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Abstract. The clinically established method to assess the displacement
of a distal radius fracture is to manually measure two reference angles,
the dorsal angle and the radial angle, in consecutive 2D X-ray images
of the wrist. This approach has the disadvantage of being sensitive to
operator errors since the measurements are performed on 2D projections
of a 3D structure. In this paper, we present a semi-automatic system
for measuring relative changes in the dorsal angle in 3D computed to-
mography (CT) images of fractured wrists. We evaluate the proposed 3D
measurement method on 28 post-operative CT images of fractured wrists
and compare it with the radiographic 2D measurement method used in
clinical practice. The results show that our proposed 3D measurement
method has a high intra- and inter-operator precision and is more precise
and robust than the conventional 2D measurement method.

Keywords: Wrist fractures, CT, angle measurements, bone segmenta-
tion, interactive mesh segmentation, surface registration.

1 Introduction

Distal radius fractures occur when the radius bone in the wrist breaks between
the shaft and the joint surface. The clinically established method to assess the
displacement of such fractures is to manually measure two reference angles, the
dorsal angle and the radial angle, in 2D X-ray images of the wrist [4], as illus-
trated in Fig. [l Although this approach usually works well enough for diagnosis
and treatment-guidance in clinical practice, it has the disadvantage of being
sensitive to operator errors since the angle measurements are performed on 2D
projections of 3D structures. An intra- and inter-operator variability of 3—4° has
been reported [4l5], which is too high for, e.g., orthopedic research studies where
more precise angle measurements are required to compare different methods of
treatment. The lack of depth in X-ray images makes it difficult to assess the 3D
positions of the bone structures. Moreover, consecutive X-ray images are seldom
acquired at exactly the same angle, and the contours of the bones are often
smooth, which makes it difficult to define reliable landmarks for the measure-
ments. In this paper, we aim to overcome these issues and precision limitations
by measuring the dorsal angle in 3D computed tomography (CT) images.
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Fig. 1. (a) Frontal X-ray image of a distal radius fracture. The arrow marks the fracture
location. ¢ denotes the radial angle. (b) The dorsal angle, 6, measured in 2D on a lateral
X-ray image of the same wrist. 6 is defined as the angle between the joint line JL and a
line that is orthogonal to the long axis RA of the radius. (c¢) A 3D rendering of the radius
bone and the reference axes we need to identify to measure the dorsal angle in 3D.

To measure the dorsal angle in 3D, we need to identify two components: (1)
the long axis RA of the radius shaft; and (2) a local reference coordinate system
(X,, Y., Z,) defining the orientation of the joint surface. These components are
illustrated in Fig. [Id The first component, the long axis, can be identified us-
ing surface normal information and random sampling consensus (RANSAC), as
proposed in [9]. In this paper, we focus on the second component, presenting a
precise semi-automatic method for identifying and tracking the orientation of the
joint surface over time. By combining this method with the previously presented
axis estimation method [9], we obtain a system that can be used to measure
relative changes in the dorsal angle in 3D CT images of fractured wrists.

2 Image Data and Preprocessing

The image data used here consists of 28 post-operative CT images of fractured
wrists in six patients. Each patient was scanned at 4—6 different occasions, 0-24
weeks after surgery. The CT images were acquired with a pixel spacing of 0.16—
0.39 mm and a slice thickness of 0.4-0.8 mm. The original image dimensions
were 512 x 512 x N, voxels, where the number of slices, N,, ranged from 72—
346. We converted each of these CT images from a stack of DICOM images
with graylevel values between -1024 and 3071 to an 8-bit VIK volume image
with normalized graylevel values between 0 and 255. Thereafter, we cropped the
converted CT images closely around the radius to reduce the amount of data and
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speed up processing. We subsequently reflected left wrists into right wrists to
simplify the construction of reference coordinate systems (our method assumes
a right-handed coordinate system). Finally, we resampled the volume data from
anisotropic to isotropic voxel size using cubic interpolation.

3 Identifying and Tracking the Joint Surface Orientation

This section describes our proposed semi-automatic method for identifying and
tracking the orientation of the joint surface of a fractured radius over time. The
method consists of three main steps: segmentation, template generation, and
surface registration.

