
Caching and Prefetching Strategies
for SPARQL Queries

Johannes Lorey and Felix Naumann

Hasso Plattner Institute,
Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany

{johannes.lorey,felix.naumann}@hpi.uni-potsdam.de

Abstract. Linked Data repositories offer a wealth of structured facts,
useful for a wide array of application scenarios. However, retrieving this
data using Sparql queries yields a number of challenges, such as limited
endpoint capabilities and availability, or high latency for connecting to it.
To cope with these challenges, we argue that it is advantageous to cache
data that is relevant for future information needs. However, instead of
retaining only results of previously issued queries, we aim at retrieving
data that is potentially interesting for subsequent requests in advance.
To this end, we present different methods to modify the structure of a
query so that the altered query can be used to retrieve additional related
information. We evaluate these approaches by applying them to requests
found in real-world Sparql query logs.

1 Introduction
Linked Data sources offer a wealth of information about a multitude of topics,
including geo-location facts1, government data2, or cross-domain information3.
The SPARQL Protocol and RDF Query Language (Sparql) has become the de
facto query language to retrieve this information from publicly available end-
points.

However, whereas in principle Sparql facilitates various information needs by
defining complex query constructs, typical public Sparql endpoint characteris-
tics, such as high latency, limited hardware resources, or unavailability restrict
on-demand utilization of the data. In this work, we propose a novel approach
for discovering and aggregating potentially relevant data for subsequent user re-
quests based on previous query patterns by rewriting these preceding queries.
To this end, we introduce some fundamental concepts of Sparql in Sec. 1.1 and
outline the contribution and organization of this paper in Sec. 1.2.

1.1 SPARQL Preliminaries

One central concept of a Sparql query is that of a triple pattern T = (s, p, o) ∈
(V ∪ U) × (V ∪U) × (V ∪ U ∪ L) with V being a set of variables, U being a set of
1 http://linkedgeodata.org
2 http://data-gov.tw.rpi.edu/wiki
3 http://dbpedia.org

P. Cimiano et al. (Eds.): ESWC 2013, LNCS 7955, pp. 46–65, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://linkedgeodata.org
http://data-gov.tw.rpi.edu/wiki
http://dbpedia.org

Caching and Prefetching Strategies for SPARQL Queries 47

URIs, and L being a set of literals. A Sparql query contains a number of graph
patterns P1, P2, . . . , which are defined recursively: (i) A valid triple pattern T is
a graph pattern. (ii) If P1 and P2 are graph patterns, then P1 AND P2, P1 UNION
P2, and P1 OPTIONAL P2 are graph patterns [12].

In terms of relational operations, AND represents an inner join of two graph
patterns, UNION denotes their union, and OPTIONAL indicates a left outer join
between P1 and P2. In addition, AND takes precedence over UNION, and OPTIONAL
is always left-associative [12]. While UNION and OPTIONAL are reserved keywords
in actual Sparql queries to indicate the corresponding connection between two
graph patterns, the AND keyword is omitted.

We call P the parent graph pattern of graph patterns P1, . . . , Pn, when it has
the form P = P1 ⊕ . . . ⊕ Pn, where ⊕ is any one of the introduced keywords.
Whereas ⊕ is symmetric for AND and UNION, it is not for OPTIONAL [12]. In any
Sparql query Q, the graph pattern P with no non-trivial parent graph pattern
is referred to as the query pattern PQ.

Typically, curly braces are used to delimit graph patterns: {P }. Here, if such a
delimited graph pattern P represents a conjunction of multiple triple patterns Ti,
i.e., its form is P = T1 AND T2 . . . AND Tn, we call P a basic graph pattern (BGP).
While there is the notion of empty graph patterns in Sparql, we consider only
non-empty graph patterns.

In our work, we focus on SELECT queries. In general, Sparql allows to limit
the projection to certain variables listed after the SELECT statement. Moreover,
graph patterns may contain so-called filter conditions indicated by the keyword
FILTER. In a filter condition, specific restrictions, such as regular expressions
or inequality relations, can be placed on resources to modify the scope of the
selection of a query.

1.2 Contribution and Paper Organization

As with traditional Web search, Sparql is suitable for different information
needs, such as data exploration or navigational querying. However, in contrast
to simple keyword-based queries, the well-defined structure and constructs of
Sparql queries allow for more fine-grained expressions representing the user
intent. We build on this notion and present methods to modify queries in order
to retrieve information relevant for subsequent related requests. Further, we
discuss features of queries and query sequences influencing the suitability and
effects of these modification methods.

By locally materializing results potentially relevant for subsequent queries,
overall query execution time can be tremendously decreased for a client. More-
over, if the Sparql endpoint becomes unavailable for a period of time, thus dis-
allowing access to the remote information, a replicated subset of the data may
be utilized instead. On the other hand, a Sparql endpoint may also leverage
knowledge about what data may be relevant for future queries, e.g., by storing
it in main memory. The main trade-offs for this caching approach are increased
storage requirements and potential data staleness, which may be negligible given
the concrete scenario.

48 J. Lorey and F. Naumann

The remainder of this paper is structured as follows: In Sec. 2, we discuss
related work for this work and point out differences in our approach. In Sec. 3,
we introduce a means to group Sparql queries by matching similarly structured
requests. We then present our different query rewriting approaches in Sec. 4 and
present an evaluation using real-world query logs in Sec. 5. Finally, we conclude
this paper in Sec. 6 and highlight some future work in this context.

2 Related Work

Related work for this paper draws mainly from two fields: (i) semantic caching
and prefetching, e.g., techniques to retain previously fetched data or retrieve
data relevant for subsequent queries, and (ii) query relaxation, e.g., parsing and
modifying a user query to discover relevant resources.

