germany
firstname.lastname@informatik.uni-augsburg.de

Abstract. Enterprises have to react to changes with an increasing speed
in order to stay competitive. Many approaches support the modeling of
enterprise architectures but lack an evolution of enterprise architectures
through demonstrating a transformation path from one architecture state
to another. Enterprises know their strategic goals and are able to model
them, but are not supported towards achieving these goals in terms of de-
veloping their architecture. We want to improve the current manual cre-
ation of the transformation paths in enterprise architecture planning by
providing possible and sound sequences of actions as part of a roadmap
from the current to a desired target architecture.

Therefore, we present a solution that supports the enterprise archi-
tect with proposals for a transformation path from the current to the
target state considering dependencies to be taken into account during
the enterprise transformation.

Keywords: enterprise architecture management, transformation plan-
ning, transformation modeling, application architecture.

1 Introduction

Changing laws and regulations, a growing number of competitors, upcoming cus-
tomer channels and, hence, an adapted business strategy require that enterprises
need to react flexibly. Nowadays, an IT landscape that efficiently supports the
business and can easily be adapted is a key element for the success of enterprises.

Enterprise architecture management (EAM) assists to develop the IT land-
scape so that it efficiently supports current and future business needs. Several
EAM frameworks were standardized (e.g. The Open Group Architecture Frame-
work (TOGAF) [I] or the Zachman framework [2]) and are utilized and adapted
in several companies.

Enterprise architecture (EA) models describe the enterprises in an abstract
way and allow for a goal-oriented information systems development. They serve
as information basis for discussing and deciding about transformations of the
overall enterprise [3]. Models of the EA provide a holistic view on an enter-
prise by aggregating information about the business strategy, business processes,

J. Grabis et al. (Eds.): PoEM 2013, LNBIP 165, pp. 54-B8] 2013.
© IFIP International Federation for Information Processing 2013

Planning Support for Enterprise Changes 55

the applications and interfaces, the data exchanged between the applications as
well as the underlying infrastructure [4]. The relation of those elements provides
enterprises with a clear picture of the current business support by IT systems.

Driven by the business strategy a desired target state can be modeled for the
business, the application as well as the technological perspective. In order to
close the gaps between the current and the target state, transformations from
the current to the target architecture are planned by enterprise architects.

Many companies face an IT landscape which has grown over years and which
comprises hundreds of systems using various technologies with complex depen-
dencies between them. Considering all these dependencies when planning the
enterprise transformations is a difficult task. Especially when focusing on the
business, these dependencies are often neglected. These inherent dependencies
are often revealed quite late, when implementing the transformation projects
and then lead to changed project plans, higher costs and delayed deadlines.

The process of building a roadmap from a current state to a target state of
an enterprise considering the EA dynamics is evaluated in the research area EA
planning. Spewak [5] defines EA planning as “the process of defining architec-
tures for the use of information in support of the business and the plan for imple-
menting those architectures”. The main goal of EA planning is to enhance and
maintain the mutual alignment of business and IT [6]. The different approaches in
this research area are heterogeneous and cover different topics [7]: from method-
ologies for EA planning [8/9] to modeling the transformation [TO/TTIT2], describ-
ing possible actions for transformations [I3] or focusing on key performance
indicators to compare the current and the target architecture [I4].

The contribution of this paper focuses on the creation of a transformation
path from a current to a target architecture (using planning techniques from
artificial intelligence, AI) and describes a solution how the enterprise architect
is supported by proposed sequences of transformations, which can be performed
in the enterprises’ IT landscape. These sequences consider the dependencies be-
tween existing and planned IT applications (i.e. one provides an IT service that
is used by others). Our solution proposes four phases to compute the proposed
sequences and supports the enterprise architect during the creation of the trans-
formation path.

The presented solution assumes that the current IT landscape as well as the
target I'T landscape have already been modeled and are available for the planner.
Hence, the solution focuses on how to achieve the target rather than on what
the target should look like. This allows the enterprise architect to stimulate
alternative thinking of how the target can be reached. In this paper we describe
the planning process with focus on the application architecture only, i.e. the IT
applications and IT services used to exchange data. Other architecture layers
(such as business or technology architecture, compare [III5]) are outside the
focus of this paper.

