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Abstract. We derive invariants to convolution with a symmetrical ker-
nel in an arbitrary dimension. They are expressed in the Fourier domain
as a ratio of the Fourier transform and of the symmetrical projection of
the Fourier transform. In 2D and for dihedral symmetries particularly,
we newly express the invariants as moment forms suitable for practical
calculations. We clearly demonstrate on real photographs, that all the
derived invariants are irreplaceable in pattern recognition. We further
demonstrate their invariance and discriminability. We expect there is po-
tential to use these invariants also in other fields, including microscopy.
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1 Introduction

In numerous practical situations we face image degradations which can be de-
scribed as a convolution with a kernel h which exhibits some kind of symmetry

g = f ∗ h, (1)

where f is the original image and g is the degraded image. A few examples can
be out-of-focus blur, linear motion blur and atmospheric turbulence blur.

When dealing with out-of-focus blur, the blurring PSF is given by the shape of
the aperture. If the aperture is fully open, the PSF is a cylinder-like function but
if the aperture is open only partially, the PSF has a polygonal shape determined
by number of aperture blades of the camera objective. Such PSF’s have always
N -fold rotation symmetry and sometimes also axial symmetry, see Fig. 1. This
is why the blur invariants w.r.t. such PSF’s are so important. A composition
of N -fold rotation and axial symmetries is called dihedral symmetry. From the
pattern recognition point of view, more constrained (i.e. ”more symmetrical”)
kernels have less degrees of freedom and it can be expected that we can find
more invariants to such a convolution and thus gain more discrimination power.

Invariants to N -fold symmetric blurs for N = 2 were introduced in [1]. They
have found numerous practical applications [2–7]. Invariants to kernels with ra-
dial symmetry (N = ∞) were derived in [8] and invariants for arbitrary N were
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Fig. 1. Examples of convolution kernels caused by out-of-focus blur. Dihedral sym-
metry is very common due to shaping of the camera objective apperture by certain
number of blades.

Fig. 2. Examples of various symmetries of 2D functions. From left to right having
symmetries C3, C7, D4, D5.

proposed in [9] and most recently in [10]. They were derived in the spatial do-
main as functions of image moments. The invariants w.r.t. dihedral PSF’s have
not been published yet. This is the main contribution and novelty of the paper.

In the next sections we present a simple derivation of the general invariance to
symmetrical convolution. Further on, we are more specific and we newly derive
and test moment invariants to 2D dihedral symmetries. Moment invariants to 2D
cyclic symmetries as a special case of the general theory are re-derived here (in a
different way than in [10]) and put into the new context for illustration. In this
paper we intensively rely on expansions of 2D functions into circular harmonics.

2 Derivation of Invariants to Convolution Having Cyclic
or Dihedral Symmetries

2.1 Preliminaries

Two useful rotational image symmetries are cyclic and dihedral symmetries. If
geometric transformations form a cyclic Cn, resp. dihedralDn group, then images
having the cyclic (eq. to N -fold), resp. dihedral, symmetries remain under these
transformations the same [11]. We will denote the symmetries also Cn, resp. Dn.
Function f(r, ϕ), where r and ϕ are polar coordinates, has the CN symmetry
(Cn for particular n = N) if

f(r, ϕ− 2πn

N
) = f(r, ϕ) for n = 0, 1, . . . , N − 1. (2)

n more symmetry group elements are added in case of the dihedral group Dn

using reflection around an axis. Examples of images with both symmetries are
shown in Fig. 2.

The problem of invariance to convolution can be expected much simplified
when working in the Fourier domain. Convolution then becomes a simple mul-
tiplication. Given f , h and g are the original image, convolution kernel and the
degraded image, resp.,

g = f ∗ h, (3)
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and F , H , G are their Fourier transforms, resp., then

G = F H. (4)

If the convolution kernel H(r, ϕ) (where r, ϕ are polar coordinates) is having
the Cn, resp. Dn, symmetry for n = N , then also its Fourier transform has the
CN , resp. DN symmetry.

