Real-Time Estimation of Planar Surfaces
in Arbitrary Environments Using Microsoft
Kinect Sensor

Francesco Castaldo!, Vincenzo Lippiello?,
Francesco A.N. Palmieri, and Bruno Siciliano

! Seconda Universitd degli Studi di Napoli, Dipartimento di Ingegneria Industriale e
dell’'Informazione, Via Roma 29, 81031 Aversa (CE), Italy
2 Universit4 degli Studi di Napoli Federico II, Dipartimento di Ingegneria Elettrica e
Tecnologie dell’Informazione, via Claudio 21, 80125 Napoli, Italy

Abstract. We propose an algorithm, suitable for real-time robot ap-
plications, for modeling and reconstruction of complex scenes. The en-
vironment is seen as a collection of planes and the algorithm extracts
in real time their parameters from the 3D point cloud provided by the
Kinect sensor. The execution speed of the procedure depends on the de-
sired reconstruction quality and on the complexity of the surroundings.
Implementation issues are discussed and experiments on a real scene are
included.

Keywords: Microsoft Kinect, Real-time 3D Reconstruction, Planes
extraction, Point Cloud.

1 Introduction

Real time reconstruction of the geometry of a unknown environment is a topic
that is recently subject of very active research for the design of truly autonomous
robots. The availability of low cost sensors (such as cameras), that are still able to
guarantee an acceptable level of precision, is giving rise to many projects that aim
at designing autonomous mobile robots on wheels or helices (as quadricopters).

In robotics, SLAM (Simultaneous Localization And Mapping) [1] [2] is a large
area of research in which an ever growing number of algorithms are derived to
fuse data from different sensor modalities with the objective of constructing an
internal map of the environment and for self-localization. To control navigation
and task execution is much simpler when the map of the surroundings is known
to the robot. Unfortunately, unless we deal with very specialized applications,
the general problem of operating in an unknown and unstructured environment
remains the challenge of much of the current research effort [2].

The difficulties are also related to the computational complexity of any
algorithm devised for this purpose. In a really autonomous system all the com-
putations required to localize the robot and to reconstruct the map of the envi-
ronment, must be done on board. Often the robot may have a limited processing

A. Petrosino (Ed.): ICTAP 2013, Part II, LNCS 8157, pp. 552-p61] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Real-Time Estimation of Planar Surfaces 553

power and to operate in real-time, any algorithm implemented on board must
have a limited computational complexity.

In this work we have focused on the reconstruction of what could be con-
sidered to be the "most important” objects present in the environment during
navigation. Our reference robot is a flying quadricopter for which necessary rele-
vant information are: floor and roof recognition; height from the ground; position
of significant obstacles, etc. All this data is crucial for navigation and collision
avoidance. Furthermore the algorithms have to run on low-class processors. Our
description of the environment is based on planes [3] that are detected and
parametrized in real time. The focus of our work is on algorithms that can pro-
vide a reasonable level of accuracy within stringent computational constraints.

The sensor we have used in this work is the Microsoft Kinect [9] [10] camera,
a peripheral born as an accessory of the Microsoft Xbox360 console, but in-
creasingly used in robotics. The Kinect represents a good compromise between
precision, easiness of use and cost.

In Section 2 we provide a rapid survey on the state of the art regarding our
problem, introducing the elementary steps of our algorithm. In Section 3 we
present in detail the algorithm itself. Section 4 contains experiments and results
from data acquired from real and complex scenes framed by the sensor. The last
section is about general considerations and indications for future developments.

2 Planes Reconstruction

3D scanning systems usually returns to a point cloud, i.e. a set of discrete points
in a 3D coordinate system (generally Cartesian) that is an approximate copy
of real objects framed by the sensor. We are not interested in precise 3-D re-
construction [4] [5] (as the ones needed in virtual reality or graphics contexts),
because operation control algorithms are based on a parametrized representation
of the environment. The objective is clearly to provide the flight control module
with sufficient information to elaborate its course and to avoid possibly danger-
ous objects. The challenge is then to extract synthetic scene information in a
very short time. Even though the environment typically navigated by a robot
(an example in Figure[I]) is formed by objects of different sizes and shapes, the
most massive and relevant ones are floor, roof, tables, closets, i.e. structures with
regular surfaces. The shape of these objects may grossly be associated to that of
a parallelepiped, a geometric structure formed by planes. Therefore the problem
can be reasonably reduced to the reconstruction of planar surfaces.

