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Abstract. Indirect Immunofluorescence on HEp-2 slides is the recommended
technique to detect antinuclear autoantibodies in patient serum. Such slides are
read at the fluorescence microscope by experts of IIF, who classify the fluores-
cence intensity, recognize mitotic cells and classify the staining patterns for each
well. The crucial need of accurately performed and correctly reported laboratory
determinations has motivated recent research on computer-aided diagnosis tools
in IIF to support the HEp-2 image classification. Such systems adopt a fully su-
pervised classification approach and, hence, their chance of success depends on
the quality of ground truth used to train the classification algorithms. Besides be-
ing expensive and time consuming, collecting a large and reliable ground truth
in IIF is intrinsically hard due to the inter- and intra-observer variability. In order
to overcome such limitations, this paper presents a slightly supervised approach
for positive/negative fluorescence intensity classification. The classification phase
consists in matching parts of interest automatically detected in the test image with
a Gaussian mixture model built over few control images. The approach, whose
operating configuration can be adapted to the cost of misclassifications, has been
tested over a database with 914 images acquired from 304 different wells, achiev-
ing remarkable results on positive/negative screening task.

1 Introduction

Antinuclear autoantibodies (ANAs) are important markers to diagnose autoimmune dis-
eases, and the indirect immunofluorescence (IIF) assay on HEp-2 slides is the recom-
mended method for their detection [2]. IIF makes use of a substrate containing a specific
antigen that can bond with serum antibodies, forming a molecular complex. Then, this
complex reacts with human immunoglobulin conjugated with a fluorochrome, making
the complex observable at the fluorescence microscope. Each well, which is the part of
the slide containing the serum of one patient, is read by a physician and the diagnostic
procedure consists of fluorescence intensity classification, mitotic cell classification and
staining pattern recognition.

With reference to fluorescence intensity classification, the guidelines [2] suggest scor-
ing it semi-quantitatively using a scale whose scores range from 0 (negative
samples) up to 4+ (brilliant green, maximal fluorescence), passing through 1+ (very
subdued fluorescence), 2+ (defined pattern but diminished fluorescence) and 3+ (less
brilliant green fluorescence). Since technical problems can affect test sensitivity and
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specificity, the same guidelines suggest comparing the sample with a positive and a
negative control. The former allows the physician to check the correctness of the prepa-
ration process, whereas the latter represents the auto-fluorescence level of the slide under
examination. Recently, Rigon et al. [11] statistically analyzed the variability between a
set of physician’s fluorescence intensity classifications and then proposed to classify the
fluorescence intensity into three classes, corresponding to images with a high, interme-
diate and low fluorescence intensity. Although the detailed description of these classes
is out of the scope of this paper, it is useful to report that high and intermediate fluores-
cence intensities correspond to sera positive to ANAs, i.e. they contain autoantibodies
and need further investigation to set the final diagnosis (e.g. mitotic cell detection and
staining pattern recognition). Conversely, a low fluorescence intensity implies that the
patient serum does not contain autoantibodies, i.e. the result of the test is negative.

In autoimmune diseases, the availability of accurately performed and correctly
reported laboratory determinations is crucial for the clinicians, thus motivating recent
research on computer-aided diagnosis (CAD) tools in IIF to support the various phases
of HEp-2 image classification, e.g. [3,5,13,15,16] to cite a few. It is worth noting that
existing proposal adopt a fully supervised classification approach and, hence, their
chance of success depends on the quality of ground truth used to train the classification
algorithms. Besides being expensive and time consuming, collecting a large and reliable
ground truth is intrinsically hard due to the inter- and intra-observer variability.

Within this framework, we present here an approach for fluorescence intensity clas-
sification which aims at distinguishing between positive and negative samples, i.e. those
containing and not containing autoantibodies at 1:80 titer or higher, regardless of their
degree of positiveness (i.e. high or intermediate intensity). This capability corresponds
to perform a pre-selection of the cases that have to be examined, making easier to carry
out mass screening campaign. Our research is motivated by recent literature and med-
ical demands, where there is a general agreement on the fact that this capability is the
first goal of a CAD system in IIF.

2 Approach

In this section we present the approach we use to classify the fluorescence intensity of
a well as positive or negative, from its motivations up to its description.

