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Abstract. A large number of techniques have been proposed recently
for forgery detection, based on widely different principles and process-
ing tools. As a result, each technique performs well with some types of
forgery, and under given hypotheses, and much worse in other situations.
To improve robustness, one can merge the output of different techniques
but it is not obvious how to balance the different sources of informa-
tion. In this paper we consider and test several combining rules, working
both at the abstract level and at measurement level, and providing in-
formation on both presence and location of suspect tampered regions.
Experimental results on a suitable dataset of forged images show that a
careful fusion of detector’s output largely outperforms individual detec-
tors, and that measurement-level fusion methods are more effective than
abstract-level ones.
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1 Introduction

Thanks to the diffusion of simple and powerful software tools for digital source
editing, it is extremely simple to modify the content of an image. This has
motivated, in these last years, an intense research of algorithms, to be used in the
forensics field, which help deciding about the integrity of digital images. Much
attention have drawn passive techniques since they require no collaboration on
the part of the user through some types of watermarks or signatures. These
techniques in fact are based on the observation that each step of the digital
image life cycle (from the acquisition process in the camera to its recording in a
compressed format and its successive editing) leaves a trace in the image, that
can be extracted by the algorithm in order to reveal the tampering.

There are a large variety of approaches proposed in the literature [15], which
are tipically based on some hypotheses made on the forgery. Some techniques, for
example, are able to detect copy-and-move forgeries, others are designed to look
for physical inconsistencies in the image, others exploit the usual adoption of
some lossy compression scheme, like JPEG or take advantage of specific features
of any different camera models. It is clear that no ultimate solution exists to the
image forgery detection problem [4]. Each technique is based on some important
hypotheses which limit its applicability, and therefore it is always possible to
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find cases where it fails. On the other hand, one should take for granted that a
malicious tamperer, aware of the principles on which each technique works, will
be able to trick it, given enough time and resources. Having a multiplicity of
different tools is therefore essential to guarantee a high probability of detecting
forgeries. In fact, given different approaches one can try to make a decision
properly merging the results from each of them.

The first work proposing to improve forgery detection robustness through fu-
sion applies Discriminative Random Field based methods to incorporate both
local-block authenticity and inter-block inconsistency measures [9]. More re-
cently the problem has been faced in [6][1], where a decision fusion strategy
based on the Dempster-Shafer approach and the fuzzy theory has been used, re-
spectively. These last approaches, however, work only at decision level and then
are not able to locate the forgery within the image under test.

Starting form these proposals, in this work we perform an experimental perfor-
mance comparison of different combination methods in order to explore how the
use of assessed fusion approaches can improve the reliability of a single forensic
tool. In particular, we selected five different forensic tools, which exploit quite
different approaches for forgery detection, and tested several combining rules,
both trainable and non-trainable ones. Moreover, we implemented the chosen
rules so as to provide results at pixel level, and therefore to be able to correct
locate forgeries.

The paper is organized as follows. In the next section we describe briefly the
forgery detection algorithms under comparison, while in section 3 the combi-
nation methods are presented. Finally, in section 4 the experimental setting is
presented and results are commented.

2 Forensic Tools

In order to evaluate the different combination techniques, a set of five forgery
detection tools have been selected, that can cope with copy and paste forgeries,
but are based on different approaches. In this way the combination process can
take advantage of the specificity of each method, described briefly in the following
and whose main characteristics are summarized in table 1.

Since most images are JPEG compressed, it is possible to detect traces left
during the coding process. In particular, one can exploit the blocking effect in-
troduced by JPEG, which gives rise to the so-called Block Artifact Grid (BAG).
In fact, manipulating images in this format causes an alteration of these arti-
facts, since the BAG of the original image and that of the copied region very
likely mismatch. In [12] a simple method is proposed to identify this type of
forgery, named here Li-2009, the name of the first Author followed by the year
of publication, a convention followed for the other techniques as well. The basic
idea is to extract the horizontal and vertical edges due to JPEG blocking effect:
if the image has been subject to a copy and paste processing a BAG mismatch-
ing can be detected when no edges are present in correspondence of the JPEG
grid.
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Table 1. Synthetic description of the forensic tools

To detect False alarms

Li-2009 inconsistency of BAG non uniform areas

Farid-2009 traces of double compression uniform areas

Bianchi-2011 non-aligned double JPEG artifacts uniform and light areas

Mahdian-2008 resampling operations regular patterns areas

Lukás-2006 inconsistency of PRNU saturated, dark or highly tex-
tured areas

Rather than considering the blocking artifacts, in [5] (Farid-2009) the double-
quantization effect is used to detect forgeries. In fact, when creating tampered
images through a splicing process, images which originally were coded at differ-
ent compression ratios are combined together, hence the composite image may
contain a trace of the original compression quality. In particular, it is possible
to reveal this double quantization by comparing the forged image with different
qualities JPEG compressed versions of the image itself. The difference between
the image and its JPEG-compressed counterpart presents localized local min-
ima (JPEG ghosts), that reveal the presence of a forgery. Note that the methods
described above give good results when considering JPEG low-quality images.
The principle of double compression can be applied also to DCT coefficients
[2], in particular Bianchi-2011 proposes new probability models for the DCT
coefficients of singly and doubly compressed regions and a reliable technique for
estimating them.