2.1 Semantic Caching and Prefetching

Semantic caching builds on the idea of maintaining a local copy of retrieved
data that can be used for subsequent queries. As with traditional caching, one of
the major motivations for semantic caching is to reduce the transmission over-
head when retrieving data over a network link. Conventional approaches, such
as tuple or page caching, usually retain fetched data based on either temporal
or frequency aspects, e.g., by prioritizing least-recently or most-frequently used
items. Such techniques also exist for Sparql query result caching [11,15]. Com-
pared to these works, semantic caching employs more fine-grained information
to characterize data, e.g., in order to establish variable-sized semantic regions
containing related tuples [4] or detect data items with similar geolocation infor-
mation [13].

Closely related to semantic caching and our work is prefetching. Instead of
simply retaining tuples retrieved previously, prefetching allows to gather data
that is potentially useful for subsequent queries based on semantic information
derived from past queries or the overall system state. In computer architecture
design, prefetching is usually employed to request instructions that are antic-
ipated to be executed in the future and place them in the CPU cache. For
information retrieval, query prefetching typically assumes a probabilistic model,
e.g., considering temporal or spatial features [6,9]. However, there have been
no attempts to prefetch RDF data based on the structure of sequential related
Sparql queries within and across query sessions.

2.2 Query Relaxation

Query relaxation aims at discovering interesting related information based on a
user request. For keyword queries, this process is sometimes referred to as query
expansion and has been a major research topic in the field of information retrieval
(cf. [3]). In contrast to query refinement, which aims at increasing precision by
restricting the scope of a query, the goal of query relaxation or query expansion

Caching and Prefetching Strategies for SPARQL Queries 49

is to improve the recall in retrieval effectiveness. To this end, often precomputed
metadata, such as language models, is utilized.

There exist a number of projects for implementing query relaxation for re-
trieving Linked Data. The authors of [8] suggest logical relaxations based on
ontological metadata. In contrast, the approach in [7] relies on precomputed
similarity tables for attribute values whereas in [5] the authors utilize a lan-
guage model derived from the knowledge base.

In comparison, our rewriting strategies are not targeted at increasing recall
when executing a single query, but instead aim to retrieve additional data re-
lated to future queries. Moreover, we do not assume any knowledge of the data
source itself or of metadata describing it. Thus, while most previous approaches
require at least some precomputation, our approach can be used ad-hoc solely
by analyzing and modifying queries issued during run-time.

3 Query Matching

For different aspects of our work, we need to identify and cluster similarly-
structured queries. To this end, we introduce our bottom-up query pattern
matching approach based on matching similar triple patterns they contain.

3.1 Triple Pattern Distance

To match triple patterns, we determine their distance by accumulating the dis-
tance scores between their parts, i.e., between the two subjects, predicates, and
objects, respectively. Here, if two triple pattern parts are both variables, their
distance is 0. In case they are both URIs or both literals, their distance is the
normalized Levenshtein distance of the respective strings. Otherwise, e.g., when
one subject is a variable and the other a URI, the distance is 1. More formally, if
x1, x2 are either the subjects, predicates, or objects of two triple patterns T1, T2,
respectively, we define their symmetric distance score Δ(x1, x2) as

Δ(x1, x2) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if x1 ∈ V ∧ x2 ∈ V

levenshtein(x1, x2)
max(|x1| , |x2|) ,

if (x1 ∈ U ∧ x2 ∈ U)
∨ (x1 ∈ L ∧ x2 ∈ L)

1, else.

(1)

We determine the overall distance Δ(T1, T2) = Δ(T2, T1) of two triple patterns
T1, T2 by aggregating the individual triple pattern parts distance scores Δ(s1, s2),
Δ(p1, p2), Δ(o1, o2) as follows: In case Δ(s1, s2) = Δ(p1, p2) = Δ(o1, o2) = 0,
we define Δ(T1, T2) := 0. Otherwise, there exists a minimum triple pattern part
distance score minΔ := min(Δ(s1, s2), Δ(p1, p2), Δ(o1, o2))) with minΔ > 0. In
this case, the triple pattern distance score is defined as

Δ(T1, T2) := �Δ(s1, s2)� + �Δ(p1, p2)� + �Δ(o1, o2)� − (1 − minΔ) (2)

50 J. Lorey and F. Naumann

This way, a distance Δ(T1, T2) ≤ 1 always indicates a dissimilarity in at
most one triple pattern part, whereas for two non-equal triple pattern parts
1 < Δ(T1, T2) ≤ 2, and a distance score Δ(T1, T2) > 2 hints at differences
between the two subjects, predicates, and objects.

Consider the two basic graph patterns BGP1 and BGP2 in Listing 1 and
Listing 2, respectively, where the line numbers serve as identifiers for the in-
cluded triple patterns. Here, the most similar triple pattern for T1 in BGP2
can be determined by computing min(Δ(T1, T4), Δ(T1, T5), Δ(T1, T6)), which
results in Δ(T1, T5) = (�0� + �0� + � 12

16 � − 4
16) = 0.75. For T2, the minimum

value is Δ(T2, T6) = (�1� + �0� + �0� − 0) = 1, and for T3 it is Δ(T3, T4) =
(�0�+� 5

14 �+� 5
9 �− 9

14) ≈ 1.36. Thus, the most similar triple patterns for T1, T2, T3
in BGP2 are T5, T6, and T4, respectively.

1 ? city1 rdfs:label "Paris"@fr .
2 ? person ? relationWith ?city1 .
3 :Auguste_Comte foaf:givenName " Auguste " .

Listing 1. Basic Graph Pattern Example BGP1

4 :Auguste_Comte foaf:surname "Comte" .
5 ? city2 rdfs:label " Montpellier "@en .
6 :Auguste_Comte ? association ?city2 .