2.1 Motivations

In machine learning and pattern recognition it is well known that a crucial issue of su-
pervised classification approaches is the quality and reliability of the ground truth. This
consideration holds also for IIF image classification, where existing CAD approaches
use a ground truth constituted by a set of images labeled by physicians. However, IIF
suffers from inter- and intra-observer variability [1,11], which could affect the robust-
ness of the ground truth.

We notice that most of the disagreements between physicians during HEp-2 im-
age annotation occur when they have to distinguish between a weak high intensity
from an intermediate intensity and between an intermediate intensity from a low in-
tensity [11,13]. This observation suggests us to develop a slightly supervised approach



A Slightly Supervised Approach for HEp-2 Image Classification 321

Fig. 1. Schematic of the proposed approach

which does not suffer from uncertainty introduced by ground truth collection and anno-
tation. It requires only a set of positive and negative controls, whose classification does
not introduce any ambiguity. Indeed, medical guidelines requires to use two known
sera, one positive and one negative to prepare the control wells which will exhibit a
high and a low intensity, respectively. In this way no expertise is required to develop the
reference set of positive and negative controls and the approach does not introduce the
burden of intermediate samples in the classification process.

Let us now report some further considerations on existing CAD approaches for flu-
orescence intensity classification of HEp-2 image. First, we observe that they can be
differentiated by the dilution ratio used to prepare the samples [4,5,10,12,13]. Indeed,
while in [13] it is used the 1:80 dilution ratio, the other works make use of a titer
larger than or equal to 1:160. In the former case, which is the one recommended by
the guidelines [2], the sample fluorescence intensity distributes over the three afore-
mentioned classes, i.e. high, intermediate and low. In the latter case, at dilution ratios
larger than or equal to 1:160, the intermediate class disappears, reducing the variability
in fluorescence intensity and making the classification task easier than at 1:80 dilution.
Second, we note that such works extract the features considering the whole image [13],
or segmenting out the cells [4,5,10]. However, both these approaches present some open
issues. In the former case, the noise introduced by background information may lead to
poor performance. In the latter case, the performance strongly depend on the segmen-
tation procedure adopted, which is typically threshold-based because it is assumed that
the whole cells’ body is brighter than the background. However, cell segmentation in
IIF is a hard task, as proven in [6,7,9] which showed that, when HEp-2 cells exhibit
either a low fluorescence intensity or some particular kind of staining patterns, the ap-
plication of a thresholding procedure is not sufficient to obtain a proper segmentation
of the cells.

2.2 Our Proposal

Fig. 1 schematically depicts both training and classification phases of our approach
that aims at distinguishing between positive and negative samples. For this reason, we
introduce the superclass of positive (p) samples, which is composed of samples with
high and intermediate fluorescence intensity. On the other side, samples with a low
intensity will constitute the negative class (n). Furthermore, our proposal is suited to
classify samples collected at 1:80 titer, i.e. a dilution ratio producing images with a
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variability in fluorescence intensity larger than the one given by higher titers (1:160 or
even more), thus making the classification task more complex.

The upper panel of Fig. 1 represents the slightly supervised training phase. It consists
of the four main steps, namely: (i) automatic detection of the parts of interest (also
referred to as patches in the following) in the positive and negative control images, (ii)
feature extraction from these patches, (iii) feature space reduction, and (iv) construction
of two models representing patches of positive and negative controls, respectively.

The bottom panel represents the testing phase, which consists of steps similar to
those of the training phase. The shaded area shows that patches computed from the im-
age at hand are classified using the models derived from positive and negative controls
during the training phase. Furthermore, there is also a combination step due to the fact
that a single image acquired with the microscope magnification typically used in IIF
does not cover all well surface. For this reason, several images are always acquired,
thus permitting us to exploit a certain degree of redundancy through the integration of
information extracted from different images of the same well. Hence, the classifications
of images belonging to the same well are then combined by a given rule.

The following paragraphs detail the aforementioned steps of both training and testing
phases.