Many algorithms are present in the literature that aim to localize and extract
planar surfaces from points belonging to the same planes. The problem can be
seen as an instance of the well-known problem of fitting data to one or more
models [6], [7], [8]. These approaches are very precise, but present very poor
performances, making them unusable for our objective of quasi real-time execu-
tion. Therefore we set up a procedure that, using standard, well-known and fast
algorithms. manage to extract what we need to know from the point cloud in
very short time.

554 F. Castaldo et al.

Fig.1. A typical environment navigable by the robot. The most relevant objects can
be described by planes.

3 The Algorithm

The steps of our algorithm is conceptually divided in six steps:

Acquisition of Point Cloud from Kinect Sensor

Edge Extraction

— Noise Reduction using Connected-Component Labeling
Raw clustering of points

Extraction of planar surfaces

Refining of identified planes

Each of these operations will be addressed in detail in the following paragraphs.

3.1 Acquisition of Point Cloud from Kinect Sensor

Our front-end sensory system is the Kinect for Xbox360, an inexpensive motion
sensing input device based on range camera technology developed by Israeli
company PrimeSense. The Kinect provides on top of RGB real-time images, a
real-time disparity map of the environment. With a simple transformation the
data can be converted in real-time in depth and 3D coordinates giving a truly
precious real-time 3D-film of the environment.

Kinect’s camera has a field of view of 58° horizontally, 45° vertically, and 70°
diagonally. The spatial x/y and depth z resolution are respectively 3mm and lcm
(at the distance of 2 meters from the sensor). Kinect operation range is between

Real-Time Estimation of Planar Surfaces 555

0.8 and 3.5 meters, and it is due in part to the dynamic range of the infrared (IR)
sensor. The idea behind the scene reconstruction algorithm performed by Kinect
[9) [I0] consists of utilizing projection of a laser speckle pattern on the surface
of an object. The image data grabbed from the IR image unit (embedded in the
system and not accessible) is indicative of the objects’ relative positions with
respect to a reference image. Kinect’s embedded algorithm provides only an 11-
bit normalized disparity image D collinear to the RGB data from its standard
vision camera.

More specifically at each time frame n, we have four N x M matrices R(n),
G(n), B(n) and D(n) representing Red, Green, Blue and Disparity respectively.
Assuming a Cartesian reference system as the one shown in Figure 2l disparity
information can be translated into the 3D coordinate matrices X (n), Y(n) and
Z(n) (depth) by the transformations

B 100
~ —0.00307D;;(n) + 3.33°
Yij(n) = M640/2 — j)(T3;(n) + d),

Zij(n) = T;;(n),
withi=1,...N,7=1,..... M, d = —10 and A = 0021. Coefficient values have
been computed experimentally, as neither PrimeSense nor Microsoft have ever
provided specific details about calibration. The set of 3D coordinates at time

n, X(n), Y(n) and Z(n) is estimates of objects’ external surface points and is
named 3D Point Cloud P(n) = (X(n),Y(n), Z(n)).

Y 7
X

Fig. 2. References axes for the point cloud. Z-axis is in the direction of the Kinect’s
“eye,” Y-axis on the left and X-axis downward in order to form a clockwise tern.

Tij(n)

The disparity-to-depth transformation is based on well-known triangulation
concepts [L1], i.e. an approximate inverse proportionality between distance and
disparity.