When investigating rotational symmetries, it is useful to expand an image
ψ(r, ϕ) or its Fourier transform into the circular harmonics which are the basis
of the 2-D rotation group representation [11]

ψ(r, ϕ) =
∑

m∈Z

ψm(r)eimϕ, (5)

where the coefficients are

ψm(r) =
1

2π

∫ 2π

0

ψ(r, ϕ)e−imϕdϕ. (6)

2.2 Relative Invariants

We first introduce a relative invariant to convolution I, which applied on both
the original and the degraded images f , g stays the same upon a factor depending
only on parameters of the convolution kernel

I(g) = Ω I(f) where Ω = Ω(h). (7)

The simplest non-trivial relative invariant to convolution is Fourier transform
of the image, as recalled in (4). If we find another invariant with Ω = H , we can
combine them to get an absolute invariant to convolution (Ω = 1).

Cn Symmetry. We can get inspired by investigating the Cn symmetry. Fourier
transforms of the original image, convolution kernel and the degraded image in
(4) can be decomposed into circular harmonics basis as in (5). We will denote
the coefficients in the expansions for G, F and H as gi(r), fi(r) and hi(r),
respectively. Given the convolution kernelH(r, ϕ) has a Cn symmetry for n = N .
Then the coefficients hm are nonzero only for m = kN , k ∈ Z and we obtain the
following relation.

∑

s∈Z

gs(r)e
−isϕ =

∑

m∈Z

fm(r)e−imϕ
∑

k∈Z

hkN (r)e−ikNϕ (8)

One particular coefficient gs(r) then equals

gs(r) =
∑

k∈Z

fs−kN (r)hkN (r). (9)

It is obvious from (9), that a set of coefficients {fs−kN} for one particular s
is closed under convolution with the Cn symmetry for n = N . Thus, it can be
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expected, that an invariant to CN symmetrical convolution should be based on
harmonics from one of these subspaces. In other words, the linear space spanned
by all the harmonics can be divided into N independent subspaces, where each
of them stays invariant under CN symmetrical convolution. We can also obtain
them by applying projection operators to get irreducible subspaces for the CN

symmetry group. For the CN group there are N such operators

Pm,NF (r, ϕ) =
1

N

N−1∑

k=0

F (r, ϕ− 2πk/N)eim
2πk
N (10)

for m = 0, . . . , N − 1. The operator incrementally rotates F by angle 2π/N and
a weighted average is calculated. Projection (10) applied on F (r, ϕ) gives

Pm,NF (r, ϕ) =
∑

k∈Z

fkN+m(r)ei(kN+m)ϕ. (11)

Substituting (9) into (11) it is straightforward to get

Pm,NG(r, ϕ) = HPm,NF (r, ϕ). (12)

Thus, we get another set of relative invariants to convolution with Cn symmetry
where n = N

Pm,NF (r, ϕ) where Ω = H. (13)

Projection Operators and Dn Symmetry. The last conclusion can be also
observed immediately from the projection operator. For every group, we can
define projection operators projecting particular space into its irreducible sub-
spaces [11]. In a simplified form the projection operator can be written

Pα = constα
∑

k

χα(Gk)T (Gk) (14)

whereGk is an element of a particular symmetry group, T (Gk) is a corresponding
transformation operator and χα(Gk) is simply a coefficient which can be found
in a so called character table for a particular symmetry group [12].

Since convolution kernels discussed in this paper remain the same under all the
operators (they are fully symmetric), they can be factored out. Thus projection
on an arbitrary irreducible subspace applied in the Fourier transform of an image
is a relative invariant with Ω = H . The conclusions apply also particularly on
both groups Cn and Dn. This result is one of the main achievements of this
paper. Although here we elaborate only on the two symmetry groups Cn and
Dn, the result is applicable to symmetries in an arbitrary dimension where we
are able to formulate the symmetrizing projection operator. We can thus expect
to derive in our future research e.g. invariants to a PSF in a 3D microscopy.

