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Abstract. Target volume delineation of Positron Emission Tomography (PET) 
images in radiation treatment planning is challenging because of the low spatial 
resolution and high noise level in PET data. The aim of this work is the devel-
opment of an accurate and fast method for semi-automatic segmentation of me-
tabolic regions on PET images. For this purpose, an algorithm for the biological 
tumor volume delineation based on random walks on graphs has been used. Va-
lidation was first performed on phantoms containing spheres and irregular in-
serts of different and known volumes, then tumors from a patient with head and 
neck cancer were segmented to discuss the clinical applicability of this algo-
rithm. Experimental results show that the segmentation algorithm is accurate 
and fast and meets the physician requirements in a radiotherapy environment. 
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1 Introduction 

Radiotherapy is the mainstay of treatment for head and neck cancer (HNC) and the 
computerized tomography (CT) is considered to be the gold standard for staging, 
target tumor delineation, dose calculation, monitoring and evaluation of treatment 
response. However, results in HNC radiotherapy are still disappointing due to the 
radio resistance of the tumor and/or inadequate dose to target for geographic miss. CT 
imaging is based on variation of tissue density and provides anatomical information 
with a high resolution. However, it has several limitations due to the insufficient con-
trast between normal tissue and tumor. It don’t provide any useful information about 
the tumor biology. CT imaging may not show the viable extension of tumors and not 
localize isolated positive lymph node. To overcome these limitations, Positron Emis-
sion Tomography (PET) imaging has gained a fundamental impact in many fields of 
oncology: molecular imaging enables to visualize metabolic features of oncological 
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lesions, providing an in vivo measure of the tumor biological processes.  In addition, 
metabolic changes are often faster and more indicative of the effects of the therapy 
with respect to morphological changes [1]. The 18F-fluoro-2-deoxy-D-glucose (FDG) 
is the radiotracer commonly used in PET acquisition for oncology. FDG is an analo-
gue of glucose and allows to evaluate tumor glucose metabolism that is altered in 
most of the neoplastic pathologies. FDG is then avidly accumulated by most malig-
nant tumors, allowing to identify the location of the primary tumor and metastases. 
This offers the opportunity to radically change the patient treatment (i.e. from radio-
therapy to chemotherapy) or the planning treatment volume (PTV) in radiotherapy 
field. Current generation PET/CT systems allow the integration of functional and 
morphological data. Within the CT gross tumor volume (GTV), defined on anatomi-
cal images, it is possible to define target volumes based on functional area (biological 
tumor volume - BTV) and to apply a strategy that will deliver radiation to these re-
gions. BTV varies substantially depending on the algorithm used to delineate  
functional signal in PET images. Visual delineation is widely-used, but it is strongly 
operator-dependent, even if easily applicable. For this reason, the development and 
implementation of robust, fast, accurate, operator and scanner independent segmenta-
tion methods is mandatory.  

In this paper a semi-automated approach based on Random Walks on graphs 
(RWg) is proposed [2, 3]. The method has been tested on phantom studies in order to 
assess the accuracy respect to region growing (RG) standard approach. To assess the 
applicability in a clinical environment, a pilot patient study was also considered. 

The paper is organized as follows. In section 2 the current state of the art in PET 
image segmentation techniques is reviewed and the RWg algorithm is introduced. In 
section 3, PET phantom and patient protocols are described. In section 4, RWg delin-
eation is evaluated in order to assess the accuracy and the applicability in clinical 
environment. 