56 F. Lautenbacher et al.
2 Foundations

One of the first contributors in the field of EA planning are Spewak and Hill
[5] that introduce an EA planning model (wedding cake model), which describes
how the blueprints for the target state are developed from the analysis of the
current state, and how the changes are structured in an implementation and
migration plan. More recent research on EA planning addresses the different
levels which have to be considered in the planning process and how decisions
in different architectures, i.e. business, application, data and technology, may
affect the others [9]. Aier et al. [7] derive an EA planning process from the work
of Spewak and Hill [5], Niemann [16] and Pulkkinen [9]. The derived process
consists of the steps: (1) define vision, (2) model current architecture, (3) model
alternative target architectures, (4) analyze and evaluate target alternatives, (5)
plan transformation from current to target and, before a new planning cycle is
initiated, (6) implement transformation.

The current architecture describes the status quo and the target architecture
describes a desired state in the medium-dated future (approximately 3 to 5
years). A vision or ideal architecture is a blueprint of a desired architecture
which will possibly never be reached, but serves as guidance for defining a target
architecture.

2.1 Changes in Application Landscapes

In the context of the transformations of application landscapes the entities that
are changed consist at least of the applications and the services they provide and
use (c.f. [I7] and [1§]). Several sources in literature consider different types of
changes in application landscape transformation. All of these sources distinguish
between changes that create and delete entities ([19], p.95; [20], p. 172; [21]; [22],
p. 11; [23], p. 59). Furthermore, an update of an entity is considered as a change
in several sources ([21]; [22], p. 11; [23], p. 59). Sousa et al. [21] take additionally
a read dependency for changes into account. This type of dependency is used to
denote that an entity which creates and deletes certain entities needs another
entity which it does not actively change by itself.

According to Aier and Gleichauf [24] the models of the current and target
state can be linked through a transformation model which contains information
about the successor relationships of entities. A successor relationship always links
exactly one element in one state with an element in another state. It is possible
that one element has zero or more than one outgoing or incoming successor
relationship.

2.2 Graph Transformations for Planning Purposes

Several different approaches, techniques and representations to planning prob-
lems have been developed over the last decades in the research field of artificial
intelligence planning and scheduling. These approaches range from state space

Planning Support for Enterprise Changes 57

model based planning to task networks, where tasks for reaching a goal are de-
composed and sequenced. A state space based approach is preferable, because
models of the current and target architecture are used in many EA approaches
and are present in many tools used in practice.

Graph transformations for AI planning purposes solve a planning problem
by applying graph transformations on a model until a solution for the planning
problem is found. The result of such a planning process can be a sequence of
actions changing a model into another model.

However, graph transformations have the disadvantage that they provide a
huge state space regarding the states, which have to be examined when all states
in the graph are computed, and as a consequence influence the computation time.
With graph transformations a planning problem can be solved by searching for
graph patterns in the state represented by a graph and applying graph trans-
formations to the state [25]. Graph transformations have the benefit that they
have a sound theoretical foundation.

By reusing the knowledge from existing contributions in the field of enterprise
architecture planning and the existing techniques from Al planning we can create
a solution which supports the enterprise architect in gaining an overview on
alternative transformation paths.

3 Solution for Transformation Planning

Our solution comprises the steps analyze models and plan transformation from
current to target architecture of EA planning as defined by Aler et al. [7].

The planning of the transformation takes place in four steps: (1) the connec-
tion of the architectures, (2) the segmentation analysis, (3) the creation of an
action repository and (4) the creation of the transformation path. As prerequisite
the current and target architecture have to be determined. The current archi-
tecture consists of the applications and their used and implemented services at
present. In contrast, the target architecture contains all applications and their
used and implemented services at future. As a result of the process a partial
plan will be created, which describes how to reach the target. Figure [[lshows an
overview of the concept which was modeled and tested.

Step 1: Connecting Step 2: Segmentation @
the architectures Analysis

successor, Segment

Transformation
Path

¢ Action 1
* Action 2

Concrete
- Action x
.‘0

Step 4: Creating the
transformation path

Current and Target
Architecture ===

o (@
IF... Abstract
THEN.. | Actions [:>

Step 3: Creating the action repository

Fig. 1. The proposed solution with its four phases

58 F. Lautenbacher et al.

The first step of our solution supports the linking of the current and target
architecture and thereby the definition of the transformation model. With the
segmentation analysis in the second step, we narrow the scope for the following
transformation path creation. Independent of those steps is the creation of the
action repository, where the abstract actions that are taken into account are
modeled. Creating these abstract actions is done only once and can be applied
on all variations of current and target architectures that satisfy the metamodel
criteria specified in an abstract action. Metamodel entities must exist for the
elements of the architecture models. Such metamodel entities represent the type
of the element in order to apply the changes to a model. Furthermore, the meta-
model restricts the relationships and attributes of the elements.