Listing 2. Basic Graph Pattern Example BGP2

3.2 Basic Graph Pattern Matching

Using the triple pattern distance scores, we can now determine matchings be-
tween basic graph patterns. In our work, finding this matching is equivalent to
deriving a perfect (complete) bipartite cover with minimum cost between the
triple patterns of the two individual basic graph patterns where the cost is de-
termined by the triple pattern distance Δ(Ti, Tj). Obviously, a perfect matching
of triple patterns is only possible for a complete bipartite graph, i.e., for two
BGPs with the same number of triple patterns. If this is not the case, in order
to generate a biclique of triple patterns we pad the basic graph pattern contain-
ing fewer elements using dummy triple patterns Tε so that for any triple pattern
T the score Δ(T, Tε) = Δ(Tε, T) := ∞.

As optimal solutions for generating maximal matchings can be determined in
polynomial time and the input size (i.e., the number of triple patterns in the two
BGPs) is reasonably small, we choose the well-known Hungarian Method [10] to
create an assignment with minimum cost. Furthermore, we assign a maximum
cost threshold to all derived matchings of triple patterns. Here, we consider only
triple pattern matchings with cost Δ(Ti, Tj) ≤ 1, i.e., all matched triple patterns

Caching and Prefetching Strategies for SPARQL Queries 51

are either identical or differ in at most one of non-variable subject, predicate, or
object, respectively. The cost for triple pattern matchings with higher cost, i.e.,
matchings (Ti, Tj) with Δ(Ti, Tj) > 1 is set to ∞.

The score Δ(BGP1, BGP2) of derived complete matchings MT ⊂
{(Ti, Tj)|(Ti, Tj) ∈ BGP1 × BGP2} is defined as:

Δ(BGP1, BGP2) :=
∑

(Ti,Tj)∈MT
Δ(Ti, Tj)

|MT | (3)

If the result of the Hungarian method for MT contains any individual triple
pattern matching with infinite cost, Δ(BGP1, BGP2) is also infinite. In this
case, no complete matching with only finite triple pattern distance scores can
be determined between BGP1 and BGP2. Assuming such a complete matching
containing only valid triple pattern matchings exists, this BGP matching would
have been the result of the algorithm as its cost would be < ∞.

Conversely, if the algorithm determines an optimal matching with infinite
cost, any other matching with cost < ∞ cannot be complete as the algorithm
does not terminate before discovering a maximal matching. Given our setting of
a complete bipartite graph (or biclique), any maximal matching is always bound
to be a complete matching.

Applying this approach on the basic graph patterns illustrated in Listing 1
and Listing 2 to determine a complete matching with minimum cost yields
the same triple pattern matchings listed earlier. Thus, the optimal matching
{(T1, T5), (T2, T6), (T3, T4)} has cost 0.75+1+∞

3 , i.e., BGP1 and BGP2 cannot be
matched to one another.

3.3 Query Pattern Matching

Real-world Sparql query patterns can be more complex than simple basic graph
patterns, i.e., they may contain multiple recursively layered BGPs connected
using the UNION or OPTIONAL keyword as introduced in Sec. 1.1. Along the lines
of the previous subsection, where we defined BGP matching using the contained
triple patterns, our matching approach for general query patterns is based on
recursively matching the (basic) graph patterns they consist of.

Due to the recursive structure of Sparql queries Q1, Q2, we can only
try to match two basic graph patterns BGPi, BGPj to one another if these
BGPs reside at the same recursion level of the query patterns PQ1 , PQ2 , re-
spectively. Additionally, the two basic graph patterns and any of their par-
ent graph patterns also need to be connected by the same keyword to other
(basic) graph patterns at their respective recursion level. If these two condi-
tions are met, we say that BGPi, BGPj can be aligned to each other. More
generally, if all (basic) graph patterns contained in a parent graph pattern
P1 can be aligned to at least one (basic) graph pattern of another parent
graph pattern P2 and vice versa, P1, P2 can also be aligned to each other.

52 J. Lorey and F. Naumann

Consider the following three Sparql group graph patterns P1, P2, and P3 with

P1 := BGP1 OPTIONAL (BGP2 UNION BGP3),
P2 := BGP4 OPTIONAL (BGP5 UNION BGP6),
P3 := BGP7 OPTIONAL BGP8,

where BGP1, . . . , BGP8 are basic graph patterns. Here, BGP1 can be aligned
to BGP4 or BGP7. Additionally BGP2 or BGP3 can be aligned to either BGP5
and BGP6, respectively. However, BGP8 cannot be aligned to any other basic
graph pattern in P1 or P2, because the recursion level of BGP8 is different
from those of BGP2, BGP3, BGP5, BGP6, and OPTIONAL is not symmetric, i.e.,
BGP7 OPTIONAL BGP8
= BGP8 OPTIONAL BGP7. Thus, while P1 and P2 can
be aligned to each other, P3 cannot be aligned to either of them.
We use a bottom-up approach to try to match two query patterns PQ1 , PQ2 to
one another. Similarly to the matching method introduced in the previous sub-
section, we try to derive a complete matching with minimal (finite) cost between
all basic graph patterns of PQ1 and PQ2 that can be aligned to each other. Here,
the cost between two basic graph patterns is determined by their distance score
Δ(BGP1, BGP2).

If for any BGP in PQ1 or PQ2 no alignment is possible or its matching has
infinite cost, PQ1 or PQ2 cannot be matched. If we derive a complete matching
for all basic graph patterns, we check whether the parent graph patterns of all
pairs of matched BGPs can be aligned to each other. If this is the case, we
continue checking the alignment of the parent graph patterns until we reach the
query pattern.

In case no alignment is possible, the two query patterns PQ1 and PQ2 cannot
be matched. Conversely, two query patterns PQ1 and PQ2 can be matched if they
can be aligned to each other and a complete matching with finite cost can be
established between all basic graph patterns BGPi and BGPj in PQ1 and PQ2 ,
respectively. Canonically, any graph pattern can always be matched to itself.

To group structurally similar queries, we introduce the notion of query clus-
ters. All queries in a query cluster can be matched to all other queries within the
cluster, i.e., there exists a pairwise complete matching with finite cost between
all BGPs of any two queries in the same cluster. Note that query clusters may
be overlapping, i.e., a query can be element of multiple query clusters.

