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Abstract. We propose a novel people detection method using a Locus-
based Probabilistic Occupancy Map (LPOM). Given the calibration data
and the motion edges extracted from all views, the method is able to com-
pute the probabilistic occupancy map for the targets in the scene. We
integrate the algorithm into a Bayesian-based tracker and do experiments
with challenging video sequences. Experimental results demonstrate the
robustness and high-precision of the tracker when tracking multiple peo-
ple in the presence of clutters and occlusions.

Keywords: people detection, multicamera tracking, probabilistic occu-
pancy map.

1 Introduction

Currently people detection and tracking is a hotspot in the domain of com-
puter vision due to its broad envisaged applications, which runs the gamut from
Ambient Assisted Living, Security and Surveillance, Traffic Monitoring to Hu-
man Computer Interaction and Sports Analysis, etc (see [10] as a reference).
Among all current tracking methods, visual tracking or camera-based tracking
has many advantages over other methods such as laser-based tracking [11], since
it is less intrusive and video sequences encode much richer information about
the observed scene. Current visual tracking approaches fall into two categories:
monocular approaches and multicamera approaches, according to the number
of views they use. While monocular approaches have the advantage of simple
and easy deployment but suffer from relying on limited 3D information and thus
often fail in case of long period of full occlusions under unpredictable motions,
multicamera approaches are used to tackle these problems by fusing comple-
mentary observations from multiple sensors. However, tracking multiple people
robustly in highly crowded and cluttered scenes with affordable computational
cost is still challenging.

Most of the state-of-the-art tracking systems adopts a probabilistic frame-
work, as it takes into account uncertainties and ambiguities arising from either
noise or occlusions and clutters of the scenes. Probabilistic tracking methods
are based on the Bayesian filtering framework, which transform the tracking
problem to a process of posterior probability density estimation of the states

A. Petrosino (Ed.): ICIAP 2013, Part II, LNCS 8157, pp. 693–702, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



694 T. Hu, S. Mutlu, and O. Lanz

(e.g., people’s locations, orientations and other motion parameters). To estimate
the posterior probability density, a common method used is the particle filter
(PF), which was initially used in visual tracking and dubbed as the Conden-
sation algorithm in [5]. When PF is applied to visual tracking, there comes an
inevitable issue of how to detect newly-entered objects in the scene. Traditional
blob-based methods often have the trouble of isolating different objects in a
merged blob and are prone to failures in the presence of high-rate occlusion.
This has brought out some new methods like probabilistic occupancy map [3] or
similar methods which projects features on multiple parallel planes [1,4].In this
paper, we present a multicamera people tracking framework, the core of which
is a locus-based probabilistic occupancy map. Given the motion edges in each
camera view and the calibration data, we are able to compute the probabilistic
occupancy map of the ground plane for the targets online.

The remainder of the paper is structured as follows. Section 2 introduces
the state-of-the-art work to our interest. Section 3 presents the structure of our
tracking system. Section 4 details how we compute the locus-based probabilistic
map and how we implement tracking based on it, which is our main contribution.
In Section 5 we test our algorithm with some data sets and give the results and
analysis. And we draw conclusions in Section 6.

2 Related Work

Across literature, many detection and tracking methods have been proposed by
exploiting features such as color, shape, contour or a combination of them. In
[7], a Bayesian Multi-Blob Tracker based on statistical appearance model is pro-
posed. Tracking is performed using one camera and thus has the problem of
confusion when one object passes the other. In [8], a color distribution model
using polar representation is proposed for multicamera tracking. Since color in-
formation is often corrupted by noise and easily get biased due to illumination
changes and shadows, a combination of color information with other cues like
edges or contours can be used such as the method in [2].