After finishing these three phases the creation of the transformation path can
be started. Thereby, different possible plans, consisting of sequences of concrete
actions, are generated. Alternatively the enterprise architect can create those
paths interactively through selection of the next concrete action. Based on the
preferred sequence of action a project proposal can be determined. In the fol-
lowing sections each of those phases will be described in more detail.

3.1 Connecting the Architecture

The first step of the proposed solution supports the enterprise architect in con-
necting the current architecture with the target architecture. To enable the cre-
ation of a transformation path the target architecture has to be semantically
connected with the current architecture in the sense of successor relationships.
Similar to Aier and Gleichauf [24] we use successor relationships to link current
elements to the appropriate target elements. A special unchanged successor re-
lationship indicates those links, where the element of the current architecture
exists unchanged in the target architecture. To support the enterprise architect
in finding the successor relationships, we analyze the similarity of the elements
in the current and target architecture. The automatic derivation of successor
relationships for applications based on business support maps and suggestions
for successor services is described by Diefenthaler and Bauer [26]. However, this
approach is limited to architectures, where applications are localized in the cells
of a business support map.

To support the enterprise architect in finding the successor relationships in-
dependently from a localization, we analyze the similarity of the elements in
current and target architecture.

The similarity of two elements c, t is defined as the total number of such
shared relationships in relation to the overall number of relationships: Sim(c); =
#sharedRelationships(c, t) / #Relationships(c). A shared relationship between
an element ¢ in current and an element ¢ in target exists, if there is a relationship
(¢, r, ¢’) in the current architecture and a relationship (t, r, t') in the target
architecture with ¢’ as an element of the current architecture, which has the
successor t” in the target architecture; r is an arbitrary architectural relationship.
The similarity measure has a range from 0 to 1, whereas 0 means that there are
no shared relationships and 1 means that all relationships are shared.

Planning Support for Enterprise Changes 59

Before determining the shared relationships, unchanged elements have to be
identified. The enterprise architect has to confirm each mapping, because name-
equality does not always conclude an unchanged successor relationship. After
that, there are already some successor relationships given. Based on those, the
shared relationships and similarity measures can be calculated iteratively until
no more suggestions can be found.

For the final decision about the successor relationships the enterprise archi-
tect should not only rely on this measure but also take the total number of
relationships and the expert knowledge into account. Moreover, he has to spec-
ify, whether the relationship is an unchanged successor or not. Further measures
can be determined depending on the context and enterprise specific details.

3.2 Segmentation Analysis

The segmentation analysis addresses the problem that enterprise architectures
typically have a huge scope and include a lot of elements. To narrow the scope, a
segmentation analysis can be done before determining the transformation path.
According to Aler and Gleichauf [24] architectural elements can be grouped
to segments, if they do not have relationships to other elements outside the
group. As there are typically no isolated cells in enterprise architectures we do
this segmentation by using different successor relationships. They enable the
identification of parts in the architecture where changes occur but also where no
changes occur.

A segment is defined as a set of interrelated elements in the current archi-
tecture with their successor elements in the target architecture including all
implement- and use-relationships between those elements. To ensure the inde-
pendence of the different segments in an enterprise architecture, each group of
changed elements must be surrounded by a set of unchanged elements. Then
these groups of changed elements are independent of each other in the context
of planning, although the segments overlap at unchanged elements. An example
for a segmentation is shown in Figure 2

|
————————— unchangedSuccessor — — — — — — |
|

. p
| \ (7 77> l ¢ New\ l
(Modiied) Madm 2z
1 / N v %nchan v
Unchan™_| nchan 72N (odifio }—— &4/~ Unchan
_ged ged Modmed/ G . =
//
si",‘f!“\z/ ”';‘eza" — — — — — — -unchangedSuccessor- — — — — — 3| U’::;"
w\godmy
T \/*\ Unchan__ __ __ __ __ __ unchangedSuccessor :/4
(' Modified ged Ve
N/ Unchan
| ged

\ﬂudlfle /
ces: 2

Current Architecture Target Architecture

Fig. 2. Segmentation of the connected current and target architecture for narrowing
the scope

60 F. Lautenbacher et al.

The figure shows on the left side a current architecture and on the right side
a target architecture. Both consist of interrelated changed and unchanged ele-
ments. Furthermore, the successor-relationships between the current and target
architecture are modeled. Using the segmentation analysis two segments can be
identified in this architecture. They overlap at one unchanged element. There is
also one unchanged element which is neither in segment 1 nor in segment 2.