4 Query Augmentation

The main motivation of our work lies in retrieving information for Sparql
queries that is also relevant for subsequent related requests. Beyond basic
caching, we argue for prefetching results: Here, we attempt to modify a query to
retrieve additional data potentially relevant for future information needs. In this
section, we motivate and illustrate different approaches for modifying queries
accordingly.

Caching and Prefetching Strategies for SPARQL Queries 53

4.1 Augmentation Concepts

We call the process of modifying the query contents query augmentation to
emphasize that the results retrieved by issuing the original query are included
in the result set for the modified query. In other words, the matches for the
unmodified query form a subgraph of the matches for the augmented query. In
this work, we are typically interested in retrieving additional information related
to a central concept, namely the subject (i.e., either a variable or URI) occurring
most often in the query pattern. Moreover, we require a central concept to be
either part of the projection if it is a variable or to influence the selection if it
is a URI. We assume that a URI influences the selection if at least one triple
pattern, in which the URI is the subject, contains a projection variable.

Our intuition of query augmentation builds on concepts from information re-
trieval. For example, in traditional keyword-based search engines, a user might
be unaware of the most suitable string pattern to enter to retrieve all relevant
results at once. However, in several iterations the user may choose to refine the
initial query based on retrieved results. In Linked Data terms, a user might query
for more detailed information about a certain resource or for similar informa-
tion of related resources after analyzing preliminary results, thus incrementally
modifying the initial query.

In the remainder of this section, we introduce the different augmentation
strategies we have implemented while emphasizing the particular requirements
for their application. We illustrate the effect of applying these strategies on
Query 1. Put simply, for the central concept French philosopher :Auguste Comte
this query retrieves the birth place(s) located in France alongside all influences
on him that died in Paris. Table 1 lists all bindings retrieved by issuing Query 1
against the public DBpedia Sparql endpoint4 currently containing DBpedia 3.8
data.

PREFIX : <http :// dbpedia .org/ resource />
PREFIX dbo : <http :// dbpedia .org/ ontology />

SELECT ? birthPlace ? influence WHERE {
: Auguste_Comte dbo : birthPlace ? birthPlace .
? birthPlace dbo : country : France .
: Auguste_Comte dbo : influencedBy ? influence .
? influence dbo : deathPlace :Paris .

}

Query 1. Example of a Sparql query

4 http://dbpedia.org/sparql

http://dbpedia.org/sparql

54 J. Lorey and F. Naumann

Table 1. All results for Query 1 in DBpedia 3.8

birthPlace influence
:Montpellier :Jean-Baptiste Say
:Montpellier :Émile Durkheim

4.2 Exploratory Augmentation

In exploratory augmentation, we query for additional facts that are available
for the central concept. The idea of exploratory augmentation is that a user
might be interested in more information for a specific resource. However, this
augmentation strategy is also helpful if the initial result set is empty, e.g., because
of misspelled or ambiguous vocabulary terms (e.g., foaf:img and foaf:Image).

Potentially, there may also exist certain divergences between ontological infor-
mation assumed by the user and the vocabulary used in actual data. For example,
we discovered that although a number of properties are used frequently for in-
stances of certain types in DBpedia, they are not defined in the ontology (e.g.,
dbo:anthem for dbo:Country). On the other hand, there are also a number of
defined properties that are rarely used in instance data for the corresponding
classes (e.g., dbo:depth for dbo:Place) [1].

This augmentation is applied by adding a triple pattern to the query, where
the subject is the central concept and predicate as well as object are unique vari-
ables. Moreover, these two variables are added to the projection, thus evaluating
all facts in which the central concept is subject. We highlight the corresponding
changes in the resulting Query 2 by underlining modified or added sections. An
excerpt of the extended result set for Query 2 is listed in Tab. 2.

PREFIX : <http :// dbpedia .org/ resource />
PREFIX dbo : <http :// dbpedia .org/ ontology />

SELECT ?p ?o ? birthPlace ? influence WHERE {
: Auguste_Comte dbo : birthPlace ? birthPlace .
? birthPlace dbo : country : France .
: Auguste_Comte dbo : influencedBy ? influence .
? influence dbo : deathPlace :Paris .
: Auguste_Comte ?p ?o .

}

Query 2. Exploratory augmentation of Query 1

4.3 Template Augmentation

For the template augmentation approach, we first need to identify the cluster
the current query belongs to as discussed in Sec. 3.3 by matching the current

Caching and Prefetching Strategies for SPARQL Queries 55

Table 2. Some results for Query 2 in DBpedia 3.8 (191 results in total)

p o birthPlace influence
rdf:type dbo:Person :Montpellier :Jean-Baptiste Say
dbo:birthDate 1798-01-19 :Montpellier :Émile Durkheim
dbo:notableIdea :Positivism :Montpellier :Jean-Baptiste Say
dbo:influenced :Karl Marx :Montpellier :Émile Durkheim

...

query pattern to those of preceding requests. If we determine a matching with
finite cost, we require this matching to be non-trivial, i.e., to include at least one
match between two non-identical basic graph patterns. This is true if the overall
distance score of the query pattern matching is greater than 0, i.e., if any two
matched basic graph patterns contain a pair of triple patterns (Ti, Tj) for which
either the subjects, predicates, or objects differ.

A matching between two query patterns P1 and P2 meeting these requirements
allows us to construct a query template: Initially, the template query string is
identical to the current query string. We then introduce unique variables to
replace all differing triple pattern parts included in the matching, i.e., either the
non-matching subject, predicate, or object of triple patterns (Ti, Tj) for which
0 < Δ(Ti, Tj) ≤ 1. Here, if the same resource in a BGP is replaced more than
once, we use the same unique variable to ensure consistency.