3.1 Segmentation

The first task is to create an accurate surface-mesh representation of the radius.
The radius shaft is mainly composed of dense (cortical) bone, which appears
significantly brighter than other tissue types in CT and is straight-forward to
segment using, for instance, global thresholding. The joint surface, on the other
hand, needs to be more flexible and is therefore composed of spongy (trabecular)
bone, of which intensity distribution partly overlaps that of skin and soft-tissue.
Because of this intensity overlap, simple intensity-based segmentation methods
such as global thresholding cannot completely separate the radius from the rest
of the image. The segmentation task is further complicated by partial volume
effects (PVE) and the, in comparison with the image resolution, very narrow
spacing between the articulated surfaces of the wrist bones. The PVE leads to
blurring of the joint boundaries, making it difficult to separate the wrist bones
from each other because the articulated surfaces appear to be in direct contact.

A common approach to deal with intensity inhomogeneities and image im-
precisions is to use segmentation methods that not only consider the intensity
of the voxels but also their spatial relationships. One such method is hysteresis
thresholding [3], where the idea is to (1) define an upper threshold ¢4, and a
lower threshold ¢;,,, for the object of interest, (2) threshold the image at tpigsn
to generate a set of bright seed voxels that are assumed to belong completely to
the object of interest, (3) threshold the image at t;,, to extract darker candi-
date object voxels, and (4) apply connectivity analysis to identify and remove
all candidate object voxels that are not connected to at least one seed voxel.
This method lends itself well for segmenting bone in CT since the approximate
Hounsfield unit (HU) ranges for cortical and trabecular bone are known.

We segmented the wrist bones using hysteresis thresholding with fixed thresh-
olds tjoy = 76 and tp;gn = 89, which are empirically selected and correspond
to the lower intensity range for trabecular and cortical bone, respectively. We
then used the marching cubes algorithm [§] to generate a triangular mesh repre-
sentation of the segmented bones, which, to reduce staircase artifacts, had been
postprocessed with a Gaussian smoothing kernel of size 0 = 0.7 mm. The re-
sulting mesh was simplified from on average 1,000K triangles to 340K triangles
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Fig. 2. Segmentation of the wrist bones: (a) preprocessed CT image; (b) segmenta-
tion result obtained with hysteresis thresholding; (c) surface mesh extracted from the
segmented image with the marching cubes algorithm

using the vtkDecimatePro filter from the Visualization Toolkit (VTK) libraryﬁ
and moderately smoothed with a Laplacian filter (20 iterations, relaxation factor
0.1) to improve the mesh quality. Thereafter, we used interactive mesh-cutting
by random walks [7] to separate the radius from the carpal bones and the ulna.
Figures 2] and [ illustrate the segmentation process. The sketch-based seeding
interface allows the user to draw seeds directly on the surface mesh and was
implemented using 3D ray-picking accelerated by an octree.

3.2 Template Generation

Having segmented the radius, our next task is to construct a template of the
joint surface. We also need to derive a local reference coordinate system for this
template that can be used to describe the orientation of the joint surface.
Building a statistical shape model of the joint surface is difficult due to the
high shape-variability of the radius. Instead, we use the joint surface in the first
postoperative CT image as template and construct a local reference coordinate
system (similar to that in [6]) from user-defined landmarks. Figure @l illustrates
the idea. The user has to perform two interactive tasks: (1) select three landmarks
corresponding to the small peaks located at the corners of the joint surface;
and (2) position a 3D cutting plane so that it separates the joint surface from
the radius shaft and the fracture. To keep the interaction task as simple as
possible, the cutting plane is initially aligned to the landmarks and cannot be
scaled or rotated but only translated along its normal direction. We define an
initial reference coordinate system (X/,Y;, Z.) as follows: Y,/ = I — 2%t 7/ =
(Iy — l2) x (I3 — l2); and X| = Z, x Y,. The actual reference coordinate system

! URL: http://www.vtk.org/
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(c)

Fig. 3. Interactive separation of the radius from the carpal bones and the ulna: (a)
original mesh; (b) user-defined seeds that have been drawn directly on the bone surface
using our sketch-based segmentation interface; (¢) mesh segmentation obtained with
random walks

(X,,Y,.,Z,) is then obtained by applying a transform R that performs a 20-
degree counterclockwise rotation of (X/,Y,, Z!) about X/, so that X, = X/,
Y, = RY/, and Z, = RZ]. The rotation corresponds roughly to the normal
radial angle [5] in intact wrists and is required to align the axes correctly. X,
corresponds to the reference line J L shown in Fig. The landmarks positioning
does not need to be very precise, but must be performed as indicated in Fig. [l