3.2 Edge Extraction

Given the point cloud P(n), our purpose is to obtain an estimate of the objects’
edges. To this end we perform horizontal and vertical edge-detection by convolv-
ing two 3 x 3 Sobel [12] [I3] operators Sy and S, with X (n), Y (n) and Z(n),
obtaining the six images

556 F. Castaldo et al.

(Xn(n), Yn(n), Zn(n)) = (X * Sp)(n), (Y * Sp)(n), (Z * Sp)(n)),

(Xo(n), Yo (n), Zo(n)) = (X % Sp)(n), (Y * Sp)(n), (Z x Sy)(n)),

where “x” denotes 2D convolution. The binary edge-map image

E(n) = [E;;(n)]i—y

with E;;(n) =0 (no edge) and E;;(n) =1 (edge), is obtained as
Eij(n) = u(|Xn,; (n)[+Yay; ()[4 Zn;; (0) |+ Xo,; (0) |+ [Yo,; (n)|+] Zo,; (n)| = Te),

where u(£) is the step function and T, is an experimentally-determined threshold.
If T, is too low, the contour-map image becomes too noisy, while high values of
T, result in loss of narrow contours. Note that even though the operations on the
images are 2D, and the result is a single matrix, the edges represent information
from the 3D world.

3.3 Noise Reduction Using Connected-Component Labeling

In order to avoid loss of important scene details (such as boundary lines between
different planes), we keep threshold T, of Subsection very high, and get,
as expected, a very noisy image. To reduce the noise we use the well-known
Connected-Component Labeling [14] algorithm, that scans a binary image and
constructs a non-binary matrix

L(n) = [Liy(n)20 Ny

with different values L;j(n) = [, = 1,..., Ny for each identified connected
region. We use this approach into the following scheme:

1. Apply connected-component labeling on the binary image E(n) to obtain
L(n).

2. Construct from L(n) an histogram H(l,n) in which for each label I the
number of points of L(n) with that label value are counted.

3. For each | = 1,..., N , if uw(H(l,n) — Ty.) < 0, (where u(§) is the step
function and T, is another experimentally-determined threshold), for each
i and j by which L;j(n) =1, set E;;(n) = 0.

In other words we check for each label if the number of points marked with that
label is above or below a fixed threshold. Noisy points are generally scattered all
along the image, therefore they will belong to small-numbered connected region
and consequently ”zeroed” at the end of this step. T,. represents the trade-off
between precision (high value of T,.) and level of detail (low value of T.).

Real-Time Estimation of Planar Surfaces 557

3.4 Raw Clustering of Points

Here we accomplish planar surfaces identification. We cannot simply discriminate
between closed zones in the image because, despite our efforts, sometimes we still
get fragmented and open contours. Our solution implies the use of a d x d square
Q4(n) that is moved onto the image. The algorithm checks if the image under
the square is empty and, if so, fills it with a label I;. Adjacent and empty zones
are filled with the same label. Iterating this procedure a new non-binary matrix
E(n) that represents the surfaces identified in the scene is obtained. This solution
overcomes the problem of fragmented image, because a square of a certain size
will not be able to ”slip” through the holes.

The most important parameter in this step is the dimension d of Qq(n). A
small square leads to great precision but also great computational load and
implies the possibility that the square could enter through the holes.

To have the actual clustering, we organize the points P;;(n) from the point
cloud in a new structure C(n) = {C!(n)}!=1Nt with C'(n) that contains

Ci; = ((Xi5(n), Yij(n), Zij(n)) € plane;),

with [index of the plane and Nj, number of detected planes. We associate at
each label [the correspondent points from the point cloud, using matrix E(n)
obtained above.

3.5 Extraction of Planar Surfaces

The purpose of this step is to estimate the interpolating planes from 3D points
belonging to C(n). For each plane | we want to extract the correspondent plane
parameters [3]: n (normal vector), n (unit normal vector), d (perpendicular
distance from the plane to the origin), and the barycenter p,. We can arrange
our equation set in matrix form

n’P 4+ q=0, (1)

where n is the (not-unitary) surface normal vector, P is a matrix containing the
set of points belonging to a plane ! (it is a 3 x n, matrix, with n, number of
points) and q is the (unitary) vector of non-normalized distance. Transposing
and arranging (II), we obtain

PTn _ 7qT,

that is in the form Ax = b. The equation system can be resolved finding the
least-squares solution [I5] for the over-determined system. Such solution can be
found using the singular value decomposition, as shown in [II]. In this way we
compute n. At the same time, we compute pp = nlp Z;Zl pi, with p; points from
the P matrix. From n we calculate the unit vector n = HEH’ and then calculate

d = —1n"py. This procedure is repeated for each identified plane [, in order to
extract the parameters of all the planar surfaces identified in the scene.