Instead of issuing many similarly structured queries with only little variance,
e.g., by using a crawler, a query template instead retrieves all relevant informa-
tion using only a single query. A possible query template for Query 1 is illustrated
in Query 3. Here, a specific resource has been replaced by a variable, which has
also been added to the projection of the query in the SELECT statement. As
indicated in Tab. 3, the result set contains the previous bindings as well as infor-
mation about other persons with similar properties, e.g., about poet Paul Fort
or mathematician Pierre de Fermat.

PREFIX : <http :// dbpedia .org/ resource />
PREFIX dbo : <http :// dbpedia .org/ ontology />

SELECT ?s ? birthPlace ? influence WHERE {
?s dbo: birthPlace ? birthPlace .
? birthPlace dbo: country : France .
?s dbo: influencedBy ? influence .
? influence dbo: deathPlace : Paris .

}

Query 3. Template augmentation of Query 1, float=h

56 J. Lorey and F. Naumann

Table 3. Some results for Query 3 in DBpedia 3.8 (109 results in total)

s birthPlace influence
:Auguste Comte :Montpellier :Jean-Baptiste Say
:Auguste Comte :Montpellier :Émile Durkheim
:Paul Fort :Reims :Paul Verlaine
:Pierre de Fermat :Beaumont-de-Lomagne :François Viète

...

4.4 Type Augmentation

If class membership information in the knowledge base is available for the central
concept, exploiting this ontological data can help in discovering information for
related resources. In type augmentation we identify the rdf:type of the central
concept and retrieve data for the instances belonging to the same classes by
replacing the central concept with a unique variable throughout the query.

The goal of type augmentation is similar to that of template augmentation,
i.e., querying information about different related resources. Whereas in template
augmentation this relatedness is solely determined by the context of the replaced
triple pattern part, in type augmentation it is derived by exploiting both struc-
tural and ontological information. Assuming the central concept is identical to
the triple pattern part replaced for matching BGPs, all bindings retrieved using
type augmentation are also retrieved using template augmentation. However, for
type augmentation the connection between different resources may be stronger
than for template augmentation given the type information of the resources.

According to the RDF Schema5, a resource may be instance of multiple classes,
where these classes may either be unrelated or reside at different levels of the
same type hierarchy. Therefore, RDF resources may be instances of very generic
types, such as owl:Thing. Hence, one challenge for type augmentation lies in de-
termining a suitable class for which instance data is retrieved, especially without
assuming any a priori knowledge of the underlying ontology.

A number of techniques can be employed to gather this data, e.g., using
multiple preliminary queries to construct a simple type hierarchy or utilizing ag-
gregate functions, such as COUNT, to generate heuristics about the distribution of
different types. In our approach, we introduce a FILTER NOT EXISTS to exclude
all those (generic) types that have (more specific) subclasses. By doing so, we
assume that the endpoint supports Sparql 1.1 expressions and all resources are
instances of at least one leaf node in the type hierarchy. If this is not the case,
we exclude the filter condition.

Query 3 illustrates the result of applying type augmentation on the reference
query, i.e., by introducing the new triple patterns regarding rdf:type informa-
tion, exchanging the central concept in all other triple patterns, and applying the
filter condition. Whereas the results for template augmentation also include bind-
ings for ?s that are (only) instances of rather generic classes such as dbo:Person,
5 http://www.w3.org/TR/rdf-schema

http://www.w3.org/TR/rdf-schema

Caching and Prefetching Strategies for SPARQL Queries 57

the results for Query 3 listed in Tab. 4 include resources that are (also) instances
of specific subclasses, e.g., dbo:Philosopher.

PREFIX : <http :// dbpedia .org/ resource />
PREFIX dbo : <http :// dbpedia .org/ ontology />
PREFIX rdf : <http :// www .w3.org /1999/02/22 - rdf -syntax -ns#>
PREFIX rdfs : <http :// www .w3.org /2000/01/ rdf - schema#>

SELECT ?s ? birthPlace ? influence WHERE {
: Auguste_Comte rdf :type ?type .
?s rdf :type ?type .
?s dbo : birthPlace ? birthPlace .
? birthPlace dbo : country : France .
?s dbo : influencedBy ? influence .
? influence dbo : deathPlace :Paris .
FILTER NOT EXISTS {? t1 rdfs : subClassOf ?type }

}

Query 4. Type augmentation of Query 1

Table 4. Some results for Query 4 in DBpedia 3.8 (397 results in total)

s birthPlace influence
:Auguste Comte :Montpellier :Jean-Baptiste Say
:Auguste Comte :Montpellier :Émile Durkheim
:Jean-Paul Sartre :Paris :Maurice Merleau-Ponty
:René Descartes :Descartes, Indre-et-Loire :Marine Mersenne

...

4.5 Holistic Augmentation

The intuition of holistic augmentation is that the scope of Sparql queries can be
broadened by removing certain triple patterns they contain. However, to ensure
that the result set of this modified query still contains all results of the original
one, the removed parts must not contain variables essential to the projection or
selection of a query. In other words, the variables in the SELECT statement still
need to be present in the modified query so that they may be bound to an RDF
term in a graph matching.

Typically, if we select a triple pattern to remove from the basic graph
pattern BGPi that contains it, we also remove the same triple pattern from any
other basic graph pattern BGPj in the query that can be matched to BGPi

58 J. Lorey and F. Naumann

as described in Sec. 3.3. We call such a removal valid, if applying it on a valid
Sparql query results in a valid Sparql query, i.e., if all projection variables are
referenced in at least one remaining triple pattern of the query pattern. Note
that there exist queries for which no valid triple pattern removal is possible, e.g.,
queries containing only one triple pattern.

To identify the most suitable triple pattern to remove from a query, we uti-
lize the variable counting heuristic introduced in [14]. Essentially, this heuristic is
based on the assumption that unbound subjects are more selective than unbound
objects, which in turn are more selective than unbound predicates. Hence, gen-
erally a triple pattern with an unbound predicate, but bound subject and object
matches fewer RDF statements in a knowledge base than a triple pattern with
either only an unbound subject or object, i.e., is more selective. Also, a triple
pattern with two or three unbound parts is less selective than a triple pattern
with only one or two unbound parts, respectively. Thus, the least selective triple
pattern is the one containing only variables.

