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Abstract. In fluorescence microscopy, the proper evaluation of image
segmentation algorithms is still an open problem. In the field of cell seg-
mentation, such evaluation can be seen as a study of the given algorithm
how well it can discover individual cells as a function of the number of
them in an image (size of cell population), their mutual positions (den-
sity of cell clusters), and the level of noise. Principally, there are two
approaches to the evaluation. One approach requires real input images
and an expert that verifies the segmentation results. This is, however,
expert dependent and, namely when handling 3D data, very tedious. The
second approach uses synthetic images with ground truth data to which
the segmentation result is compared objectively. In this paper, we pro-
pose a new method for generating synthetic 3D images showing naturally
distributed cell populations attached to microscope slide. Cell count and
clustering probability are user parameters of the method.

Keywords: distance map, 3D imaging, cell populations, cross-correlation,
simulation.

1 Introduction

The credibility of synthetically generated datasets is based on their ability of
mimicking the real data. When simulating cells, we need to deal with the fol-
lowing three aspects:

– cell shape
– cell internal texture
– mutual positions of individual cells

The first two aspects have already been deeply studied by many groups [4, 6–8,
13], however those who focused on proper generation of cell populations worked
only with 2D image data [4,6,8]. The extension to 3D is not straightforward as it
brings new methodological issues and as it is a problem of higher computational
demands, both in time and memory. In [13] the truly 3D cell populations were
generated but the distribution was not solved. The cells were uniformly spread
across the whole field of view (FOV). The clusters had to be formed manually by
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setting the fixed position for each cell individually. The only constrain applied
on every cell was to prevent from overlaps.

Let us emphasize the main difference when generating a cell population into
2D image versus 3D image. In the first place, since a 2D image contains a packed
visual information, which is naturally 3D, it is not unusual to see cells that appear
overlapping in 2D images. However, cells cannot overlap in 3D images nor in
reality. They can touch each other but they obviously cannot occupy the same
volume physically. But in 2D images it is visually acceptable when two cells share
the same space. In addition, cell position within an 3D image is controlled not
only by so called clustering effect, which gathers cells into groups. Its z-position
is highly influenced by gravity, i.e. the cells tend to attach to microscope slide.
This is not the case of 2D images where such problem does not exist. Last but not
least, 3D images are of higher capacity so it is not recommended to pointlessly
repeat some operations as it worsens the efficiency of the generation process.

One of the pioneer papers focused on the problem of generation of more than
a single cell in an image was published by Lockett et al. [5]. This paper was fo-
cused on the development of cell segmentation algorithm in 3D. For the purposes
of determining the limits of tested algorithms the authors prepared a small set of
basic geometrical objects (sphere, ellipsoids, etc.). These objects were gathered
into clusters, further blurred, and finally affected by noise to imitate real micro-
scopic data. Next year, Solorzano et. al [10] adopted this principle for testing
their own thick tissue segmentation algorithm. Three years later, Grigoryan et
al. [3] generated a group of uniformly distributed spheres of various diameters.
Some level of overlap was allowed but too overlapped spheres were merged. Du-
four et al. [2] can be considered to belong among the first researchers that were
creating synthetic time-lapse sequences of moving cells. In their work, only two
spheres were positioned randomly under constrain that they can’t overlap and
that they touch at least once during the sequence.

The researchers mentioned so far generated fully 3D synthetic image data
but they employed only basic geometrical shapes and their number was limited
to units. In the following, the individual research groups started to generate
cells with sophisticated shapes and internal structures, and eventually the whole
populations of such cells. The fundamental ideas how to prepare a computer
generated large cell population were presented by Lehmussola et al. [4]. In their
paper, the authors focused on all the aspects that can influence the quality of
generated data, however in 2D only. The placement of individual cells was gener-
ated repeatedly until the suitable position and allowed overlap were established.
The ideas defined in their paper influenced many authors. The idea of repetitive
search for suitable position was also adopted in [6,8]. In [15] the excessive overlap
of two cells was solved by fixing one cell and slight movement with the other one.
Svoboda et al. [13] adopted ideas presented in [4] and extended them into 3D.
However, the aspect of cell populations and their proper generation was omitted
in this work.

In this paper, we solve the task of generating the populations of synthetic
cells, with user given strength of the clustering effect, and their credibility. We
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1: FOV ← empty 3D image {create empty scene}
2: for counter=1:NumberOfCells do
3: Mask ← create mask of a new cell
4: Corr ← FOV � Mask {perform cross-correlation}
5: Locations ← Corr < δ {apply binary template matching}
6: Locations(:,:,1:end-κ) = false {keep to the microscope slide}
7: Map ← DistanceMap(FOV) {compute distance map}
8: Candidates ← (Map < μ ) & Locations {keep only positions in cluster}
9: Pos ← Rand(Candidates) {select one candidate}
10: FOV ← Merge(FOV, Move(Mask,Pos)) {add mask to the image}
11: end for
12: Output ← FOV

Algorithm 1. An iterative algorithm for cell population generation

propose an algorithm that generates the cell population that resembles the real
cell populations.