2 Related Works 

Over the past years, various automatic or semi-automatic approaches, based on fixed, 
adaptive or iterative threshold, fuzzy c-means (FCM), region growing or watershed 
segmentation, have been proposed for PET image segmentation but few validation 
studies are available and there is no consensus for proper BTV delineation method 
with no clear guideline on how to incorporate metabolic data into target delineation 
[4].  Moreover, PET delineation approaches can be categorized on the basis of ana-
tomical sites or used radiotracers. According to a comprehensive review of segmenta-
tion algorithms in PET imaging [5], four segmentation methodology categories can be 
identified. Image thresholding methods are the most widely used due to their simplici-
ty to implement but they are too sensitive to image noise and heterogeneity [6]. Varia-
tional approaches based on gradient differences between target and background  
regions are mathematically efficient but sensitive to image noise and subject to nu-
merical fluctuation [7]. Learning methods as artificial neural network, support vector 
machine, k-means algorithm, fuzzy C-means algorithm are efficient but require high 
computational steps and are sensitive to variability of PET radiotracer depending on 
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study protocol, as for example scanner characteristics, radiotracer injected dose and 
interval between radiotracer injection and exam start. Finally, stochastic models based 
on statistical differences in intensity distribution between lesion and normal tissues 
can be considered optimal for noisy images under condition that a proper noise model 
is used.   

2.1 Random Walks for Image Segmentation 

A graph-based approach provides a foreground and background recognition in images 
in which the seeds are specified by user input. An undirected graph G can be 
represented as a pair G = (V,E) with nodes v ∈ V and edges e ∈ E ⊆ VxV. A node vi 
is a neighbor of another node vj if they are connected by an edge eij with a weight wij 
(wij=wji being an undirected graph). The graph-based segmentation method represent 
DICOM (Digital Imaging and Communications in Medicine) image as a graph in 
which the voxels are its nodes and the edges are defined by a cost function which 
maps a change in image intensity to edge weights. The image is then converted into a 
lattice where some pixels are known (nodes with label specified by user input) and 
some pixels are not known. The delineation problem is to assign a label to unknown 
nodes. This is done by trying to find the minimum cost/energy among all possible 
scenarios in the graph to provide an optimal segmentation: RWg algorithm can be 
used to partition the nodes into two disjoint subsets representing lesion and back-
ground. RWg algorithm appeared in computer vision domain and then extended for 
image segmentation [3]. This approach is an efficient and accurate method in low 
contrast images characterized by noise and weak edges as PET images. RWg, respect 
to graph-cut algorithm [8], is less susceptible to the “small cut” behaviors.  

The RWg problem is to determine the highest probabilities for each pixel to reach 
the target node (target seed) and has the same solution as the combinatorial Dirichlet 
problem [3]: 

ሿݔሾܦ  ൌ  ଵ ଶ  (1) ݔܮ்ݔ 

where L indicates the graph’s Laplacian matrix and x the vector of the probabilities 
that each voxel is included in target region. RW measures the “betweenness” through 
starting pixel (foreground seed) to the un-labeled pixel determining the highest proba-
bilities for assigning labels to the nodes [2].  

3 Materials and Methods 

3.1 Phantom Study 

Both quality control and anthropomorphic phantoms were used to estimate the accu-
racy of the PET segmentation algorithms: 1) The NEMA IEC body phantom consist-
ing of an elliptical cylinder ( D1 = 24 cm, D2 =30 cm, h= 21cm) including six spheres 
of different diameters (d1= 10 mm, d2 = 13 mm, d3 = 17 mm, d4 = 22 mm,  
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d5 = 26 mm, d6 =  37 mm) positioned at 5,5 cm from the center of the phantom; 2) 
an anthropomorphic oncological phantom (elliptical cylinder of D1 = 20 cm, D2 =30 
cm, h= 21cm) simulating thorax body regions and oncological lesions (three different 
spheres of d2 = 15.6 mm, d3 = 25.8 mm, d4 = 31.3 mm and two irregular inserts of 50 
and 130 cm3, respectively). Spheres, inserts and background were filled with FDG 
with a ratio between measured sphere radioactivity concentration and measured back-
ground radioactivity concentration (S/B) that ranged from 1.5 to 11 for ten indepen-
dent experiments. In particular, seven experiments were performed with the NEMA 
IEC body phantom with S/B that ranged from 1.5 to 11 at two different matrix sizes 
and three experiments were performed with the anthropomorphic oncological phan-
tom with S/B that ranged from 5 to 10.  