In any query pattern there can be more than one triple pattern with maximum
selectivity. In this case, we select an arbitrary one for removal. If this removal
is not valid, we check whether a valid removal can be achieved for a different
triple pattern with same or lesser selectivity. We continue until we have either
exhaustively checked all triple patterns or discovered a validly removable triple
pattern. In the latter case, we modify the query by deleting the triple pattern
from the parent basic graph pattern and any other basic graph pattern this BGP
can be matched to within the query.

Removing a highly-selective query triple pattern not essential for the projec-
tion mostly assists in situations where (i) the query is too restrictive, (ii) the
query contains invalid statements, or (iii) the data or ontology in the knowledge
base is inconsistent, e.g., as described in [1]. One of the two most selective triple
pattern in Query 1 is crossed out in Query 5, thereby indicating its removal in
this augmented query. Table 5 lists some results for Query 5.

PREFIX : <http :// dbpedia .org/ resource />
PREFIX dbo : <http :// dbpedia .org/ ontology />

SELECT ? birthPlace ? influence WHERE {
: Auguste_Comte dbo : birthPlace ? birthPlace .
? birthPlace dbo : country : France .
: Auguste_Comte dbo : influencedBy ? influence .
? influence dbo :deathPlace :Paris .

}

Query 5. Holistic Augmentation of Query 1

Caching and Prefetching Strategies for SPARQL Queries 59

Table 5. Some results for Query 5 in DBpedia 3.8 (10 results in total)

birthPlace influence
:Montpellier :Adam Smith
:Montpellier :David Hume
:Montpellier :Jean-Baptiste Say
:Montpellier :Émile Durkheim

...

5 Evaluation

To evaluate the applicability of our prefetching strategies for Sparql queries,
we analyzed parts of the DBpedia 3.6 and LinkedGeoData (LGD) query logs
provided for the USEWOD 2013 data challenge [2]. The log files contain a num-
ber of requests received by the respective public Sparql endpoints and were
collected for different dates in 2011. While the specific metadata provided in the
Apache Common Log Format differs slightly for the individual services, all re-
quests contain the sender’s anonymized IP address and a timestamp in addition
to the actual query.

5.1 Methodology

We use the timestamp information to provide a meaningful segmentation for
successive queries by introducing query sessions. A query session is a chronolog-
ically ordered sequence of at least two queries issued sequentially by the same
user (represented by a unique IP address) over a period of time. We call query
sessions homogeneous, if they contain only queries belonging to the same clus-
ter, i.e., any query in a session can be matched to any other query in the same
session. Otherwise, we call this query session heterogeneous.

We exploit statistical features and metadata extracted from the query logs
format for delimiting a query session. Specifically, we restrict the duration of a
session by comparing the timestamps of issued queries with that of the initial
query of a session. Once this difference exceeds a certain threshold, we assume
a new query session has started. Depending on the analyzed dataset, we put
an upper limit on the number of queries a single session may contain, thereby
splitting a single query sequence into separate sessions if the number of successive
queries is greater than this limit.

Matchings for triple patterns can easily be transformed into triples by apply-
ing the corresponding variable bindings. By materializing these triples for the
original, unmodified query and for all queries generated by applying the augmen-
tation strategies introduced in Sec. 4, we maintain individual result set caches.
We then evaluate how many triples generated for bindings of subsequent queries
are already contained in the individual caches. If we determine that a newly
generated triple is contained in a cache, we consider this a cache hit. Note that
the set of cached triples for each augmentation strategy includes at least the
cached triples for the original query.

60 J. Lorey and F. Naumann

We use OpenLink Virtuoso Open-Source Edition version 6.1.3 as Sparql
endpoint containing the English DBpedia 3.6 dataset and ontology released on
January 17, 2011, and the LinkedGeoData dump released on April 26, 2011 in
separate named graphs. For each augmentation strategy, we restrict the number
of retrieved results for performance reasons to a maximum of 100,000 using the
LIMIT keyword for Sparql.

5.2 DBpedia 3.6 Query Logs

The requests included in the DBpedia 3.6 query logs exhibit timestamps in
hourly resolution, e.g., [24/Jan/2011 01:00:00 +0100]. In our analysis, only
successive queries from the same user with identical timestamps may belong to
the same session. However, as this heuristic introduces some vagueness regarding
the contents of a session, e.g., by ignoring session timeouts, we also limit the
maximum number of queries belonging to any single session to 25. Notice that
by applying this conservative restriction, we potentially lower the number of
cache hits in our approach, which most likely increases for longer sessions. In
summary, once a user query with a different timestamp is detected or we discover
more than 25 successive queries, we assume a new session has started.

Consequently, we base our evaluation on 288 query sessions for which we
were able to retrieve results for at least one contained query. Of these query
sessions, 176 (61%) were homogeneous. On average, the query sessions contained
around 21 queries. In around 34% of all query sessions, we could not identify any
cache hits. We assume that this observation is due to the small total result set
size for these sessions: The sessions with no cache hits result in only about 100
generated triples compared to around 3,300 triples for sessions with cache hits.
There are two possible reasons for this: (i) Our local Sparql endpoint did not
contain the entire DBpedia 3.6 corpus and (ii) some queries did not yield any
results even when executed against the public DBpedia endpoint (e.g., because
of syntax errors).

For all sessions with at least one cache hit, we illustrate the total number
of cache hits in relation to the total number of generated (unique) triples for
all unmodified queries in a session in Fig. 1. Each marker represents the best
augmentation strategy resulting in the most cache hits for this session. If for
none of the augmentation strategies the number of hits was greater than the
cache hits of the original query, the marker “no augmentation” is used.