2 Method

The outline of proposed algorithm is drafted in the Algorithm 1. The particular
steps are described in detail in individual subsections.

In the very beginning, the FOV is defined. Here, we understand the FOV as a
3D image that corresponds to the real specimen placed between cover glass and
microscope slide. Initially, it is an empty image in which all the cells will be
generated. The main loop is responsible for an addition of each newly generated
cell into the FOV. During one iteration only one new cell is created.

2.1 Create Mask of a New Cell

First of all, the initial rough shape (Mask) is prepared (see Fig. 1(a)) and then
the internal structure is created within the given mask. In this work, we adopted
the approach designed in [12]. In particular, we generated HL60 cell nucleus or
single microsphere, as proposed there. In general, any cell type, i.e. shape and
texture, can be used provided its shape can be uniquely described with a binary
mask. In the following text, we will show that there are no constrains put on the
initial cell shape. The mask even need not be compact nor convex.

2.2 Perform Cross-Correlation

As soon as the initial shape of a new cell is known, we can use the cross-
correlation technique to find out which positions in the FOV are suitable for
the location of this cell. Provided all the previously generated cells are stored in
the FOV as binary masks (see Fig. 1(b)), the cross-correlation of the FOV and the
binary mask of the new cell should give zero value at the positions where the new
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. An example of a placement of a new cell (a) into the population of already gen-
erated 29 cells (b) with probability of clustering 75%. Black pixels denote background.
First, all the possible locations, where the new cell can be placed, are detected via
cross-correlation technique and marked as true with white colour (c). Some locations,
that occur far from the microscope slide, are rejected (d). Since cells are forced to form
clusters, majority of locations that would result in sparse distribution of cells within
the available space are also rejected (e). Only one from the remaining locations is se-
lected and the new cell is placed there. The results is merged with all the previously
generated cell masks. The 30th cell added is marked with cross (f). Each 3D figure
consists of three individual images: the top-left image contains selected xy-slice, the
top-right image corresponds to selected yz-slice, and the bottom one depicts selected
xz-slice
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cell may be placed without overlap. Let us analyze this idea from the practical
point of view. In case the size of FOV is 1300×1030×100 voxels1 and the size of
Mask is 100×100×80 voxels we cannot afford to compute the cross-correlation
with naive convolution with flipped kernel due to very high computational cost.
To reduce the time complexity we suggest to compute the convolution of such
large images using fast Fourier transform (FFT). The improvement is, neverthe-
less, at the expense of increased memory demand. The memory demand can be,
however, considerably reduced if the technique designed in [11] is used.

2.3 Apply Binary Template Matching

Due to the fact that the cross-correlation was performed via FFT, we must
expect some cumulative errors during the computation. Therefore, the suitable
positions of the Mask in the FOV are not represented only with pixels with zero
values. We must accept some tolerance δ, which we will understood as a threshold
value. All the positions with value less than δ are accepted. The rest is rejected.
We have found out experimentally that δ = 0.5 is the most suitable value.

At this moment, all the available positions correspond to Locations (see
white voxels in Fig. 1(c)) where the currently inspected cell may appear without
threat of overlapping any other previously generated cell.

2.4 Keep to the Microscope Slide

When dealing with 3D images, we must also take into account the fact that all
the generated cells are subjected to gravity. In this sense, the positions of cells
cannot be randomly spread across the whole FOV. Namely, the z-positions of each
generated cell are limited in such a way that the cell should seem to be attached
to the surface of microscope slide (see Fig. 1(d)).

As the slide is not perfectly flat and some impurity may appear in the real
specimens, we introduced a tolerance κ that represents these imperfections. It
prevents cells from lying exactly in the same z-plane, which would seem quite
unnatural.

2.5 Compute Distance Map

Many approaches [4, 6, 8] used distance map [1] of the FOV to directly form the
area of possible location of newly generated cells. The values in the distance map
were further modified by Gaussian function in order to give a higher probability
to be selected to close positions prior to the further ones. This way, the avail-
able positions in the vicinity of already existing cells in the FOV were marked as
the most suitable for the placement of new cell. Random selection of the posi-
tion respecting these probabilities led naturally to populations of cell forming

1 This is a size of standard full-frame real 3D image acquired using CCD camera
Micromax 1300-YHS attached to microscope Zeiss 200M, Zeiss Plan-Apochromat
100x/1.40.
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the clusters. However, this also generated many overlaps. To avoid them, the
authors [4, 6, 8] repeatedly tried new positions until the lower level of overlap
or even no overlap was detected. As explained in the introduction, this is not
suitable (due to unrealistic overlaps of cells in 3D) nor very effective (due to the
iterative position search) in the case of 3D images.