Patch Detection. Both approaches extracting the features from the whole image and af-
ter a segmentation step suffer from the limitations reported in section 2.1. To overcome
such issues, we apply the SIFT algorithm [8] that returns a set of point locations in that
regions of the image with significant local intensity changes in spatial dimension, thus
detecting the regions of the image where the cells are located. Since several SIFT points
are usually detected in a region corresponding to a single cell, we aggregate in a single
patch the points close to each other. This operation is performed using a hierarchical
clustering procedure. Initializing each point as a single cluster, the algorithm iteratively
merge the cluster r and s having the minimum distance according to Ward’s distance
definition:

d(r, s) =

√
2nrns

(nr + ns)
‖x̄r − x̄s‖2, (1)

where ‖ ‖2 is Euclidean distance; x̄r and x̄s are the centroids of clusters r and s,
respectively; nr and ns are the number of elements in clusters r and s, respectively.

The high variability of fluorescence intensity and the number of cells in the images
may introduce two cases affecting the effectiveness of patch extraction procedure. First,
a small number of SIFT points may be detected when the intensity is very low, which
in turn leads to few patches extracted from the image. Second, when there is a high
density of cells, the algorithm may return a single patch covering many cells that are
grouped together. In the former case, we force the algorithm to cover a minimum area
by extracting patches in random positions when too few SIFT points are detected. In the
latter case, we apply an additional stage which increases the size of the patches whose
area is smaller than a threshold Amin and splits the patches whose area exceeds the
threshold Amax. Considering the average dimension of the cells, we set the values of
Amin and Amax to 400 and A/16 pixels, respectively, where A is the area of the whole
image.
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Feature Extraction and Reduction. The SIFT algorithm includes the extraction of lo-
cal descriptors, i.e. histogram of oriented gradient (HoG), computed in a neighborhood
of the detected interest points. However, we deem that SIFT descriptors are not suited
for our intensity classification task for the following two reasons. First, the aggrega-
tion of several SIFT points reported in previous paragraph produces interest regions
that are considerably larger than the neighborhood’s size normally considered for SIFT
descriptors. Second, HoG encodes gradient directions on small square blocks of sub-
cellular regions, whereas gradient directions are not relevant features for describing
fluorescence intensity. On these grounds, we extract from each detected patch a set of
19 features based on first and second-order gray-level histograms. The rationale lies in
the meaning of these histograms: the former describes gray-level distributions, whereas
the latter generally provides a good representation of the overall nature of the texture.
Furthermore, it is worth noting that similar descriptors have already been used in previ-
ous works on IIF image classification [13,14].

Finally, we perform a dimensionality reduction of the feature space to achieve a more
compact and discriminant description. In this step, we explored the principal component
analysis (PCA) and linear discriminant analysis (LDA).

Model Construction. Our approach relies upon the definition of models describing
the distribution of patches belonging to different fluorescence intensity. To this end,
we consider patches belonging to the positive and negative controls that unequivocally
correspond to high (h) and low (l) fluorescence intensity, respectively. In the feature
space induced by the dimensionality reduction, we fit a two component Gaussian mix-
ture (GM) model providing us the parameters (μh,Σh) and (μl,Σl) of the normal
distributions Nh(μh,Σh) and Nl(μl,Σl).

Let us now recall that the positive superclass aggregates samples with high and inter-
mediate fluorescence intensity (section 1). Since Nh(μh,Σh) is computed over posi-
tive controls, we would take into account the characteristics of the images exhibiting an
intermediate fluorescence intensity. To this aim, we add a third component to the GM
model. Rather than using real images manually labeled as intermediate, which should
introduce the disagreements described in section 2.1, the parameters of this GM com-
ponent are synthetically derived as follows:

μi = w1μl + (1 − w1)μh, Σi = w2Σl + (1 − w2)Σh, (2)

where (μi,Σi) are the parameters of intermediate (i) component and (w1, w2) are
weights determining how much these parameters are similar to those computed from
patches extracted from positive and negative controls.