3.2 Clinical Study 

A clinical case was selected to evaluate clinical applicability of the RWg segmenta-
tion algorithm. A 80 years old male with HNC that had been referred for a diagnostic 
PET/CT scan before radiotherapy treatment was enrolled. Patient fasted for twelve 
hours before PET exam and was intravenous injected with FDG. The PET/CT onco-
logical protocol began 60 minutes after the injection. PET/CT scan was performed in 
diagnostic position with patient on a flat carbon bed similar to the radiotherapy treat-
ment couch (in replacement of the concave couch usually used for patient comfort in 
diagnostic PET/CT exam) and a thermoplastic mask was used for immobilization of 
the head. The patient breathed normally during the PET and CT exams, and scanning 
was executed from the top of the skull to the middle of the thigh with the arms along 
the body.  

3.3 Data Acquisition 

Phantoms and the patient acquisition were performed on Discovery 690 with time of 
flight and Discovery STE PET/CT scanners by General Electric Medical Systems [9].  

PET images of five experiments with NEMA IEC body phantom consisted into a 
matrix of 256x256 voxels of 2.73x2.73x3.27 mm3 voxel size, while CT images con-
sisted into a matrix of 512x512 voxels of 1.36x1.36x3.75 mm3 voxel size (Discovery 
690). PET images of two experiments with NEMA IEC body phantom, of three expe-
riments with the anthropomorphic oncological phantom, and of clinical study con-
sisted into a matrix of 128x128 voxels of 4.7x4.7x3.27 mm3 voxel size, while CT 
images consisted into a matrix of 512x512 voxels of 0.97x0.97x3.27 mm3 voxel size 
(Discovery STE).   

3.4 Manual Segmentation 

In phantom studies, the actual sizes of the used spheres were known and a manual 
segmentation was not required. In patient study, the PET/CT images were reported by 
a nuclear medicine physician for diagnostic and staging purposes. The CT gross tu-
mor volume (GTV) was manually outlined by the radiation oncologist on each CT 
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transverse section of lesion. Metabolic information was used to modulate the target 
volume delineation. The active tumor volume was manually defined by the radiation 
oncologist in consensus with the nuclear medicine physician: BTV included the tumor 
volume with an intense tracer uptake respect to background FDG activity level. 

3.5 Automatic Segmentation 

The method based on graph theory proposed by Grady [3] was used. RWg parameters 
have been modulated to adapt to PET application domain in order to incorporate me-
tabolic information in radiotherapy treatment. The Gaussian weighting function for 
PET image was defined as: 

௜௝ݓ   ൌ exp൫െߚ൫ܷܵ ௜ܸ െ ܷܵ ௝ܸ൯^ଶ൯ (2) 

where  

 ܷܵ ௜ܸ ൌ ஼௢௡௖௘௡௧௥௔௧௜௢௡ሺ ಺೙ೕ೐೎೟೐೏ ೏೚ೞ೐ುೌ೟೔೐೙೟ᇲೞ ೢ೐೔೒೓೟ሻ  (3) 

indicates the body-weight Standardized Uptake Value (SUV)  of voxel i. SUV is a 
widely used PET semi-quantitative parameter, calculated as a ratio of tissue radioac-
tivity concentration (kBq/ml) and FDG injected dose (MBq) at the time of injection 
divided by body weight (kg). In our experiments, the ߚ weighting factor was set to 
50. Hence the PET image is converted into a lattice where SUV of each voxel is 
mapped to wij.  To create a semi-automatic delineation method with RWg embedded, 
an automatic background region localization to identify background seed is imple-
mented. Then, the operator chooses the best slice containing the target lesion in order 
to identify the target seed with a single mouse click. This approach offers a greater 
flexibility and ability to properly delineate the PET lesion, excluding false positives. 