Recently occupancy map methods have gained popularity. Most commonly
these methods back-project object models to a discretized occupancy map and
compute the probability of objects being in the map. In [6], a people counting
method is proposed by using the projection of visual hull intersections, which
is generated by projecting the silhouette cones from each view. Fleuret et. al.[3]
used a generative model of simple rectangles with the height of a typical pedes-
trian placed at given locations to simulate occupancy and back-projected the
rectangles to the camera views. The probability of occupancy at every position
is then approximated by minimizing the Kullback-Leibler distance between the
marginals of a product law and the conditional posterior distribution. Although
the algorithm can effectively estimate the occupancy on the ground plane for
each frame independently given the output of a simple background subtraction
algorithm, it suffers when there are too many people in the scene with serious
occlusions for background subtraction algorithms to resolve individual blobs.
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Khan and Shah [1] proposed a method based on geometrical constructs to
resolve occlusion, the core of which is the planar homographic occupancy con-
straint. The constraint states that if a foreground pixel’s piercing point (the
intersection point of the ray casting from the pixel to the reference plane) falls
inside a foreground object, then the same pixel will warp to the foreground re-
gion in all views. By exploring this constraint and gathering evidence from all the
views into a synergistic framework, they can compute the likelihood of the scene
location being occupied by foreground objects. The method can detect multiple
people reliably in many complex scenarios but, according to the author, may
cause false negative and false positive under some extreme situations due to the
fact that it is purely image-based. A most recent related work can be found in
[4], where a 3-D Marked Point Process model was proposed to detect and localize
people.The method extracts pixel-level features by projecting foreground silhou-
ettes on the ground plane and the hypothetical head plane, and estimates the
positions and heights of the objects using a global optimization process. In [2], a
detection method using motion edges is proposed. When a new object enters the
scene, hypothetical samples are drawn from an informed detection prior, which
is derived as the inverse of motion likelihood. A major drawback of this method
is that it needs to compute a likelihood look-up table offline for all pixels in all
images. Unlike [2], our method is able to generate online the possible states of
the object for a given motion pixel. We compute the locus for all motion pixels
in all views and integrate them to generate an occupancy map.

3 Problem Formulation

Our tracking system is based a Bayesian filtering framework. This section de-
scribes how we model the scene.

3.1 Bayesian Framework of Our Tracking System

The core idea of Bayesian filtering is to construct a posterior probability density
function (PDF) of the system state with known information, i.e. given a set of
observations zt, to iteratively calculate the posterior density p(xt|zt), where xt

denotes the system state at time t. The process consists of two steps: prediction
and updating. First predict the state variables via the transition equation of the
system, and then update the predicted values with the latest observation, which
are represented by the following two equations respectively.

p(xt|z1:t−1) ∝
∫

p(xt|xt−1)p(xt−1|z1:t−1)dxt−1 (1)

p(xt|z1:t) ∝ p(zt|xt)p(xt|z1:t−1) (2)

Due to the complexity of the likelihood function p(zt|xt) in practice, the pos-
terior can hardly be expressed in closed form. Therefore, particle filtering was
proposed to give an approximate solution to Bayesian filtering. The basic idea is
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to construct a posterior density based on a set of samples. The posterior p(xt|zt)
is represented by a set of particles with weights{xi

t, w
i
t}Ni=1. In this way, the pos-

terior density at time t can be approximated by: p(xt|zt) ≈
∑N

i=1 w
i
tδ(xt − xi

t).
To track a number of objects, a joint particle filter could be used. However, the
number of particles grows exponentially with the number of objects, which in
practice makes the computation intractable. One sub-optional solution is to use
the Hybrid Joint-Separable filter [9], which has a quadratic complexity and is
also used in this paper.

3.2 Likelihood Model and Motion Model

In our tracking framework, the state of the object incorporates the 2D position of
the object on the ground plane, the heights and widths of the object, and a color
model for the dominant parts (head, torso and legs). For a given time t, the state
of the scene can be represented by a vector xt = {kt, x1

t , x
2
t , ..., x

kt
t }, where kt is

the number of targets at time t. The likelihood model specifies how to measure
the match between the projected synthetic image for a given hypothetical state
and the input image. To build a robust likelihood model, we take into account
both the match of edges and color information. The motion model specifies how
the current state is expected to propagate to the next time instance. Tracking
multiple targets consistently in the scene entails us considering not only how the
state of a target evolves from the current state to the next state (p(xi

t|xi
t−1)),

how the targets interacts with each other (p(xi1
t , xi2

t )), but also how many new
targets are likely to appear in or disappear from the scene (p(kt|kt−1)), and what
are the likely configuration of a newly entered target j (p(xj

t )). Therefore, the
final joint scene state can be represented by a sparse dynamic graphical model
and takes the form of [2]:

p(kt|kt − 1) ·
∏

ξt×ξt

p(xi1
t , xi2

t ) ·
∏
ξt−1

p(xi
t|xi

t−1) ·
∏

ξt|ξt−1

p(xj
t ) (3)

where ξt is the target index set at time t. Among the four items in (3), the
dynamic model p(xi

t|xi
t−1) and the interaction model p(xi1

t , xi2
t ) can be designed

a prior (e.g.,by a Gaussian model and proximity exclusion prior). However, the
modeling of p(kt|kt − 1) and p(xj

t ) is rather difficult in an open scene where
people can come and go randomly. In this paper, we attempt to address this
problem as our main contribution. In general, we use a locus-based probabilistic
occupancy map to detect newly entered targets, which will be detailed in the
following section.