It has to be emphasized that the above result is valid for the dihedral sym-
metries with arbitrary axis orientation but this orientation must be known (to
be able to define corresponding projection operators). Without loss of generality
we further assume that the horizontal axis is one of the symmetry axes.
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3 Expressing the Invariants in Terms of Complex
Moments

Working in the Fourier domain may not always be practical for pattern recogni-
tion tasks because of noisy high-frequency components. Hence, we find equivalent
invariants in the spatial domain. We get inspired by the well known fact that
Fourier transform can be expressed in terms of image moments, as we explain in
the next Section. It finally leads to the invariants to convolution with a dihedral
kernel expressed in terms of complex moments.

3.1 Expansion of the Fourier Transform with Complex Moments

In this section we derive relation between Fourier transform and the complex
moments. Importance of this formula will become clear in the next sections.

Complex moments of an image f(x, y) of order r = p+ q

c(f)pq =

∞∫

−∞

∞∫

−∞
(x+ iy)p(x− iy)qf(x, y)dxdy, (15)

are used to investigate problems where a rotational symmetry plays its role. i is
the imaginary unit. (The polynomials which the image is projected onto are a
basis of the representation of the rotational group SO(2) [11]).

Fourier transform is in cartesian coordinates defined as

F (u, v) =

∫ ∫
f(x, y)e−2πi(xu+yv)dxdy. (16)

It is well known, that (16) can be expanded into power series, where the coeffi-
cients are moments - after expanding the exponential we get monomials which
appear in the definition of image moments. Accordingly, we would like to rewrite
(16) so that after expansion we get polynomials (powers of x + iy and x − iy)
appearing in the definition of complex moments (15). Therefore, we express both
spatial and spectral coordinates x, y and u, v using substitutions

(
u
v

)
=

(
1 1
i −i

)(
U
V

)
and

(
x
y

)
=

(
1/2 1/2
−i/2 i/2

)(
X
Y

)
(17)

what results in

F ′(U, V ) =

∫ ∫
f(x, y)e−2πi(XU+Y V )dxdy. (18)

Then (18) can be expanded into power series with complex moments

F ′(U, V ) =
∞∑

k=0

∞∑

j=0

(−2πi)k+j

k!j!
ck,jU

kV j . (19)
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The derived formula gets clear interpretation, if we use polar spectral coordi-
nates r and ϕ instead of the cartesian u and v. The auxiliary variables can then
be written as

U =
r

2
e−iϕ and V =

r

2
eiϕ (20)

and the Fourier transform can be expressed as

F (r, ϕ) =

∞∑

k=0

∞∑

j=0

(−πi)k+j

k!j!
rk+jck,je

−i(k−j)ϕ. (21)

3.2 Derivation of Moment Invariants to Convolutions with Kernel
Symmetries Cn and Dn

We recall that above we have found two relative invariants to symmetrical
convolution. We can combine them to get an absolute invariant

F (r, ϕ)

PSF (r, ϕ)
. (22)

where PS denotes the symmetrical projection for an arbitrary symmetrical group.
The absolute invariant (22) can be expanded into series containing either

UkV j from the expansion (19) or circular harmonics from the expansion (21).
Thus (22) can be expanded into series

∞∑

v=−∞

∞∑

s=0

Iv,sr
seivϕ or

∞∑

k=0

∞∑

j=0

Ik,jU
kV j (23)

where the coefficients Iv,s or Ik,j must be also absolute invariants. The symmet-
rical projection can be easily expressed using symmetry considerations. E.g. for
the Cn symmetry and n = N the symmetrical projection equals

∞∑

d=−∞
ψNd(r)e

iNdϕ. (24)

By comparing the same monomials and powers of harmonics, we derive the
following invariants CN

p,q, resp. D
N
p,q to the Cn, resp. Dn symmetrical convo-

lutions, where n = N is the symmetry order. (They differ from the invariant
coefficients in (23) only by constants.)