3.3 Creating an Action Repository

Before the transformation from the current to the target architecture can be
planned, an action repository with abstract actions has to be modeled. An ab-
stract action consists of two parts. One part specifies the preconditions for an
action to be applicable. The other part is the effect part, which specifies the
changes to an architecture if an (abstract) action is applied to it. In a technical
sense the abstract action matches via a graph pattern into the concrete model
of the different states. Concrete actions relate to concrete entities and relation-
ships in an architecture and concrete changes to the state of architecture. The
application of a concrete action to an architecture, may enable the application
of several other concrete actions.

Logical Ordering of Abstract Actions. The abstract actions are modeled
in a logical order, which means that it is only possible to apply the action if the
preceding actions were already applied. For example, it is not possible to change
the dependencies from a service to its successor service if it has not yet been
built. Furthermore, it may be necessary to build the application first to allow
the creation of a new service. After the dependencies of a service have been
changed to a successor it is possible to shutdown the service. If all services of an
application have been shutdown it is possible to shutdown the application. The
logical ordering prevents the creation of loops in the transformation path, i.e.
to shutdown and create the same application several times. It may be the case
that it is not necessary to enact the develop application action. For example,
if a segment contains a service, which has to be developed for an application
that already exists, it is not necessary to develop that application again since
it already exists in the current architecture. However, in this case the logical
ordering would prevent the shutdown of the predecessor services, if present,
until the new service is developed.

Develop Develop Change Shutdown Shutdown
Application Service Dependencies Service Application

Fig. 3. The logical ordering of abstract actions

Planning Support for Enterprise Changes 61

3.4 Creating the Transformation Path

With the action repository and a segment at hand it is possible to start the
creation of a transformation path. It is also possible to start the creation with-
out segments, but we advise to utilize the segmentation, because the number
of possible transformation paths for an whole IT landscape is hard to grasp
for a human.

We derive all applicable concrete actions for a segment by checking which
preconditions of abstract actions match in a segment. This corresponds to a
breadth search of applicable actions for a segment. If a concrete action is applied
to a segment it changes the state of the segment. In contrast if we apply a depth
search on a segment we receive a transformation path changing the segment in
a sequence of concrete actions from the current to the target architecture. If
no such transformation path exists the more exhaustive breadth search can be
omitted and we are informed that no transformation path was found. We apply
the breadth search on a segment recursively and we get the whole state space.

With the state space it is possible to determine all possible transformation
paths of a segment. By selecting concrete actions we create the transformation
path, change the segment and get each time a list of concrete actions which
we now can apply. When the transformation path is complete, i.e. all necessary
changes have been applied, no further actions are applicable and the transfor-
mation path is saved.

The selection process for choosing concrete actions can be enhanced by provid-
ing development costs for proposed applications and services, and maintenance
costs for applications and services which are to be retired.

4 Use Case and Implementation Details

In the past, IT applications were often developed to address the specific business
needs that a part of the organization had at that moment. However, consider-
ing the whole enterprise it is not effective to store redundant data in several IT
applications as this increases the risk of outdated and inconsistent data. This
is the basis for the master data management (MDM) challenge [27]. In our use
case we show a typical (and simplified) example for the introduction of master
data management in the research department (R & D) of an organization. Fig-
ure [shows a part of the current architecture of the organization’s IT landscape.
There has already been placed a development master data management
(DMDM) system in the organization which provides interfaces (MasterData vl
and v2) to other IT applications. However, not all existing systems use the mas-
ter data provided by DMDM: the long lasting DevManager provides similar
data that is still used by existing systems such as the product planning tool
and the quality tests planning tool. Other IT applications such as the virtual
quality test result database store the master data themselves and are not con-
nected to DMDM. For the modification of products (from one test to another)

62 F. Lautenbacher et al.

Productplanmng Physlcalqualny Physlcal quallly Vmualquallly
test assistance test result test result 0