4 Detection Using Locus-based Occupancy Map

This section introduces how we generate the probabilistic occupancy map given
motion images from all calibrated views. The general idea is, for a given motion
pixel in each view, we compute all the possible states (or the locus) of the object
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in the scene that activate the motion pixel using geometric constraints. Then
we accumulate the locus on the ground plane and compute the probabilistic
occupancy map using kernel density estimation.

4.1 State Space Framework for Object Detection and Tracking with
Parametric Shape Model

To reduce the computational burden while keeping a reasonable approximation
of the target, we adopt a primitive shape model (Fig.1(a)) which represents
the upper body part of a person and is comprised of connected cones as used
in [2]. The shape model has two degrees of freedom: the height and the width.
Suppose the surface of a rigid object (such as our model) is given in a parametric
form through a 2-dimensional manifold S(u, v|x) embedded in the 3D Euclidean
space (u, v ∈ [0 : 1] are curvilinear coordinates), and x is the object state, for a
vertically symmetric object with profile ρ(z) and height h moving on the ground,
we have

S(u, v|x0, y0) =

⎧⎪⎨
⎪⎩
ρ(h · u) · cos(2π · v) + x0

ρ(h · u) · sin(2π · v) + y0

h · u
(4)

in which (x0, y0) is the 2D position of the object on the floor. In the case of a
model built with connected cones like the one we are using, the profile ρ(z) is
piece-linear with connected segments. In order to compute the locus of the object
for a given motion pixel, here we exploit some geometric constraints. Suppose
the ray casting from the optical center to the image plane is parameterized by
R(t|P, V ) = P + t · V where P is a point on the line (e.g. the optical center of a
camera) and V is a direction vector1, we have the following geometric constraints:

Touch Constraints. The touch constraints are imposed by requiring orthog-
onality between V and the surface normal S⊥(u, v|x) = (∇u ×∇v)S(u, v|x) at
ray-surface intersections. Therefore, we seek the set of target states satisfying
〈S⊥(u, v|x), V 〉 = 0 and S(u, v|x) = P + t · V , or equivalently

locus(P, V ) =
{
x | 〈S(u, v|x) − P, S⊥(u, v|x)〉 = 〈S⊥(u, v|x), V 〉 =

〈S(u, v|x) − P, S⊥(u, v|x)× V 〉 = 0
}

(5)

ideally with an appropriate parametrization. Equation (5) gives a formularized
expression of locus. For the surface model defined in (4), we have

S⊥(u, v) ∝

⎧⎪⎨
⎪⎩
cos(2π · v)
sin(2π · v)
−ρ′(h · u)

, S⊥(u, v)×V ∝

⎧⎪⎨
⎪⎩
Vz · sin(2π · v) + Vy · ρ′(h · u)
−Vz · cos(2π · v)− Vx · ρ′(h · u)
−Vx · sin(2π · v) + Vy · cos(2π · v)

1 Notation: (P ) capital letters denote 3D points, (Px) subscript denotes the x compo-
nent of P , (u) lower case letters are scalars, (x) bold letters are points in the target
state space, (m) roman letters denote pixels, 〈:, :〉 is the internal and × the external
product, ∇ is the differential operator.
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Fig. 1. (a)The object model we use in the paper is composed of a serial of connected
cones. An arbitrary point P on the surface has the 3D coordinates (ρ(h · u) · cos(2π ·
v), ρ(h · u) · sin(2π · v), h · u) (b)The locus of a ball is an ellipse. XOY is the ground
plane. PQ is the ray that goes from the optical center P and passes a motion pixel
on the image plane. A and B are the farthest and nearest positions the ball can reach
when it moves while keeping its surface tangent to the ray. The red dash curve is the
trajectory (or locus) of the ball, which turns out to be an ellipse.

By exploiting the touch constraints in (5), we can derive the solution for locus
, which results in a 1-dimensional manifold on the ground plane, as will be
presented in the next section.

4.2 Parametric Form of Locus for a Vertically Symmetric Object
on the Ground

Combining the surface equation in (4) and the constraints in (5),we get a linear-
quadratic system of equations:{