CN
pq =

cpq
c00

−
p∑

j=0
0<j+k

q∑

k=0
(j−k)/N∈Z

(
p

j

)(
q

k

)
cjk
c00

CN
p−j,q−k (25)

DN
pq =

cpq
c00

−
p∑

j=0
0<j+k

q∑

k=0
(j−k)/N∈Z

(
p

j

)(
q

k

)�cjk
c00

DN
p−j,q−k (26)
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Fig. 3. Strip structure of the matrix of CN . Grey elements correspond to trivial
invariants.

where � denotes real part of a complex number. Note that the summation goes

only over such indices that (j − k)/N is integer. This is because c
(h)
jk = 0 for

non-integer (j − k)/N (see [9] for the proof).
We recall that (26) is derived for particular convolution kernel orientation,

where one of the axial symmetry axes coincides with the horizontal axis. If the
kernel is rotated by an arbitrary (but known) angle θ, (26) changes to

DN
pq =

cpq
c00

−
p∑

j=0
0<j+k

q∑

k=0
(j−k)/N∈Z

(
p

j

)(
q

k

)
cjk + ckje

i2θ(j−k)

2c00
DN

p−j,q−k. (27)

Invariants CN
pq are trivial (they equal zero) for such N , p, q where (p−q)/N is

integer. Hence, the matrix of CN has a strip structure (see Fig. 3) with zeros on
the main and certain minor diagonals. The matrix ofDN has the same structure,
with zeros on the main diagonal, but with non-zero invariants on the minor
diagonals. The existence of these valid invariants is the major advantage of DN

set over the CN set.

4 Experiments

In this section we demonstrate invariance and discriminability of the newly de-
rived invariants. It contains experiments with both simulated and real degrada-
tions of real photographs. However, focus is on experiments with real data to
show the performance of the new invariants.

All the photographs used in the experiments were taken with the Nikon D5100
camera and with the AF-S DX NIKKOR 18-55mm f/3.5-5.6G VR objective.
We experiment only with the green color channel for simplicity. We thus avoid
difficulties related to possible chromatic aberration effects. Direct conversion to
gray scale might violate our simple image degradation model.

4.1 Simulated Degradation with Known Ground Truth

The objective of the first experiment is to experimentally prove invariance of
the new features on known ground truth data. We take patches (with sufficient
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variability) from ten real photographs, we convolve them on a computer with
a symmetrical kernel of several sizes and several different orders of symmetry
and we evaluate the invariants on both the original and the blurred patches.
We repeat every test on 100 different randomly picked patches with diameters
51px. Moments and invariants of orders 5 were used. Invariants CN and DN

calculated on the original and degraded patches were compared and their mean
relative error (MRE) was calculated. Relative error between numbers x and y is
calculated as (|x− y|)/(|x|+ |y|+ ε) where ε is the machine precision.

Symmetry orders N = 2 and N = 4 were excluded from the evaluation since
such symmetries coincide with the symmetry of the natural image pixel grid and
we get very low errors comparable with machine precision. Most of the MRE’s
were lower than 0.01, 99% are lower than 0.02. This indicates good invariance of
the features. Typical MRE calculated on two different images is higher than 0.1,
what is on the other hand an indication of good discriminability of the features.

4.2 Real Template Matching

The objective of this experiment is to show that the newly proposed features are
performing better than current available invariants to convolution. On a pair of
real photographs we perform patch matching and we use the results to register
them. A photograph of a painting was taken first sharp and then it was taken
intentionally defocused. Small aperture was used such that the aperture contour
is polygonal. Its symmetry is D7 based on the number of aperture blades. We
thus expect that D7 invariants should perform best on these photographs. We
took special care to prevent geometrical distortion of the photographs. Therefore,
we also compensated for changes in scale when re-focusing the camera. Our goal
was not to challenge rotation or scale invariance. We wanted to focus mainly
on evaluation of added value of the D7 invariants compared to other invariants.
The photographs are relatively noisy due to low-light shooting conditions.

Both the sharp image and the de-focused image are shown in Fig. 4 together
with ten manually selected feature points and with the templates around them.
We took every template and looked by exhaustive search in the whole blurred
image for the most similar (in terms of MRE between the invariants) counterpart.
We tested various invariants in this task, see Table 1 – C2, C3, C7, and C∞

invariants to kernels with N -fold rotation symmetry and D2, D3, D7 invariants
to kernels with dihedral symmetry. For comparison we also calculated ordinary
momentsM , which are not invariant to any blur. All features are evaluated using
different moment orders, see the top row of Table 1.