Quenbev.vi l tool database database
o database
DevManager
§ MasterData_v2 MasterData_v1

Quality tests Development master Product class B
planning tool i

Product class A
assistance

data
system (DMDM) database

Fig. 4. Master data management: current architecture

PlanningData_v1
—O Quahty tes! assistance MasterData_v3
and result management (O. g
Product and Quality O
test planning tool Development master
E— data management
system (DMDM)

Product modification
assistance database

Fig. 5. Master data management: target architecture

there exist two IT applications for the different product classes the organization
provides to their customers. Additionally, IT applications to plan the product,
the quality tests and store the results that have been gathered during the (phys-
ical or virtual) quality tests, exist.

In the target architecture the functionality in the different IT application shall
be united and all other tools will use the data provided by DMDM. There will
be only one planning tool that includes planning for the product as well as the
quality tests. All quality tests (including the results) will be managed by one
quality test assistance and result management tool (cf. Figure [)).

4.1 Building the Transformation Path for the Use Case

In this section we describe the transformation path created by an enterprise
architect. Action prioritization is based on the principle of subject-specific im-
portance of corresponding applications and services, the principle of redundant
applications avoidance as well as the principle of using new interfaces wherever
possible.

Initially, the enterprise architect has done the mapping between applications
in the current and the target architecture. This mapping showed which applica-
tions and services had successor relationships. Grouping applications from cur-
rent architecture by their successors in the target, the enterprise architect was
able to identify three groups of applications, which had to be consolidated. One
group consisted of the Product planning tool and Quality tests planning
tool, both of which had the successor Product and Quality test planning

Planning Support for Enterprise Changes 63

tool. Physical quality test assistance tool, Physical quality test result
database and Virtual quality test result database have built the second
group. The third group comprised of Product class A assistance database
and Product class B assistance database.

After getting an overview on forthcoming changes, the enterprise architect
had to decide in which order he would perform concrete actions. Due to the
high operation costs for DevManager, the enterprise architect had decided
to start with the shutdown of this application. However, it was not possible
to perform this action immediately since DevManager provided the service
QueryDev vl to Product planning tool and Quality tests planning tool
and was still in use. It was also impossible to stop using the service by these
systems before their successor-application was developed. Taking this into ac-
count, the enterprise architect decided to develop the Product and quality
test planning tool together with its service PlanningData vl at first. Next
steps comprised the removal of connections between service QueryDev vi and
applications Product planning tool and Quality tests planning tool. Not
until then QueryDev v1 and DevManager could be shut down. After that, once
connections of Product planning tool and Quality tests planning tool to
another service MasterData v2 have been removed, the enterprise architect could
shut down these applications. In this way, the enterprise architect created the
transformation path for the first group of applications.

For the remaining applications the enterprise architect decided to proceed
with the second group, whilst taking into account that isolated solutions were
not desirable in the organization and quality test result management had a high
strategic importance for the R & D department. In the end, the transformation
path for applications of the third group was created.

An excerpt of the list of actions can be seen below.

1. Develop application Product and Quality test planning tool

2. Develop service PlanningData vl of application Product and Quality test plan-
ning tool

3. Remove connection between application Product planning tool and service
QueryDev vl

4. Remove connection between application Quality tests planning tool and service
QueryDev vl

5. Shut down service QueryDev vl
6. Shut down application DevManager

7. Remove connection between application Product planning tool and service Mas-
terData v2

8. Remove connection between application Quality tests planning tool and service
MasterData v2

9. Shut down application Product planning tool
10. Shut down application Quality tests planning tool

64 F. Lautenbacher et al.

4.2 Implementation Details

For the implementation of our solution we use model query languages and
GROOVHI. Models of the segment are transformed via a model-to-model trans-
formation into GROOVE models. The current version of GROOVE allows to
import and export Ecord] conform models, which can for example be UML
models.

The current and target architecture have to be modeled using a formally de-
fined metamodel. The connection of the architecture as well as the segmentation
analysis, are done by using a model query language. We modeled the abstract ac-
tions, depicted in Figure[3] with GROOVE. Abstract actions change the lifecycle
phases of applications and services or change the usage dependencies between
those. Besides theses abstract actions, also abstract actions for debugging pur-
poses were modeled to allow the detection of states which are incorrect from
an expert viewpoint. For example it should not be possible that an application
consumes a service it also provides.