Overall, our findings indicate that caching the results of the first, un-
augmented query of a session yields the most amount of cache hits in about 38%
of all analyzed query sessions. The results for type and template augmentation
have the most cache hits in 28% and 23% of the sessions, respectively, whereas
applying exploratory and holistic augmentation on the first session query results
in the most cache hits only for 7% and 4% of all sessions.

When considering homogeneous query sessions only, type augmentation yields
the most cache hits in 39% of all sessions, followed by no augmentation (30%),
template augmentation (28%), exploratory and holistic augmentation (1% each).
Notice that we discovered a number of homogeneous query sessions containing

Caching and Prefetching Strategies for SPARQL Queries 61

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5T
o
ta

l
n
u
m

b
e
r

o
f
c
a
c
h
e
 h

it
s
 f
o
r

b
e
s
t
a
u
g
m

e
n
ta

ti
o
n
 s

tr
a
te

g
y

Total number of triples generated for all unmodified queries in a session

Best augmentation strategy

No Augmentation

Exploratory Augmentation

Template Augmentation

Type Augmentation

Holistic Augmentation

Fig. 1. Best augmentation strategy when caching results of the first query in a session
in the DBpedia 3.6 log files

the exact same query multiple times. For example, this is the case if only one
triple is generated for all queries in a session and identified as cache hit repeatedly
as represented by markers located on the y-axis. Obviously, if the exact same
query is issued over again within the course of a session, no additional cache hits
can be generated when applying an augmentation strategy.

The mean number of cache hits is highest for exploratory augmentation (4,541
cache hits) and lowest for type augmentation (33 cache hits) when considering
only those sessions where these two augmentation strategies yield the most cache
hits. On average, in all sessions with markers above the diagonal (indicated by
the dashed line in Fig. 1), each generated triple represents a cache hit at least
once during the course of the query session.

We also evaluated how caching the result of every (augmented) query influ-
enced the number of cache hits for subsequent (unmodified) queries in a session.
While the number of query sessions with no cache hits dropped to around 24%,
for those query sessions with cache hits we observed comparable results to the
ones illustrated. Hence, we assume that by analyzing the first query, a suitable
caching strategy can be determined for all subsequent queries of the same
session. For example, for homogeneous query sessions applying template or type

62 J. Lorey and F. Naumann

augmentation on the first query most likely results in the same augmented query
as applying it on any of the subsequent session requests.

In general, due to the large number of homogeneous query sessions in the
DBpedia query logs, type and template augmentation appear to be the most
successful among the augmentation strategies. Given the large number of re-
sources in DBpedia and our restriction on the maximum number of results, we
are impairing the success of these strategies to some extent, as many potentially
relevant facts are simply not retrieved. Without this restriction, these prefetching
strategies should yield even better results.

On the other hand, the amount of query sessions benefiting most from holis-
tic or exploratory augmentation is limited. This might stem from the apparently
small number of queries issued by human users, towards which these strate-
gies are targeted. Moreover, in more than half the query sessions (55%) holistic
augmentation could not be applied as no valid triple pattern removal was possi-
ble. Naturally, in these cases the number of cache hits for holistic augmentation
equals the one of not applying any augmentation.

5.3 LinkedGeoData Query Logs

As the timestamps provided for the queries in the LGD logs are precise to the
second, we delimit query sessions in these logs more accurately by introducing
a session timeout and maximum session duration. If for a query from a specific
user we cannot discover another query from the same user within 10 minutes
time, we assume the identified query is the last one in a session. Overall, we
delimit a query session by restricting its duration to a maximum of 60 minutes,
its session timeout to 10 minutes, and its maximum number of queries to 50
(whichever comes first).

As with the DBpedia query logs, we analyzed only those query sessions in
which we determined at least one query for which we were able to generate a
result as described above, i.e., we based our evaluation on 440 query sessions.
This time, for only 9% of these query sessions no cache hits could be discovered
at all. The analysis of which augmentation strategy resulted in the most cache
hits for the remaining 424 query sessions is illustrated in Fig. 2.

For the LGD logs, caching the results of unmodified queries resulted in the
most hits (48% of all query sessions), followed by exploratory augmentation
(26%), template augmentation (15%), type and holistic augmentation (5% each).
For heterogeneous query sessions (55% of all query sessions), exploratory aug-
mentation is the best augmentation strategy (30%), followed by template aug-
mentation (19%), holistic augmentation (7%), and type augmentation (6%).

We also discovered that the number of mean cache hits was much higher
than the ones for the DBpedia log files: For those sessions that benefited from
template augmentation the average number of cache hits was highest with 72,917
and lowest for type augmentation with 48,320. On the other hand, the average
session length was comparatively small with only 12 queries per session. This
could be because the LGD log queries were actually issued by human users
(as opposed to crawlers or other software agents). Intuitively, this would also

Caching and Prefetching Strategies for SPARQL Queries 63

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6T

o
ta

l
n
u
m

b
e
r

o
f
c
a
c
h
e
 h

it
s
 f
o
r

b
e
s
t
a
u
g
m

e
n
ta

ti
o
n
 s

tr
a
te

g
y

Total number of triples generated for all unmodified queries in a session

Best augmentation strategy

No Augmentation

Exploratory Augmentation

Template Augmentation

Type Augmentation

Holistic Augmentation

Fig. 2. Best augmentation strategy when caching results of the first query in a session
in the LinkedGeoData log files

explain why the majority of query sessions are heterogeneous: Whereas software
agents use somewhat hard-coded HTTP requests to retrieve Linked Data, human
users are more flexible when issuing queries, e.g., through the LGD Sparql web
interface6.

Again, caching the result of every query in a session had only little impact
on the choice of augmentation strategy, which is to be expected considering
the small mean number of queries in a session. However, the percentage of query
sessions not benefiting from any caching decreased slightly to 6%. In general, the
cached results for the queries can almost always be used for subsequent queries
in a session for the LGD logs. Again, our local Sparql endpoint might have
not contained all data available in the public Sparql endpoint. However, the
impact on our results is negligible as we were able to generate query results for
the vast majority of sessions (75%) and cache hits in almost all of these (91%).