Once the best counterpart was found in the degraded image, its position was
recorded. Since the ground-truth match is not known, the evaluation was done by
means of image registration. The original points and the corresponding match-
ing points were used to estimate the affine transform mapping between them
minimizing least squares error. The original points were transformed using the
affine transform fit and the standard deviation was calculated between positions
of the transformed original points and the detected matching points. All of them
are shown in the Table 1.
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Fig. 4. Left: Original sharp photograph (segment) with manually chosen control points
with depicted corresponding patches. Right: De-focused photograph (segment).

Table 1. Standard deviations (see text) as a performance measure of listed features
(left column)

kernel / order 3 4 5 6 7

C2 38.6 14.8 18.7 4.19 4.19
C3 2.77 2.80 2.32 1.88 1.88
C7 25.8 3.83 3.30 1.98 1.98
D2 14.1 2.40 2.39 20.9 20.9
D3 5.22 4.76 2.89 2.03 2.03
D7 5.22 4.05 2.27 1.56 1.56
C∞ 36.9 32.0 24.3 13.9 3.30
M 36.8 25.2 9.56 35.5 4.65

We can see that the invariants D7 perform best, as expected, if we use suf-
ficient moment order. Although C7 features also work well and they are also
invariant to the experimental convolution kernel, we can see that higher num-
ber of available features D7 further improves the result. Pure ordinary moments
perform poorly, which indicates that the blur size is large enough and we cannot
successfully match the patches without using the invariants to convolution.

5 Conclusions

We have derived general formulas for invariants to convolution with symmetrical
kernels in an arbitrary dimension. In 2D and for specific dihedral symmetry Dn

we have expressed the invariants in terms of image moments, making thus the
theory easily applicable in practice.

The main advantage of Dn invariants over the earlier Cn invariants is that
there exist more of them and hence they provide higher discrimination power.
On the other hand, a serious limitation is that the orientation of dihedral axes
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must be known while the usage of the Cn invariants does not require it. This
limitation can be possibly overcome by estimating the kernel orientation directly
from the degraded image, which will be a topic of our future research.
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References

1. Flusser, J., Suk, T.: Degraded image analysis: An invariant approach. IEEE Trans.
on Pattern Analysis and Machine Intelligence 20(6), 590–603 (1998)

2. Bentoutou, Y., Taleb, N., Kpalma, K., Ronsin, J.: An automatic image registra-
tion for applications in remote sensing. IEEE Trans. on Geoscience and Remote
Sensing 43(9), 2127–2137 (2005)

3. Liu, Z., An, J., Li, L.: A two-stage registration angorithm for oil spill aerial image
by invariants-based similarity and improved ICP. International Journal of Remote
Sensing 32(13), 3649–3664 (2011)

4. Hu, S.X., Xiong, Y.M., Liao, M.Z.W., Chen, W.F.: Accurate point matching based
on combined moment invariants and their new statistical metric. In: Proc. of the
2007 Int. Conf. on Wavelet Analysis and Pattern Recognition, ICWAPR 2007,
Beijing, China, pp. 376–381. IEEE (2007)

5. Bentoutou, Y., Taleb, N., Chikr El Mezouar, M., Taleb, M., Jetto, L.: An invari-
ant approach for image registration in digital subtraction angiography. Pattern
Recognition 35(12), 2853–2865 (2002)

6. Tang, S., Wang, Y., Wei Chen, Y.: Blur invariant phase correlation in X-ray digital
subtraction angiography. In: Proc. of the Int. Conf. on Complex Medical Engineer-
ing, CME 2007, pp. 1715–1719. IEEE (May 2007)

7. Bentoutou, Y., Taleb, N.: A 3-D space-time motion detection for an invariant
image registration approach in digital subtraction angiography. Computer Vision
and Image Understanding 97, 30–50 (2005)
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