A different approach is followed in [14] (Mahdian-2008) and relies on finding
traces of resampling in the image. The idea is based on a previous work [7],
where the authors observed that when a signal is subjected to resampling, the
variance shows a periodic behaviour whose period is a function of the rescaling
factor. Mahdian has extended this approach to detect also rotations and skewing
through the Radon Transform applied to the derivative of the involved image
and followed by a periodicity search in the Fourier domain.

The last examined method relies on artifacts introduced by the digital cam-
era, and in particular the photo-response non uniformity (PRNU) which can
be considered as a sort of intrinsic fingerprint of a specific digital camera. The
PRNU arises from differences and imperfections in the silicon wafer used to man-
ufacture the imaging sensor: these physical differences provide a unique sensor
fingerprint which can be used for forgery detection. It was originally proposed
in [13] (Lukás-2006) and requires a large number of images taken by the digital
camera itself, in order to estimate the camera PRNU. Then, to detect the tam-
pering, the PRNU of the image under investigation is estimated and compared
with the reference. This step is quite challenging, since this fingerprint is much
weaker than the image, therefore a denoising step is used. In [3] we replaced the
original denoising algorithm with state-of-the-art nonlocal filtering, obtaining a
significant performance improvement.
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Table 2. The considered Combiners

Combiner Trainable Required Output Type of the Base Classifiers

WMV Yes Abstract

BKS Yes Abstract

NB Yes Abstract

DS Yes Abstract or Measurement

PROD No Measurement

SUM No Measurement

3 Combination Methods

The forensic tools presented in the previous Section can be seen as classifiers
that provide the most likely class (e.g. forged/non-forged), or even a class prob-
ability, for each pixel of the image under test. By considering a pool of forensic
tools, a multiple classifer approach can be used in order to improve the detec-
tion performance, especially if the selected tools are based on quite different
approaches. The rationale of a multiple classifier system, in fact, lies in the as-
sumption that, by suitably combining the results of a set of base classifiers (i.e.,
our forensic tools), the obtained performance is better than that of any base
classifier. Generally speaking, the implementation of a multiple classifier system
implies the definition of a combiner [11] for determining the most likely class a
sample should be attributed to, considering the answers of the base classifiers.

Different combiners have been proposed in the literature [11]. In the following
we will give a short description of those used in this work.

We considered combiners applicable to Type 1 classifier (i.e., a classifier that
outputs just the most likely class, so working at Abstract level [17]), as well as
combination schemes that require class probability outputs (i.e., the so-called
Type 3 classifiers that works at Measurement level [17]1). As regards combina-
tion rules working at Abstract level, we considered: Weighted Majority Voting
(WMV), Behaviour Knowledge Space (BKS) and Näıve Bayes Combiner (NB).
Among the combiners that can exploit the measurement values provided by Type
3 classifiers, we took into account the Product (PROD), the Sum (SUM) and
the Dempster-Shafer (DS) rules.

It is also worth noting that, among the above cited combiners, SUM and
PROD do not need a training phase before their use (they are called nontrain-
able combiners in [11]), whereas the other ones (trainable combiners) need to
be trained on a suitable set of data. The main characteristics of the chosen
combiners are summarized in Table 2.

Before entering in details, it is worth recalling that some trainable combiners
make use of the so-called confusion matrix [17] for combining Type 1 classifiers.

1 For the sake of completeness let us recall that Type 2 classifiers operate at Rank
level, providing as output (a subset of) all the possible classes, with the alternatives
ranked in order of plausibility of being the correct class.
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The classification confusion matrix Ek is such that the generic element ekij (1
≤ i, j ≤ m, where m is the number of the classes) represents in our case the
percentage of pixels belonging to the i-th class that the k-th tool assigns to the
j-th class. Therefore, the value ekii represents the percentage of pixels belonging
to the i-th class which are correctly classified by the k-th tool. The values of the
elements of Ek have to be computed on a suitable set of images.