558 F. Castaldo et al.

3.6 Refining of Identified Planes

The clustering quality obtained at this stage can be increased taking care of
the problem of wrongly-merged planes. This situation is likely to happen with
distant objects in the scene: the sensor loses the contour between planes, that
are associated within the same label by the moving square of step B4l A pos-
sible solution is to put on a standard RANSAC (RANdom SAmple Consensus)
[7] procedure. By firstly extracting planes parameters from a small number of
random points (chosen with a proximity criterion), and by checking for each
plane if the number of outliers (points that do not belong to that plane) exceeds
a fixed threshold Transac, we can iteratively begin to divide the plane itself
into usually two or three planes, associating in the process each point to its
rightful owner. A point p; belongs to a plane if d. = np; + d < T, with T,
an adjustable threshold. A point is discarded if it does not belong to any of the
planes identified at this stage.

The execution time of this procedure is dependent on the scene complexity.
A complicated scene could require a discrete number of iterations before an
effective splitting of the planes, but normally the algorithm adjusts the scene in
only few steps.

At this stage the planes are defined, and a last little increase of quality can
be achieved discarding for each plane false points (following a criteria, i.e. points
whose distance is above a 3¢ threshold) and computing one last time the planes
parameters.

4 Experimental Results

The algorithm has been tested with data coming from complex scenes framed
by the Kinect. We will extract planes from the scene shown in Figure Bl on the
left. The scene under consideration is representative of a common environment
navigable by a robot. There are obstacles, walls and the floor is framed.

The chosen thresholds are T, = 28, T.. = 50, d = 15, T;, = 5, Transac = 20.
Figure [l shows the operation performed in Step 2 (left), 3(center) and 4(right),
where from the point cloud we identify planar surfaces of the scene. Figure [l is
about the raw clustering of points into planar surfaces, and then the refining of
the reconstruction via RANSAC.

The algorithm returns the parameters of planes composing the scene. This
information can be effectively available to the navigation algorithm. For instance,
the height from the ground, important for a flying robot that varies its own quota,
can be estimated by checking each of the normal vectors of the planes. The floor
is the plane with a normal vector pointing in the negative X-direction. If more
than one plane meets this requirement (i.e. tables), we can pick the one with the
lowest barycenter value. Other useful information about the scene (identification
of roofs, distance from walls, etc.) can be easily obtained from our data, and can
be used by the flight control module of a robot to securely navigate an arbitrary
and unknown scenario.

Real-Time Estimation of Planar Surfaces 559

Fig. 3. Left image: the scene under consideration. Right plot: the point cloud extracted
by the Kinect sensor. Due to light conditions and scene complexity, the sensor returns
also few false points (the ones surrounded by the ellipse, that have a negative Z value).
These points will be discarded during the execution.

Fig.4. An edge image (on the left) and a noise-free edge image (in the center). The
threshold’s choice is crucial to avoid loss of important contours. The image on the right
shows the identified planes.

Fig. 5. Initial 3D reconstruction of scene planar surfaces (on the left). Wrongly-merged
planes are split and identified with different labels as result of RANSAC (in the middle).
The last operation is the discarding of points whose distance is above 30 (on the right).

560 F. Castaldo et al.

A C++ implementation of this algorithm has showed fast execution times
(~ 100 ms on low-class dual-core processors), that makes this procedure usable
in real-time scenarios. It is important to notice that the procedure is also highly-
parallelizable, because it performs matrix operations in which each element is
computed independently from the others. The approach presented here is frame-
by-frame i.e. each scene needs the output of the previous one. Future work will be
devoted to prediction-based strategies in which previously available information
can be just updated.