6 Conclusion and Outlook

In this paper, we have presented a number of approaches to modify Sparql
queries with the goal of retrieving additional results that are potentially relevant
6 http://linkedgeodata.org/sparql

http://linkedgeodata.org/sparql

64 J. Lorey and F. Naumann

for subsequent requests of the same query session. We evaluated how often and
how many of these additional results are actually relevant by identifying query
sessions that can exploit this prefetched data in subsequent requests compared
to only caching the results of the unmodified query.

While the majority of all analyzed query sessions benefited from caching the
results of the unmodified or augmented first query (around 66% for DBpedia
and 91% for LinkedGeoData), the most suitable augmentation strategy (if any)
differs from session to session. For example, large-scale homogeneous query ses-
sions can exploit a cache containing similar data of related resources, e.g., as
generated by applying template and type augmentation.

On the other hand, human users might retrieve more “diverse” information,
e.g., specific facts about a resource as generated by applying exploratory aug-
mentation. Overall, whereas not all augmentation strategies can be applied on
certain queries (e.g., holistic augmentation for queries containing only one triple
pattern), combining different strategies during the course of a query session
might still prove advantageous for such diversified scenarios.

In future work, we aim at capturing the intent in a query session more accu-
rately, e.g., by using more fine-grained approaches than that of a central concept.
Based on this, more customized augmentation strategies are conceivable, e.g., by
analyzing individual resources contained in a query. Finally, we want to be able
to discover the most suitable augmentation strategy or a combination of those
strategies based on the contents of a query session and thus adjust other query
sessions accordingly.

References
1. Abedjan, Z., Lorey, J., Naumann, F.: Reconciling ontologies and the web of data.

In: Proceedings of the International Conference on Information and Knowledge
Management (CIKM), Maui, HI, USA, pp. 1532–1536 (October 2012)

2. Berendt, B., Hollink, L., Luczak-Rösch, M., Möller, K.H., Vallet, D.: USE-
WOD2013 – 3rd international workshop on usage analysis and the web of data.
In: 10th Extended Semantic Web Conference (ESWC) – Semantics and Big Data,
Montpellier, France (2013)

3. Carpineto, C., Romano, G.: A survey of automatic query expansion in information
retrieval. ACM Comput. Surv. 44(1), 1:1–1:50 (2012)

4. Dar, S., Franklin, M.J., Jónsson, B.T., Srivastava, D., Tan, M.: Semantic data
caching and replacement. In: Proceedings of the International Conference on Very
Large Databases (VLDB), Bombay, India, pp. 330–341 (1996)

5. Elbassuoni, S., Ramanath, M., Weikum, G.: Query relaxation for entity-
relationship search. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B.,
Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part II. LNCS,
vol. 6644, pp. 62–76. Springer, Heidelberg (2011)

6. Fagni, T., Perego, R., Silvestri, F., Orlando, S.: Boosting the performance of web
search engines: Caching and prefetching query results by exploiting historical usage
data. ACM Transactions on Information Systems 24(1), 51–78 (2006)

7. Hogan, A., Mellotte, M., Powell, G., Stampouli, D.: Towards fuzzy query-relaxation
for RDF. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.)
ESWC 2012. LNCS, vol. 7295, pp. 687–702. Springer, Heidelberg (2012)

Caching and Prefetching Strategies for SPARQL Queries 65

8. Hurtado, C.A., Poulovassilis, A., Wood, P.T.: Query relaxation in RDF. In: Spac-
capietra, S. (ed.) Journal on Data Semantics X. LNCS, vol. 4900, pp. 31–61.
Springer, Heidelberg (2008)

9. Jonassen, S., Cambazoglu, B.B., Silvestri, F.: Prefetching query results and its
impact on search engines. In: Proceedings of the ACM International Conference
on Information Retrieval (SIGIR), Portland, OR, USA, pp. 631–640 (2012)

10. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Research
Logist. Quarterly 2(1-2), 83–97 (1955)

11. Martin, M., Unbehauen, J., Auer, S.: Improving the performance of semantic web
applications with SPARQL query caching. In: Aroyo, L., Antoniou, G., Hyvönen,
E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010,
Part II. LNCS, vol. 6089, pp. 304–318. Springer, Heidelberg (2010)

12. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM
Transactions on Database Systems (TODS) 34(3), 16:1–16:45 (2009)

13. Ren, Q., Dunham, M.H.: Using semantic caching to manage location dependent
data in mobile computing. In: Proceedings of the International Conference on Mo-
bile Computing and Networking, Boston, MA, United States, pp. 210–221 (2000)

14. Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: SPARQL basic
graph pattern optimization using selectivity estimation. In: Proceedings of the
International World Wide Web Conference (WWW), New York, NY, USA, pp.
595–604 (2008)

15. Yang, M., Wu, G.: Caching intermediate result of SPARQL queries. In: Proceedings
of the International World Wide Web Conference (WWW), Hyderabad, India, pp.
159–160 (2011)

	Caching and Prefetching Strategies
for SPARQL Queries
	1 Introduction
	1.1 SPARQL Preliminaries
	1.2 Contribution and Paper Organization

	2 Related Work
	2.1 Semantic Caching and Prefetching
	2.2 Query Relaxation

	3 Query Matching
	3.1 Triple Pattern Distance
	3.2 Basic Graph Pattern Matching
	3.3 Query Pattern Matching

	4 Query Augmentation
	4.1 Augmentation Concepts
	4.2 Exploratory Augmentation
	4.3 Template Augmentation
	4.4 Type Augmentation
	4.5 Holistic Augmentation

	5 Evaluation
	5.1 Methodology
	5.2 DBpedia 3.6 Query Logs
	5.3 LinkedGeoData Query Logs

	6 Conclusion and Outlook
	References