3.6 Evaluation 

The effectiveness of the proposed method has been evaluated comparing to well-
known and commonly used Region Growing (RG) method, calculating the difference 
between actual sphere (or insert) sizes and semi-automatic PET segmentations. In 
addition, we used the precision, recall, and dice similarity coefficient (DSC) to prove 
the effectiveness of the proposed approach [10, 11]. In a phantom study the morpho-
logical region must match with metabolic region. This is not true in patient studies: in 
fact metabolic volume cannot match the tumor anatomic extension, showing different 
and additional information. Hence the patient study was mainly used to assess the 
applicability in a clinical environment of the RWg algorithm. Furthermore, we will be 
make a comparison between manual and semi-automatic BTV segmentations. The 
average of the time for delineating spheres, irregular inserts and oncological lesions 
was recorded to assess algorithm performances. RWg and RG algorithms were im-
plemented on the Matlab R2012b simulation environment, running on a general  
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purpose PC with a 3.00GHz Intel R CoreTM i5-2320 processor, 4 GB memory, and 
64-bit Windows 7 Professional. 

4 Experimental Results 

4.1 Trials and Results on Phantoms 

For each sphere of the phantoms, the percentage difference was calculated as: 

%ܧ  ൌ ܵܤܣ ൬100 כ ቀெ௘௔௦௨௥௘ௗ ௌ௜௭௘ି஺௖௧௨௔௟ ௌ௜௭௘஺௖௧௨௔௟ ௌ௜௭௘ ቁ൰ (4) 

at different S/B. To avoid negative values in the relative differences as results of an 
under sizing in PET delineation, absolute value (ABS) was applied. Table 1 shows the 
precision (P), recall (R), and DSC averaged on different spheres in each NEMA IEC 
body phantom experiment. Phantoms (a-e) were studied using the Discovery 690 with 
a sampling matrix of 256x256 voxels and a S/B of 1.5-2 for the NEMA (a), 2-3 for 
the NEMA (b), 3-5 for the NEMA (c), 5-6 for the NEMA (d), 6-7 for the NEMA (e). 
Phantoms (f-g) were studied using the Discovery STE with a sampling matrix of 
128x128 voxels and a S/B range of 3.5-9 for the NEMA (f), 9-11 for the NEMA (g).  

Table 1. Precision (P), Recall (R), and DSC in NEMA experiments 

 RWg RG 
 P R DSC -:-  P R DSC 
(a) 0.976 0.934 0.952  0.853 1.000 0.921 
(b) 0.988 0.949 0.968  0.899 0.929 0.908 
(c) 0.994 0.960 0.976  0,951 0,899 0,918 
(d) 0.982 0.975 0.978  0,916 0,987 0,946 
(e) 0.972 0.983 0.977  0,963 0,964 0,961 
(f) 0.961 0.968 0.963   0.913 0.897 0.886 
(g) 0.950 0.965 0.957   0.907 0.920 0.893 

 
The E% range of RWg algorithm was found to be from 0.52% up to 16.85% with-

out any restriction in sphere size and in S/B. The range reduced from 0.52% up to 
5.38% for the spheres with a diameter > 1.7 cm. The minimum error (0.52%) was 
obtained in the sphere with a diameter of 3.7 cm and with a S/B of 5 (c). For the 
spheres with a diameter < 1.7 cm the range was found to be from 4.55% up to 
16.85%. The maximum error (16.85%) was obtained in the smaller sphere of NEMA 
(g) experiment with a S/B of 3.5. RWg algorithm failed in the smaller sphere segmen-
tation at very low S/B ((a) and (b)) where P, R, DSC and E% were obtained by consi-
dering the five spheres with a diameter > 1 cm. The average of the time for sphere 
volume segmentation was around 0.8 seconds in 128x128 PET images (one slice in 
around 0.1 seconds) and around 2 seconds in 256x256 PET images (one slice in 
around 0.2 seconds). The E% range of PET delineation using RG algorithm was 
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(green line) and RG (blue line) methods. The average of the time for segmentation of 
irregular inserts was around 0.1 seconds (RWg) versus 0.4 seconds (RG) for single 
slice. 