In this work, we also compute the distance map but the results are not sub-
mitted to Gaussian function to express the importance of each individual item in
the Locations. The distance map is only used to narrow the number of available
positions in the Locations to those that give rise to clusters.

2.6 Keep Only Positions in Cluster

The set of all available Locations for a new cell is restricted to those that appear
near to some already generated cells in FOV. The Locations, where the distance
map is lower than some user defined threshold μ, are kept while the others are
rejected (see Fig. 1(e)). The value of variable μ is typically very small (μ ≈ 0.4
microns).

If one wants to control also the size of gaps between the individual cells in the
generated clusters it is enough to submit the distance map to the morphologi-
cal erosion [9] with the structuring element of appropriate size. Of course, this
erosion must be performed prior to the thresholding of the distance map.

The existence of cell clusters that occur inside the cell populations is driven
by the decision whether each individual newly generated cell wants to join some
previously generated cluster or not. The decision is a stochastic variable with
Bernoulli distribution, where success probability p = 0.6 means that the cell
wants to join some cluster for 60%. When the cell refuses to join (with probability
1− p), the sections 2.5 and 2.6 are skipped.

2.7 Select One Candidate

The candidate position that will be used for a placement of newly added cell is
selected from the Locations that passed the previous steps of the algorithm and
were not rejected. The selection is performed via random process with uniform
distribution.

2.8 Add Mask to the Image

Finally, the Mask is shifted to the position selected in the previous step and
merged with the FOV (see Fig. 1(f)).

3 Examples of Generated Data

Using the previously described algorithm a set of populations of HL60-cell nu-
clei was generated. We intentionally omit inspection of the shape and internal
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(a) (b)

(c) (d)

Fig. 2. Synthetic cell population with 30 cells. The masks were generated with cluster-
ing probability set to a) 0%, b) 50%, c) 75%, and d) 100%. Each cell mask is displayed
with its own label so that individual cells can be clearly recognized. In this sense, the
masks are depicted with different grayscale intensity levels. Each 3D figure consists
of three individual images: the top-left image contains selected xy-slice, the top-right
image corresponds to selected yz-slice, and the bottom one depicts selected xz-slice.
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Fig. 3. An example of computer generated data. The initial distribution of cells was
prepared by the newly proposed algorithm. Image data were visualized using ImarisR©

(Bitplane AG, Switzerland).

structure of individual cells. The focus of the paper is on correct and realis-
tic distribution of cells within the populations. See Fig. 2 for examples of cell
populations generated with different probabilities of clustering.

Even though this paper is not dedicated to real-time computation, we believe
that the potential user of the method might be interested in time needed for
generation of one simple cell population. Let us assume we have an empty image
of 640×640×50 voxels. In this case, the generation of 20 cells (each with diameter
of 56 voxels) takes approximately 17 minutes on Intel Xeon 2.83GHz quad core,
32 GB. For clarification, what happens if we change the volume of the initial
image or the amount of generated cells, we should analyze the complexity of the
algorithm. It can be shown that the time of generation is linearly dependent on
both the volume of image and the amount of generated cells. This fact was also
verified in the parametric study we performed on the same computer. Regarding
the probability of clustering, this parameter only controls whether the distance
transform [1] is called. Hence, its influence on the computational time of the
whole algorithm is neglectable.

The results of this new algorithm together with the principles of generating
single live cell proposed in [14] have been used in Cell Tracking Challenge joint
to the conference ISBI 2013. An example of one simulated cell population is
depicted in Fig. 3.
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4 Conclusion

In this paper, we introduced a novel algorithm that solves the task of generation
of realistically looking-like cell populations in the field of fluorescence microscopy.
The user can simply drive the level of clustering of each population with just a
single number. Since the simulation happens inherently 3D, generated cells tend
to attach to the bottom of the volume of interest due to the simulation of gravity.
The proposed algorithm is not limited to any specific type of cells. For example,
slides covered with microspheres, that are typically used for the measurement of
real PSF, can be generated with this algorithm as well. In general, the population
of any object, that is uniquely determined by a binary mask, can be generated.

As mentioned in the previous section, the algorithm has already been em-
ployed in the recent projects. For example, we remind simulated datasets, in
which this algorithm has been used for creating of initial distributions of cell pop-
ulations, used in the Cell Tracking Challenge joint to the conference ISBI 2013.
Furthermore, the proposed algorithm has also been newly embedded into a gen-
erator of static populations of cells in fluorescence microscopy called CytoPacq.
Its source codes written in C++ including the newly proposed method are freely
available under GNU GPL from http://cbia.fi.muni.cz/simulator/.
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