In order to set the value of weights (w1, w2) we consider that misclassifications
have dramatic differences when screening HEp-2 images for positive/negative classifi-
cations. Indeed, when a false positive classification occurs, the patient is subject to fur-
ther investigations, increasing both his/her stress and national health service expense.
Conversely, a false negative classification results in a lack of treatment for the patient
with regrettable consequences. On these motivations, we would like to minimize false
negative misclassifications, even if this could introduce more false positive. For this rea-
son we introduce the loss matrix L, where the (k, j) entryLkj corresponds to the cost of
assigning a sample to the class j, when its true class is k:
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L =

[
0 CFP

CFN 0

]
. (3)

The loss matrix L says that a correct decision has no cost, whereas: (i) there is a loss of
CFP in case of false positive classification, (ii) there is a loss of CFN in case of false neg-
ative classification. Afterwards, we find the optimal values of (w1, w2) by minimizing
the following loss function:

L (w1, w2) =

2∑
k=1

2∑
j=1

Lkj · CM
(w1,w2)
kj , (4)

where CM
(w1,w2)
kj denotes the confusion matrix estimated on a validation set using the

pairs (w1, w2).

Image Classification. In order to label the image as belonging to the positive or the
negative class, we match patches extracted from the sample image at hand (s) with
each of the three components of the GM model. To this aim, we assume that patches
extracted from s are randomly drawn from a normal distribution Ns(μs,Σs). Then we
measure the distance between s and the j-th GM component using the Kullbach-Liebler
divergence:

DKL(Ns,Nj) =
1

2

(
tr
(
Σ−1

j Σs

)
+ (μj − μs)

�Σ−1
j (μj − μs)− k − ln

(
detΣs

detΣj

))
.

(5)
The intensity assigned to the image will be the one whose component in the GM returns
the minimum value of DKL:

O(I) = arg min
j

DKL(Ns,Nj), with j = h, l, i (6)

where O(I) is the output intensity assigned to the image I; h, l, and i represents the
high, low and intermediate intensity, respectively. Finally, we label as positive the im-
ages labeled either with high or intermediate intensity, whereas we label as negative the
images with a low fluorescence intensity.

Well Classification. Well classification is the final goal of our system since the well
contains the serum of the patient. To combine the labels of images belonging to the
same well, we use a conservative strategy which assigns the well to the positive class
if at least one of its images is classified as positive. Otherwise, the well is labeled as
negative. Formally:

O(W ) =

{
p if np > 0

n otherwise
(7)

where O(W ) is the output class assigned to the well W ; p and n represent the positive
and negative class, respectively; np is the number of images extracted from the well W
labeled as positive.

Before detailing the dataset and the results, let us summarize the novelties introduced
by this approach: (i) it extracts features by automatically detecting the parts of interest
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Fig. 2. HEp-2 example images. From left to right, we reported two example images for each of
the three intensities (high, intermediate and low).

in the image, thus avoiding the burden of image segmentation; (ii) it does not need for
a training set since it uses only the positive and negative controls to build the intensity
model; (iii) the ground truth does not need to be manually labeled, because the positive
and negative controls are prepared using already known sera; (iv) it introduces a novel
representation of the intermediate intensity that is based on features extracted from the
controls.

3 Dataset

We used a database of 914 HEp-2 labeled images acquired from 304 different wells at
1:80 titer, as recommended by the guidelines [2]. The wells were collected by consecu-
tive patient sera, so that sample distribution is representative of the actual occurrence in
the clinical routine. Two specialists took HEp-2 images with an acquisition unit consist-
ing of a led fluorescence microscope coupled with a digital camera with CCD squared
pixel of equal side to 6.45 μm. The images were independently labeled by the two
physicians and they reached consensus on the cases where they disagreed. The samples
are distributed among 83, 178 and 43 positive, negative and intermediate wells and,
therefore, the a priori distribution of the wells is 27.3%, 58.6% and 14.1% for high, low
and intermediate intensities, respectively. In our recognition task, this corresponds to
41.4% and 58.6% of samples belonging to positive and negative classes, respectively.
The GM model is built over 24 images of controls, twelve for positive and twelve for
negative ones. Fig. 2 shows some examples of Hep-2 images. Note that images with a
high and an intermediate intensity vary also their staining pattern, resulting in different
textures. This increases the intra-class variability and makes harder the classification
task.

4 Results

This section first discusses the values of parameters of the system, and then presents the
classification results.