〈[Vx, Vy], [x, y]〉 = ρρ′Vz

〈[x, y], [x, y]〉 = ρ2
(6)

in which (x, y) are the x and y coordinates of an arbitrary point on the line,
satisfying x = Px + t · Vx − x0 and y = Py + t · Vy − y0. Under the assumption
V 2
x +V 2

y = ρ2 (this can be imposed through proper rescaling of V ), the solution
of locus is {

x0(t) = Px − 〈[Vx, Vy], U(t)〉
y0(t) = Py − 〈[Vy,−Vx], U(t)〉 (7)

where U(t) = [φ(t)−t,±√
1− φ2(t)], φ(t) = ρ′Vz

ρ with ρ, ρ′ evaluated at Pz+t·Vz.
The following shows an example of the locus of a motion pixel with the profile
of the object being a ball.
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Algorithm 1. Locus-based Probabilistic Occupancy Map

locus set {xi, wi}; wi is the weight of the state xi

for each camera c do
for each motion pixel m do

for height h = h min;h < h max;h+ = step do
{
sample the height h and compute the locus {xm

c };
add {xm

c , wc} to {xi, wi}; //wc is the weight of camera c
}

end for
end for

end for
normalize weights {wi}: ∑i wi = 1;
compute POM using Kernel for density estimation: Pσ(x) = wi ·∑i Kσ(x− xi);

Example: Sphere Moving on the Ground. A most intuitionistic example
is the locus of a sphere (Fig.1(b)). Suppose the optical center of the camera is
at P = (0, 0, H), the direction of the ray casting from P to the motion pixel
m is V = (1, 0, tanα) and the sphere is expressed by ρ(z) =

√
2Rz − z2 (thus

ρ′(z) = (R − z)/ρ(z)) with R being the radius , as is shown in Fig.1, the locus
is an ellipse with equation: (x0 sinα+ (H −R) cosα)2 + y20 = R2

For our shape model, the locus for a given motion pixel is a closed line of
segments which form a stretched contour of the model. After computing the locus
for all the motion pixels in all views (i.e., all the possible states of the object
that can engender the motions in the views), we can generate the Probabilistic
Occupancy Map (POM) for the object. A piece of pseudo code is shown in
Algorithm.1.

4.3 Computing Probabilistic Occupancy Map from Apparent
Motion

The POM is computed by accumulating the locus of extracted motion pixels
m ∈ M

POM(x|M) =

∫
M

loc(x|m, ) dm (8)

where loc(x|m) =
∫
K(x − x0(t|P, V )) dt is a kernelized probability density

derived from Eq.(5) via convolution, with P, V obtained via back-projection of
m. Eq.(8) assumes the height of the object is known. To account for different
heights of the objects, we can compute the average POM by integrating over all
possible heights (h ∈ H) of a human:

POM(x|M) =

∫
H

∫
M

loc(x|m, ) dm dh (9)
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(a) Cam 1 (b) Cam 2

(c) Cam 3 (d) POM

Fig. 2. Motion edges from three views and the resulting POM

Fig. 3. A comparison of detection inaccuracy histogram between two sequences

4.4 Using Locus-based Probabilistic Occupancy Maps for Tracking

We have integrated the locus-based POM detection algorithm into our tracking
system[9]. The tracker works as follows. First, motion edges are extracted from
all the views using the Susan edge detector. With the motion edges, we generate
the POM for the targets using the aforementioned algorithm. Then we search
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Fig. 4. Screenshots of the four views of our tracker. The dots around the shape models
are particles (hypotheses).

the modes of the POM, new targets will be initialized where modes above a
certain threshold.

5 Experiments and Results

We conducted experiments with two video sequences taken in our lab, which
has a size of about 5×6 meters with four cameras mounted in the four cor-
ners of the room. The sequences were captured at 15 Hz with a resolution of
1024×768 pixels. The first sequence is about 3.5 minutes long with one person
moving around the room. Fig.2 shows the motion edges detected in three of the
four cameras and the resulting POM. As can be seen from Fig.2(d), the POM
peaks at a point where the locus generated by the three views converges. We
measured the detection inaccuracy histogram (Fig.3) by computing the distance
between the detected position and the ground truth, which was done by manual
labeling. We got a mean error of 0.072 meters. The other sequence is about 7
minutes with 3 persons moving around in the room, with constant occlusions.
The resulting mean error is 0.076 meters, which does not increase much given the
challenging scenes in the sequence. The results demonstrate that the detection
algorithm is robust to clutters and occlusions. Fig.4 shows a screenshot of our
tracker. The dataset used in the experiments and a short demo can be found at:
http://tev.fbk.eu/DATABASES/MVPDT.html.
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6 Conclusions

In this paper, we presented a novel people detection method using Locus-based
Probabilistic Occupancy Map. We embedded the algorithm into a Bayesian-
based tracker and did experiments with challenging video sequences. Experimen-
tal results demonstrate that the proposed approach can detect people robustly
with high precision even in cluttered scenes with multiple people. If properly
integrated with color based particle filtering, it leads to a robust solution for
tracking multiple people in unconstrained scenarios. In future work we will ex-
plore further possibilities offered by the introduced method. In particular, we
are interested in exploiting the typical shape of the locus-based POM for cam-
era self-calibration using humans as a calibration pattern.
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