In case of majority voting the guess class is the one voted by the majority of
the classifier. In general, if more classes obtain the same number of votes, the
values ekii are used for tie breaking, i.e. the vote of each classifier is weighted by
the number representing the confidence degree of that classifier when it assigns
a pixel to the class it is voting for. The confidence degree evaluated by means of
the confusion matrices was used by Weighted Majority Voting (WMV ) for
weighting the votes given by each classifier. The combiner assigns each pixel to
the class C such that: C = argmaxi

∑
k e

k
ii · V k

i , where V
k
i is 1 if the guess class

of the k-th classifier is i and 0 otherwise.
A Behavior-Knowledge Space (BKS ) is a N -dimensional space where each

dimension corresponds to the decision of a classifier. Given a pixel to be assigned
to one of the 2 possible classes, the ensemble of the classifiers can in theory
provide 2N different decisions. Each one of these decisions constitutes one unit
of the BKS. In the training phase each BKS unit can record 2 different values
ci, one for each class. Given a suitably chosen data set, each pixel x of this set
is classified by all the classifiers and the unit that corresponds to the particular
classifiers’ decision (called focal unit) is activated. It records the actual class of
x, say j, by adding one to the value of cj . At the end of this phase, each unit can
calculate the best representative class associated to it, defined as the class that
exhibits the highest value of ci. It corresponds to the most likely class, given
a classifiers’ decision that activates that unit. In the operating mode, the BKS
combiner acts as a look-up table. For each pixel x to be classified, the N decisions
of the classifiers are collected and the corresponding focal unit is selected. Then
x is assigned to the best representative class associated to its focal unit. Note
that the BKS combiner sometimes suffers from the overtraining problem [11].

For the Näıve Bayes (NB) combiner the guess class is instead the one which
maximizes the a posteriori probability. Applying the Bayes’ formula and stand-
ing the assumption of the independence of the classifiers, it can be simply shown,
starting from the results presented in [11], that the class C which maximizes the

a posteriori probability is: C = argmaxiMi ·
∏N

k=1 e
k
ij , where Mi is the number

of samples belonging to the i-th class, N is the number of classifiers and j is the
guess class provided by the k-th classifier.

While NB uses the values of the confusion matrix in order to estimate the a
posteriori probability for each class, the Sum (SUM ) and the Product (PROD)
Rules directly use the continuous outputs provided by the tools for making
such an estimate. In particular, SUM (respectively, PROD) calculates for each
class the sum (the product) of the class probabilities provided by the different
tools, and assign the pixel under test to the class which maximizes this sum
(product).
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Fig. 1. Some examples of tampered images

In [10] a formal derivation of these rules from the Bayesian framework has been
presented. It is worth noting that PROD is sometimes oversensitive to estimates
close to zero. On the other hand, SUM is derived under strongest assumptions,
which could not be verified in practical cases.

The Dempster-Shafer combiner (DS ) is based on the Dempster-Shafer the-
ory [8]. It has been frequently applied to deal with uncertainty management
and incomplete reasoning. Differently from the classical Bayesian theory, the DS
theory can explicitly model the absence of information, whereas Bayesian ap-
proaches assign the same probability to all the possible events in case of absence
of information. According to the DS theory, a basic probability assignment (bpa)
can be associated to each base classifier, which describes the subjective degree
of confidence attributed to it. What is modeled, then, is not the analyzed phe-
nomenon, but the belief in how good the base classifiers are at reporting about
it. The typical formulation of the DS combiner [17] can be used for Type I clas-
sifiers; in order to exploit the fact that the considered tools can also output a
probability value for each class, we implemented a modified version, as proposed
by Fontani et al. (but without exploiting the so-called tool compatibility) [6].

4 Experimental Results and Discussion

In this section we report and discuss the performance of the fusion process.
Experiments have been conducted on 200 photos (1024×1024 pixels) subject to
copy-paste forgeries cropped from the images of the Uncompressed Colour Image
Database (UCID) [16]. We considered various scenarios: compressed forgeries at
different level of quality (low, medium and high) and uncompressed forgeries
subject to resampling operations, such as scaling and rotation. In Fig. 1 we
show some examples of tampered photos from our dataset.

First, we present the results obtained by running each tool individually. The
output of each technique has been converted into a probability index map,
with continuous values in the range [0,1]. After a thresholding operation and a
morphological processing (all regions smaller than 0.2% of the whole image are
attributed to random errors and removed) we obtain a binary map that, eventu-
ally, allows us not only to detect the presence of forgeries but also locate them
in the image. For each tool, we compute on the entire database several perfor-
mance measures (Table 3). In particular, results are given in terms of sensitivity,
specificity, harmonic mean of sensitivity and specificity and accuracy, defined as:
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Table 3. Results (in percent) obtained by each tool individually