3.3 Surface Registration

The third and final task is to register the template mesh extracted from the first
postoperative CT image against the radius meshes extracted from the remaining
n — 1 follow-up images in the CT scan sequence, so that we can determine the
orientation of the joint surface in each image. To accomplish this, we developed a
semi-automatic surface registration interface based on the iterative closest point
(ICP) [2] algorithm. The registration is performed in two steps:

1. Coarse alignment of the template by procrustes analysis of user-defined land-
marks.

2. Precise surface registration using a modified ICP algorithm, with the tem-
plate as source mesh and the segmented radius as target mesh.

Figure [ illustrates the registration process. Step 1 is required because ICP
needs a good starting guess to produce accurate registration results. After ap-
plying ICP, we obtain a rigid-body transformation that, together with the local
reference axes of the template, defines the orientation of the target joint surface.
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Fig. 4. Generation of a joint-surface template. The local reference coordinate system
shown in the lower right image is derived from the three landmarks.

The original ICP algorithm described in [2] assumes that the input data is
outlier-free and, further, that every point in the source mesh corresponds to
a point in the target mesh. Unfortunately, neither of these assumptions holds
for our data: due to segmentation errors and various CT image artifacts, the
template might not overlap the target mesh completely, and even if perfect seg-
mentation results were available, the joint surface might be fractured and have
small disconnected fragments that move around during the healing. Further-
more, the original ICP algorithm does not take surface normal information into
account, which means that there is no guarantee that it will actually fit the outer
or the inner surface of the template to the corresponding surface of the radius.
Our initial experiments with ICP showed that even with a good initialization,
the algorithm can produce poor registration results by, for instance, fitting the
outer surface of the template to the inner surface of the radius.

To remedy these problems, we implemented a modified ICP algorithm that,
in every iteration, (1) identifies and rejects all closest point pairs of which nor-
mal directions differ more than 90 degrees and (2) rejects 10% of the remaining
point pairs with the largest point-to-point distances. The second rejection criteria
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Fig. 5. Joint-surface registration. Left: user-defined landmarks. Middle: coarse regis-
tration obtained by aligning the landmarks. Right: registration result after refinement
with ICP.

makes the algorithm more robust to segmentation errors. The implementation is
CPU-based, sequential, and uses a kd-tree for accelerated closest-point search.

3.4 Implementation Details

We implemented the proposed segmentation and registration pipeline using
VTK, PythorE, and NumPy/SciPyt]. To solve the sparse linear system [7] gen-
erated in the mesh-segmentation step, we used a Ruge-Stiiben-based algebraic
multigrid solver obtained from the PyAMG library [IJ.

4 Computing the Dorsal Angle

Using the reference axes RA and X, extracted with the methods described in [9)]
and in Section Bl respectively, we compute the dorsal angle 6 as

0= 72r —arccos(RA - X,). (1)

5 Experiments and Results

Two test users performed repeated 3D angle measurements on the six CT scan
sequences described in Section @l The first user (Ul) was an orthopedic sur-
geon with long experience of measuring wrist angles in 2D, whereas the second

2 URL: http://www.python.org/
3 URL: http://www.scipy.org/SciPy/
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user (U2) was a PhD student in image analysis who had no prior experience of
evaluating wrist fractures. The first user had not used the system before and
therefore received a short training session before the experiment started. Each
user repeated the measurements five times on the four CT scan sequences that
included most samples and two times on the remaining two CT scan sequences,
measuring 111 angles in total. The experiments were performed on a laptop
equipped with an Intel Core i7-3612QM 2.1 GHz CPU, 8 GB DDR3 RAM, an
Intel HD Graphics 4000 GPU, and 64-bit Ubuntu Linux 12.04. In addition, one
of the users (U1) performed conventional 2D angle measurements on plain X-ray
images that had been acquired at the same occasions as the CT images.
Figures[f] and [7 illustrate the angle measurement results (see caption descrip-
tions). The intra-operator precision (mean angle difference £1.96 SD) of the 3D
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Fig. 6. Relative dorsal angles obtained in five trials with our proposed 3D measurement
method (3D CT) and the conventional 2D measurement method (2D X-ray). Ul and
U2 denote the two test users who performed the repeat measurements. The vertical
bars show the mean and the range of the angles.