A segment serves as a starting state for GROOVE. It consists of the ap-
plications and services from the current and target architecture, the successor
relationships between them, the implementation relationships between applica-
tions and services of the current and target architecture and, moreover, the usage
dependencies of the current architecture. Upon this state concrete actions can
be applied in GROOVE via graph pattern matching and graph transformation.

To be able to have a criterion when the transformation path is ready we
define an action, which has no effect on the state. This action consists of the
usage dependencies of the target architecture, all applications and services which
have to be shutdown are in the corresponding lifecycle, and all applications and
services which have to be built are in the lifecycle phase live. With this action and
the initial state at hand it is possible for GROOVE to compute a transformation
path. Furthermore, it is possible to create a transformation path in interaction
between an enterprise architect and GROOVE, by selecting concrete actions and
computing the resulting states.

5 Evaluation

The evaluation for the use case was conducted by an enterprise architect and a
knowledge engineer. The knowledge engineer is the creator of the action reposi-
tory, who models the actions according to certain requirements. The enterprise
architect is the creator of the current and target architecture and has functional
knowledge about the concrete changes.

Conducting the Evaluation. The goal of the evaluation was to determine
the differences between the expectations of the enterprise architect and actual

! GRaphs for Object-Oriented VErification (GROOVE)
http://groove.cs.utwente.nl/
2 http://www.eclipse.org/modeling/emf/?project=enf

http://groove.cs.utwente.nl/
http://www.eclipse.org/modeling/emf/?project=emf

Planning Support for Enterprise Changes 65

information provided by GROOVE. Therefore we first checked if the desired
transformation path from the enterprise architect could be reproduced using
the interactive alternative of our solution. Second, we verified the functional
correctness of the transformation path, if it was created by GROOVE without
interaction.

For the first case the knowledge engineer explained the procedure and the tool
setting to the enterprise architect. Then the enterprise architect was asked to
explain the concrete changes of her transformation path. The knowledge engineer
performed each action in GROOVE until the transformation path was finished.

In the second case the transformation path, created by GROOVE, was ex-
tracted to a text file and relevant parts for the enterprise architect were kept in
it. This means that it contained actions like Create Application: Product and
Quality test planning tool and their ordering in the transformation path.
The enterprise architect used prints of the current and target architecture with
their successor relationships between the applications and services to keep track
of the actions applied by the proposed transformation path.

Results of the Evaluation. It was possible to reproduce the transformation
path of the enterprise architect in GROOVE. The knowledge engineer had to
execute additional actions, because not every step of the path was exactly one
step in the tool. For example, the change of a dependency is considered by the
enterprise architect as one step, but in GROOVE this change was modeled as
two steps (one delete and one create). Furthermore, the corresponding action for
shutting down applications is modeled in a way that it shuts down all possible
applications in one step. The enterprise architect considered the shutdown of
the applications Product planning tool and Quality tests planning tool
as two steps.

The enterprise architect confirmed the transformation path created from
GROOVE as valid. However, other transformation paths were considered as
more optimal from the viewpoint of the enterprise architect. Furthermore, it
was necessary to explain to the enterprise architect that not every step in her
path was exactly one step in GROOVE‘s path.

One insight of the evaluation was that it was possible to give a hint to the
enterprise architect that one service was no longer in use and can be shutdown.
Additional actions will be modeled that were considered as useful during the
evaluation. Moreover, the enterprise architect asked for the possibility to specify
priorities for the development and shutdown of applications. For example, it
should be possible to prefer applications with a high strategic importance for
development and to prefer applications to shutdown with high maintenance cost.
Additionally, the possibility to take resource constraints, like available budget
and staff, into account was uttered.

6 Related Work

We summarize three publications related to our solution in the following:

66 F. Lautenbacher et al.

Postina [23] presents a method to manage service and process oriented enter-
prise architectures. He uses a case based reasoning approach and a case repository
to provide information for the evolution of the enterprise architecture. The target
state can be reached from the current state through several evolutionary steps.
A case is defined by the type of an evolutionary step (create, update, delete), the
element and type involved, e.g. organizational unit billing, and the viewpoints
attached to it. The cases help to provide views for future evolutionary steps with
the same combination of element type and evolutionary step type. However, the
creation of different transformation paths is not considered, which a benefit of
our approach is.