Table 2. P, R, and DSC in anthropomorphic phantom studies 

 RWg RG 
 P R DSC  -:-  P R DSC 
Spheres 0,974 0,979 0,975  0,998 0.844 0,913  
Inserts 0,984 0,976 0,979  0,958 0,969 0,962 

4.2 Trials and Results on the Pilot Patient Study 

Figure 3.a shows lesions in CT image: semiautomatic BTV was located outside the 
GTV domain in a metabolic positive lymph node. In this clinical case, manual BTV 
radically changed the treatment volume because uptake was found outside the GTV in 
a involved lymph node (not CT visible). The figure 3.b shows the corresponding PET 
image with manual BTV (blue line) and semiautomatic BTV (green line): manual 
BTV was larger than the semiautomatic BTV (<10%, see table 3). An analysis of the 
time performance of the considered technique showed that the algorithm is fast: the 
volume, consisting of 13 slices, was segmented in around 1.4 seconds. 

 

Fig. 3. Differences between GTV (magenta line), semiautomatic BTV (green line) and manual 
BTV (blue line) 
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Table 3. Comparison between manual and RWg segmentations 

 Primary lesion Lymph node 
Manual 31.75 cm3 2.73 cm3 
RWg  29.57 cm3 2.48 cm3 

5 Discussion and Conclusions 

PET segmentation in radiotherapy is a critical task due to the low image resolution. 
To date, qualitative visual interpretation is the most commonly used method. Unfor-
tunately, the manual contouring limits the accuracy and reproducibility of measure-
ment. Several automatic methods have been presented, like threshold-based or  
gradient-based algorithms, but few clinical studies are available and there is no  
consensus for proper BTV determination. 

The aim of this work was to validate a FDG-PET image segmentation method 
based on RWg. A pilot patient study was used to assess its applicability in clinical 
practice. The algorithm segments PET images from SUV and it is very fast (one slice 
in 0.1 - 0.2 seconds) in a clinical environment if compared against the time needed for 
manual segmentation. The accuracy of RWg segmentation method was higher than 
RG segmentation method in phantom studies. This was evident for the smaller 
spheres despite a drop in the RWg precision for lesions with diameter < 1cm and at 
low contrast. This was compatible with the severe errors in the volume estimation 
reported for small tumor volume [12]. Partial volume effect is one of the most impor-
tant factors impacting the quality and the quantitative accuracy in PET imaging [13]. 
The images are blurred due to the limited spatial resolution of PET scanner and small 
lesions appear larger. Several corrective techniques have been developed and a partial 
volume correction method could be included in the algorithm, such as that described 
in [14]. Increasing the target size, RWg time performance and accuracy remain 
steady, while RG accuracy increases and time performance decreases. Moreover, 
RWg method provided resolution independent results considering the two set of im-
ages tested. At last, no false positive regions were segmented, because of the possibil-
ity to manually identify the target lesion. In conclusion, the proposed method is very 
powerful in terms of noisy image segmentation and time performance. 

In the pilot patient exam, FDG-PET has been proved to modify GTV size, location, 
and shape changing radically radiation treatment strategy and leading to the opportu-
nity to prevent potential disease progression. In many cases, such as the one presented 
in the paper, qualitative  interpretation and manual contouring are sufficient to obtain 
fundamental information for patient care, including invisible metastases using tradi-
tional radiologic techniques.  However, a more objective assessment to estimate BTV 
for radiotherapy treatment with the implementation of automatic algorithms is manda-
tory and the RWg algorithm meets the requirements in a radiotherapy environment. 
The results shown in table 3 underline a difference of 10% between manual and RWg 
area sizes. However, the manual segmentation is high operator dependent. 

As this was only a pilot study, further investigations are required with a larger 
number of patients in order to assess the prognostic usefulness and long-term clinical 
impact to correlate BTV segmentation with clinical outcomes, progression-free  
survival and overall survival.  
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