According to the workflow depicted in Fig. 1, a first parameter of our approach when
using PCA for feature reduction is the number of principal components to be used. We
evaluated the number of components for which the normal distributions of positive and
negative controls do not overlap, considering the value of 5σ as the cut-off point for the
normal distributions. In this respect, we found that already the first component, which
explains 61.1% of the overall variance, verifies this property. We therefore deem that
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Fig. 3. Influence of CFN value

it has a satisfactory discriminative power without complicating the gaussian model and
thus permitting to better estimate the GM parameters. It is worth noting that we also
ran the experiments adding components until they explained the 95% of the variance,
achieving lower performance. In our opinion, although accounting for more variance of
the data, a larger number of components increases the dimension of the feature space
providing a less robust GM model. We also explored the performance achievable pro-
jecting the feature space over the single dimension obtained by the LDA. However,
the performance achieved with the first component of PCA turned out to be better and
we then report in the following the results achieved using only the first principal
component.

Let us now turn the attention to the weights used to set the values of parameters of
Gaussian distribution Ni(μi,Σi). As reported in section 2.2, the pair (w1, w2) deter-
mines how much the distribution representing the intermediate fluorescence intensity
is similar to the high or low intensity distributions given by positive and negative con-
trols. The value of such pair is set minimizing a loss function taking into account the
different costs of false positive (CFP) and false negative (CFN) classifications. For each
test well, this optimization is composed of the following four steps. First, build a val-
idation set using all images of other wells. Second, perform the whole classification
process on such a validation set with different values of the pair (w1, w2). Since in IIF
medical context CFN is larger than CFP, we set the value of CFP to 1 and we vary the
value of CFN in [1;10] with step of 0.5. Third, find the pair (w1, w2) corresponding to
the minimum of the loss function L (w1, w2). Fourth, classify the test well applying the
approach described in section 2 using the weight values set in previous step. In order
to deepen the influence of cost coefficients over the performance on the whole test set,
Fig. 3 shows how performance vary as CFN varies. It is worth observing that all positive
samples are correctly classified when CFN ≥ 3, i.e. when the cost of a false negative
classification is three times the cost of a false positive classification. Obviously, a larger
accuracy is achieved when the two costs are equal. Due to the medical constrains which
impose to minimize the number of false negative classification in the screening phase,
in the following we report the results when the values of CFP and CFN are set to 1 and 3,
respectively.
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Table 1. Confusion matrices of positive/negative classifications for image (a) and well (b)
recognition

(a)

Hypothesized Class

Positive Negative

T
ru

e
C

la
ss Positive 373 7

Negative 89 445

(b)

Hypothesized Class

Positive Negative

T
ru

e
C

la
ss Positive 126 0

Negative 35 143

The first phase of the classification consists in assigning a class to the images using
matching algorithm. In this respect, Table 1a shows the confusion matrix at image clas-
sification level. Since the different images of a well will be combined to get the final
label of the well, this is not the final output of our system. However, we can already
observe that the 7 false negative outputs are due to misclassifications between interme-
diate and low fluorescence intensity. This is an important result since it prevents that a
well with a strong positiveness might be classified as negative.

Once we get the intensity of the images, we use the combination rule reported in
equation 7 to classify the wells. The result of this procedure is shown in Table 1b. We
note that no positive well was classified as negative, i.e. the recall is 100%, even if this
inevitably implies a reduced recall on the negative class (80.34%). However, this is not a
relevant drawback since achieving a low false negative rate is the essential requirement
of the medical domain. In conclusion, we deem that the performance of our system are
suited to perform a pre-selection of the cases that have to be examined, enabling the
physician to focus his/her attention only on relevant cases.

5 Conclusions

In this paper we have presented a slightly supervised classification approach for pos-
itive/negative fluorescence intensity classification. It permits to overcome the need of
collecting a large and reliable ground truth, which is expensive, time consuming and
intrinsically hard. Furthermore, the approach should be adapted to working scenario
trough a cost matrix defining the cost of misclassifications. Our proposal can be used
to perform a pre-selection of the cases that have to be examined, enabling the physi-
cian to focus his/her attention only on relevant cases, making also easier to carry out
mass screening campaigns. Future works are directed towards the comparison of this
approach with other proposal reported in the literature, and towards the test in daily
routine.
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