5 Conclusions

This paper has proposed a new fast clustering algorithm for planes identification.
Many different approaches in literature have tried to achieve the same objective,
but focusing on the entire set of 3D points. Such ”brute-force” methods can
lead to good results, but with heavy computational load. Our algorithm instead
tries to reduce the execution time by performing first simple clustering, and then
increasing the reconstruction quality.

The balance between execution time and quality is crucial to meet the require-
ments of real-time surroundings estimation. Each of the algorithm’s steps uses
standard computer vision algorithms, but each choice has carefully made keep-
ing in mind the trade-off between performances and computation load. Other
choices are obviously possible and will be further investigated in future papers.
For instance, the RANSAC phase (one of the algorithm’s bottlenecks) could be
modified, or we could use different approaches.

Even the planar hypothesis could be modified. We could consider other types
of structures (cylinders for example) and modify the algorithm to identify and
reconstruct different geometric forms.

Another important element to focus on is thresholds’ choice. Arbitrary envi-
ronments differ in number and type of objects, light conditions, etc. Therefore
thresholds’ values have to be tuned accordingly to the scene. A possible future
development involves the creation of an algorithm that adaptively chooses the
thresholds.

References

1. Leonard, J.J.: Durrant-Whyte: Simultaneous Map Building and Localization for an
Autonomous Mobile Robot. In: IEEE/RSJ International Workshop on Intelligent
Robots and Systems, IROS 1991, vol. 3, pp. 1442-1447 (1991)

2. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotic (Intelligent Robotics and
Autonomous Agents). The MIT Press (2005)

3. Gellert, W., Gottwald, S., Hellwich, M., Kastner, H., Kunstner, H.: VNR Concise
Encyclopedia of Mathematics, 2nd edn. Springer (1990)

4. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface Re-
construction from Unorganized Points. In: ACM SIGGRAPH 1992 Proceedings,
pp. 71-78 (1992)

10.
11.

12.

13.

14.
15.

Real-Time Estimation of Planar Surfaces 561

Cazals, F., Giesen, J.: Delaunay triangulation based surface reconstruction: Ideas
and algorithms. Rapport de recherche. INRIA (2004)

Vidal, R.: A Tutorial on Subspace Clustering. IEEE Signal Processing Magazine 28,
52-68 (2011)

Martin, A., Fischler, B.R.C.: Random Sample Consensus: A Paradigm for Model
Fitting with Application to Image Analysis and Automated Cartography. Comm.
of the ACM 24(6), 381-395 (1981)

Zuliani, M., Kenney, C.S., Manjunath, B.S.: The multiRANSAC algorithm and its
application to detect planar homographies. In: Proceedings of the IEEE Interna-
tional Conference on Image Processing, Genova, IT (2005)

Method and System for Object Reconstruction (2007)

Depth Mapping using Projected Patterns (2008)

Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn.
Cambridge (2003)

Main, R.: Study and Comparison of Various Image Edge Detection Techniques. In:
Image Processing 2009, vol. 147002(3), pp. 1-12. Citeseer (2009)

Shafiri, M., Fathy, M., Mahmoud, M.T.: A classified and comparative study of edge
detection algorithms. In: Proceedings of the International Conference on Informa-
tion Technology: Coding and Computing, pp. 117-120 (2002)

Klaus, B., Horn, P.: Robot Vision. McGraw-Hill (1986)

Wall, M.E., Rechtsteiner, A., Rocha, L.M.: Singular value decomposition and prin-
cipal component analysis. In: Berrar, D.P., Dubitzky, W., Granzow, M. (eds.) A
Practical Approach to Microarray Data Analysis, pp. 91-109. Kluwer, Norwell
(2004)

	Real-Time Estimation of Planar Surfaces in Arbitrary Environments Using Microsoft
Kinect Sensor
	1 Introduction
	2 Planes Reconstruction
	3 The Algorithm
	3.1 Acquisition of Point Cloud from Kinect Sensor
	3.2 Edge Extraction
	3.3 Noise Reduction Using Connected-Component Labeling
	3.4 Raw Clustering of Points
	3.5 Extraction of Planar Surfaces
	3.6 Refining of Identified Planes

	4 Experimental Results
	5 Conclusions
	References