Precise 3D Angle Measurements in CT Wrist Images 487

measurement method was 0.07 £ 0.74° for user Ul and 0.21 + 0.56° for user U2,
and the inter-operator precision was 0.19 + 1.09°, indicating high repeatability.
The intra-operator precision of the 2D measurement method was considerably
lower, —0.05+4.82°, confirming the limitations of the method. Overall agreement
between the 2D and 3D angles was poor, which was to be expected since the 2D
angles were measured on 2D projections of the wrist. The mean computational
time required to process a single CT image was 21.8 £+ 7.0 seconds: 3.7 4+ 2.2
s for hysteresis thresholding, 4.8 4+ 3.2 s for surface extraction, 4.0 £ 1.1 s for
random walks, 7.7 £ 2.4 s for ICP registration, and 1.6 0.6 s for RANSAC axis
estimation. The total time (interaction time plus computational time) required
to process a sequence of five CT images was ~10 minutes. There is no ground
truth available to verify the obtained angles against, but the segmentation and
registration results were considered successful in all trials, and the obtained axes
RA and X, have been visually inspected and deemed accurate enough.

=
o
=
o

©
©

iy e
gm\ g)JN\
5N 6° 5 6
gz B o e e e
oh 4 oo
o —
5o 2 5o 2
M, e T b o Sl e Sohael £
O - ¥ [SE=N
Rl dl ll f  d  wll ©

= =
'_\_2, }_\_2,
o~ —~

S 2

|
IS
|
I

-6~ . ' ' ' ' . . . . —6n . . ' . . |
-12 -10 -8 -6 -4 -2 0 2 4 6 -20 -15 -10 -5 0 5 10
Average relative dorsal angle (degrees) Average relative dorsal angle (degrees)
(U2_Triall_3D + U2_Trial2_3D) / 2 (U1_Triall_2D + U1_Trial2_2D) /2

(a) Intra-operator precision (3D CT) (b) Intra-operator precision (2D X-ray)
10- .

©
©

) )
$ rﬂl g N\
S 6 S 6-
g3 gz
SF =K 4.
o E=
=] =)
o - g2
Q2 S o S aa 3
=0 =7
a 2 o a 2 o
I R R e N R R A £
=
o -2- =2-
2 2
—4- = 2}~y s ey e e e s s
—6n . . . . . ) -6~ . . . . .
-10 -8 -6 —4 -2 0 2 4 6 -15 -10 -5 0 5 10
Average relative dorsal angle (degrees) Average relative dorsal angle (degrees)
(U1_Triall_3D + U2_Trial1_3D) /2 (U1_Triall_3D + U1_Triall_2D) /2

(c) Inter-operator precision (3D CT) (d) Agreement between the two methods

Fig. 7. Bland-Altman plots illustrating the intra- and inter-operator precision of the
evaluated methods and the agreement between the 2D and 3D angle measurements.
The solid line represents the mean angle difference, whereas the dashed lines represent
+1.96 SD of the angle difference.
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6 Conclusion

We have presented a semi-automatic method for identifying and tracking the
orientation of the radius joint surface in 3D CT images of fractured wrists. By
combining this method with a previously developed method for identifying the
long axis of the radius, we have also developed a system that enables precise 3D
measurements of relative changes in the dorsal angle, one of the reference angles
orthopedic surgeons use to assess the displacement of wrist fractures. To the best
of our knowledge, this is the first time such a system has been developed. The
results presented in this paper show that our proposed 3D angle measurement
method has a high intra- and inter-operator precision and is more precise than
the conventional 2D measurement method used in clinical practice. The system
is efficient enough for interactive usage and allows a user with no prior experience
of evaluating wrist fractures to achieve similar results as an expert.

Next, we plan to deploy the presented system in orthopedic research studies
where the objective is to compare different methods of fracture treatment. We
also plan to extend the system so that it can be used to measure relative changes
in other 3D rotation angles defined for the wrist, for instance, the radial angle [4].
Finally, we aim to further improve the robustness and accuracy of the angle mea-
surement method. This could be achieved by, for instance, automatizing some
of the interactive steps or replacing the underlying surface-based segmentation
and registration methods with volumetric counterparts.
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