Methods sensitivity specificity harmonic mean accuracy

Li-2009 91.59 45.24 60.56 47.21

Farid-2009 37.70 90.02 53.14 87.80

Bianchi-2011 59.29 95.17 73.07 93.65

Mahdian-2008 37.84 82.09 51.80 80.21

Lukás-2006 66.93 92.93 77.81 91.82

Table 4. Results obtained by combining all the forensic tools

Combiner sensitivity specificity harmonic mean accuracy

WMV 65.79 98.05 78.75 96.68

NB 83.60 92.41 87.78 92.03

BKS 47.86 99.57 64.64 97.37

DS 77.69 96.27 85.99 95.48

PROD 83.39 95.83 89.18 95.30

SUM 82.48 96.37 88.88 95.77

sensitivity =
TP

TP + FN
specificity =

TN

TN + FP

harmonic mean = 2
sensitivity · specificity
sensitivity + specificity

accuracy =
TP + TN

TN + FP + TP + FN

with TP [FP ] the true[false] positive rate, and TN [FN ] true[false] negative rate.
The performance is not always satisfactory. Only Li-2009 provides a large

sensitivity to forgeries, but at the price of unacceptably low specificity, under
50%. Bianchi-2011 and Lukás-2006 guarantee a more reasonable compromise,
with very good specificity and acceptable sensitivity, as synthesized by the pretty
large harmonic mean. and available only in the presence of the camera or a
large collection of photos taken by it, a requirement not always met in practical
applications. For this reason, when considering the fusion process applied to these
forensic tools, we will present results both with and without the PRNU-based
algorithm to account for the different situations.

In table 4 we present results obtained through the combination of all tech-
niques, including Lukás-2006, using the various fusion approaches described
before. It is immediately clear that the fusion process, in general, grants a sig-
nificant performance improvement. All individual detectors, even the best ones,
are dominated by several combiners, with the only exception of sensitivity for
Li-2009. Among the abstract-level combiners (top part of the table) the Näıve
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Table 5. Results obtained by the combiners when excluding the PRNU-based tool

Combiner sensitivity specificity harmonic mean accuracy

WMV 43.58 98.17 60.36 95.85

NB 68.46 95.31 79.68 94.17

BKS 22.12 99.93 36.23 96.62

DS 58.41 97.36 73.02 95.71

PROD 73.99 95.58 83.41 94.66

SUM 68.14 96.81 79.98 95.59

Bayes is clearly superior to the others, gaining almost 10 percent points on the
harmonic mean w.r.t. the second best. Some measurement-level combiners, how-
ever, in particular the PROD and SUM, provide a further small gain, especially
in terms of specificity. By excluding the PRNU-based tool, one of the most re-
liable when applicable, the performance of all combiners drops significantly, as
shown in table 5. However, several of them, notably the abstract-level Näıve
Bayes, and the measurement-level PROD and SUM, keep providing very good
results, superior to those of individual tools, including the PRNU-based one.

(a) image (b) real mask

(c) Li-2009 (d) Farid-2009 (e) Bianchi-2011 (f) Mahdian-2008 (g) Lukás-2006

(h) WMV (i) NB (j) BKS (k) DS (l) PROD (m) SUM

Fig. 2. Example 1: masks obtained by the single tools and the combination approaches.
Green: TP, White: TN, Red: FN, Black: FP.
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(a) image (b) real mask

(c) Li-2009 (d) Farid-2009 (e) Bianchi-2011 (f) Mahdian-2008 (g) Lukás-2006

(h) WMV (i) NB (j) BKS (k) DS (l) PROD (m) SUM

Fig. 3. Example 2: masks obtained by the single tools and the combination approaches.
Green: TP, White: TN, Red: FN, Black: FP.

Figures 2 and 3 provide some more insight into the performance of the various
individual tools and combiners. In particular, the information fusion increases ro-
bustness against unfavorable conditions that might totally foul some techniques.
In Fig.2, for example, Bianchi-2011, one of the best tools on the average, misses
the forgery altogether, because both the forgery and the image are uncompressed,
making the detection tool completely ineffective. Other tools, however, make up
for this failure, and most combiners detect the forgery with a high degree of
accuracy. The situation is reversed in Fig.3. Lukás-2006 now misses the forgery,
too small to trigger the PRNU detector but, again, several combiners provide
the correct detection map.

Both the tables and the examples clearly show the advantage of merging the
output of multiple detectors, based on alternative approaches and sensitive to
different properties of images and forgeries. In particular, working at the mea-
surement level grants a claer advantage, as one can take into account information
about the reliability of the each individual classification act to take a decision. In
addition, applying morphological operators after the fusion is certainly a good
idea. This work establishes the ground for future and more stimulating research
showing that there is still space for improvement. Besides including more and
more diverse individual tools, it will be fundamental to define a merging rule
that takes into full account the specificities of the forgery detection problem.
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