Postina and Gringel [28] present a prototypical tool for creating a target ar-
chitecture by selecting gaps between an ideal and current application landscape.
The target landscape is interactively designed by an enterprise architect and
the tool. The term ideal landscape is tightly coupled to the Quasar Enterprise
approach which considers domains, ideal interfaces, ideal components and ideal
operations for interfaces. Based on the structural differences between the current
and ideal landscape the tool can identify the gaps and provides an action list
to close the gaps. The modeling of an ideal landscape is a prerequisite in order
to create the target architecture and the resulting action list, which consists of
actions to close the gaps. In contrast, our approach provides actions for sequenc-
ing changes within the transformation path and needs no ideal landscape, which
makes it less approach-dependent. Furthermore, our actions are defined on an
abstract level and thus allow determining the different dependencies between the
necessary changes.

Sousa et al. [2I] describe an approach to reconstruct enterprise architecture
models from existing project information and the artifacts influenced by them.
Furthermore, the Blueprint Management System (BMS) is introduced which al-
lows to detect the temporal dependencies of projects on certain artifacts and
can generate different viewpoints. Time is explicitly taken into account by pro-
viding a timeline bar in the BMS, which enables the user to browse through the
different points in time. The tool is capable of providing different states as each
project has a list of artifacts it creates and deletes. This implies that projects are
already on the run and the information is derived afterwards. However, our solu-
tion can interactively create the transformation path including alternative paths
and then allows the creation of proposals for projects, their change activities and
the possible synchronization between them.

7 Conclusion and Future Work

In this paper we proposed a solution of how to close the gap between a current
and a target architecture. We identify the successor relationships between those
architectural states and determined transformation paths in terms of sequences
of concrete actions. Thereby the dependencies between the architectural ele-
ments are considered. If necessary the architecture can be divided into smaller
segments. For the analysis we use model query languages, for the definition

Planning Support for Enterprise Changes 67

of abstract actions and the creation of the transformation path we use graph
transformation.

The solution is designed to support the enterprise architect in the task to find
a way how to reach a defined target, starting with the current architecture. It
enables the consideration of the complex dependencies between the architectural
elements and thus reduces changes in project plans later on because of overlooked
dependencies. The outcome of our solution, the transformation path, can be used
to define the projects which will implement the changes.

The next step is to extend our solution to all architectural layers in enterprise
architecture and start a broader field study. Future work will comprise a refine-
ment analysis and actions to enable a more abstract target architecture as a
starting point. Furthermore, providing support for the consideration of resource
constraints and value-based weighting of the transformation steps is part of our
future research. The presented solution provides a stable basis for these further
extensions.

References

1. The Open Group: TOGAF Version 9.1. Van Haren Publishing (2011)

2. Zachman, J.: A framework for information systems architecture. IBM Systems
Journal 26(3) (1987)

3. Rouse, W.B.: A theory of enterprise transformation. Systems Engineering 8(4),
279-295 (2005)

4. Lankhorst, M.M. (ed.): Enterprise architecture at work: Modelling, communication
and analysis, 2nd edn. Springer, Berlin (2009)

5. Spewak, S.H., Hill, S.C.: Enterprise architecture planning: Developing a blueprint
for data, applications, and technology. John Wiley & Sons, New York (1992)

6. Luftman, J.N., Lewis, P.O.S.: Transforming the enterprise: The alignment of busi-
ness and information technology strategies. IBM Systems Journal 32(1), 198-221
(1993)

7. Aier, S., Gleichauf, B., Saat, J., Winter, R.: Complexity levels of representing
dynamics in EA planning. In: Albani, A., Barjis, J., Dietz, J.L.G. (eds.) CIAO!
2009. LNBIP, vol. 34, pp. 55-69. Springer, Heidelberg (2009)

8. Aier, S., Gleichauf, B.: Towards a systematic approach for capturing dynamic trans-
formation in enterprise models. In: Sprague, R.H. (ed.) Proceedings of the 43rd An-
nual Hawaii International Conference on System Sciences. IEEE Computer Society,
Los Alamitos (2010)

9. Pulkkinen, M.: Systemic management of architectural decisions in enterprise ar-
chitecture planning. four dimensions and three abstraction levels. In: Proceedings
of the 39th Annual Hawaii International Conference on System Sciences (HICSS
2006), p. 179a. IEEE (2006)

10. Aier, S., Gleichauf, B.: Applying design research artifacts for building design re-
search artifacts: A process model for enterprise architecture planning. In: Win-
ter, R., Zhao, J.L., Aier, S. (eds.) DESRIST 2010. LNCS, vol. 6105, pp. 333-348.
Springer, Heidelberg (2010)

11. Buckl, S., Ernst, A., Matthes, F., Schweda, C.M.: An information model for land-
scape management — discussing temporality aspects. In: Feuerlicht, G., Lamersdorf,
W. (eds.) ICSOC 2008. LNCS, vol. 5472, pp. 363-374. Springer, Heidelberg (2009)

68

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

F. Lautenbacher et al.

Buckl, S., Dierl, T., Matthes, F., Schweda, C.M.: Complementing the open group
architecture framework with best practice solution building blocks. In: 2011 44th
Hawaii International Conference on System Sciences, pp. 1-9. IEEE (2011)
Buckl, S., Ernst, A.M., Matthes, F., Schweda, C.M.: An information model cap-
turing the managed evolution of application landscapes. Journal of Enterprise Ar-
chitecture 5(1), 12-26 (2009)

Nissen, V., von Rennenkampf, A., Termer, F.: Agile it-anwendungslandschaften als
strategische unternehmensressource. In: Hofmann, J., Knoll, M. (eds.) Strategisches
IT-Management. HMD Praxis der Wirtschaftsinformatik, vol. 284. dpunkt.verlag,
Heidelberg (2012)

Hasselbring, W.: Information system integration. Communications of the
ACM 43(6), 32-38 (2000)

Niemann, K.D.: From enterprise architecture to I'T governance: Elements of effec-
tive IT management. Vieweg, Wiesbaden (2006)

Winter, R., Fischer, R.: Essential layers, artifacts, and dependencies of enterprise
architecture. Journal of Enterprise Architecture 3(2), 7-18 (2007)

Matthes, F.: Softwarekartographie. Informatik-Spektrum 31(6), 527-536 (2008)
Keller, W.: IT-Unternehmensarchitektur: Von der Geschéftsstrategie zur optimalen
IT-Unterstiitzung, 1st edn. dpunkt.verlag, Heidelberg (2007)

Hanschke, I.: Strategisches Management der IT-Landschaft: Ein praktischer Leit-
faden fiir das Enterprise Architecture Management, 1st edn. Hanser, Miinchen
(2009)

Sousa, P., Lima, J., Sampaio, A., Pereira, C.: An approach for creating and manag-
ing enterprise blueprints: A case for I'T blueprints. In: Albani, A., Barjis, J., Dietz,
J.L.G. (eds.) CIAO! 2009. LNBIP, vol. 34, pp. 70-84. Springer, Heidelberg (2009)
Simon, D.: Application landscape transformation and the role of enterprise archi-
tecture frameworks. In: Steffens, U. (ed.) MDD, SOA and IT-Management, Gito,
Berlin (2009)

Postina, M.: Evolutionsmanagement prozess- und serviceorientierter Unternehmen-
sarchitekturen. PhD thesis, OIWIR Verlag fiir Wirtschaft, Informatik und Recht,
Edewecht and Oldenburg, Germany (2011)

Aier, S., Gleichauf, B.: Application of enterprise models for engineering enterprise
transformation. Enterprise Modelling and Information Systems Architectures 5(1),
56-72 (2010)

Edelkamp, S., Rensink, A.: Graph transformation and ai planning. In: Edelkamp,
S., Frank, J. (eds.) Knowledge Engineering Competition (ICKEPS), Rhode Island,
USA (2007)

Diefenthaler, P., Bauer, B.: Gap analysis in enterprise architecture using semantic
web technologies. In: Proceedings of 15th International Conference on Enterprise
Information Systems (ICEIS 2013), pp. 211-220 (2013)

Loshin, D.: Master data management. Morgan Kaufmann (2010)

Gringel, P.; Postina, M.: I-pattern for gap analysis. In: Engels, G., Luckey, M.,
Pretschner, A., Reussner, R. (eds.) Software engineering 2010. Lecture Notes in
Informatics, pp. 281-292. Gesellschaft fiir Informatik, Bonn (2010)

	Planning Support for Enterprise Changes

	1 Introduction
	2 Foundations
	3 Solution for Transformation Planning
	4 Use Case and Implementation Details
	5 Evaluation
	6 Related Work
	7 Conclusion and Future Work
	References

