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Abstract. In this paper, we propose to accurately detect from an im-
age curvilinear features that can be approximated by polynomial curves.
Having the a priori knowledge of a polynomial parameters (coefficients
and degree), we give the possibility to recognize both the orientation
and the position of the polynomial (if it exists) in the given image. For
this objective, we present a new approach titled ”The Finite Polynomial
Discrete Radon Transform” (FPDRT) that maps the initial image into
a Radon space where each point presents the amount of evidence of the
existence of a polynomial at the same position. The FPDRT sums the
pixels centered on a polynomial and stores the result at the correspond-
ing position in the Radon space. The FPDRT extends the formalism of
the Finite Discrete Radon Transform(FRT) which is restricted to project
the image along straight lines of equation y = mx + ¢t where m and ¢
are integers. Our method generalizes FRT by projecting the image with
respect to polynomials of equation y = ma™ + ¢t where m, n and t are
integers. The FPDRT method is exactly invertible, requires only arith-
metic operations and is applicable to p X p sized images where p is a
prime number. Several applications are allowable by the FPDRT such
as fingerprint, palm print biometric applications and multi directional
roads recognition.

Keywords: polynomial curves,Finite Polynomial Discrete Radon
Transform, Radon space.

1 Introduction

One of the most basic processes in image analysis is the extraction of primi-
tives, such as lines and curves from an image. In this paper we focus on curves
detection, or more precisely, on detection of curves that can be modelized by
polynomials. One method that has proved successful for pattern recognition is
the Radon transform (RT). This transform projects a two dimensional image
along straight lines with respect to different directions as it is expressed in the
following equation:

+oo +oo
R(p,0) = / / 0(p —xcosf — ysinB)dady . (1)
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d(n) is the kronecker delta function. The parameter p is the shortest distance
between the origin of the coordinate system and the line, and 6 is the angu-
lar orientation parameter of the line.The given result of the transform is the
parameters space R(p, ) (denoted also by the Radon space) where a high val-
ued pixel(peak) presents a high probability of the existence of a straight line
mapped by the same parameters as the peak coordinates. Therefore, straight
lines detection is then reduced to the research of peaks in the parameters space.
This work generalizes the classical Radon transform by projecting images along
polynomials. Then, a peak in the resulting Radon space reveals the existence of
a polynomial and denotes its position and orientation in the original image.In
this paper, we present the Finite Polynomial Discrete Radon Transform (FP-
DRT) which is a discrete approach that extends the classical Radon transform
to recognize polynomial curves from the Radon space. Furthermore, the FPDRT
allows an exact inversion of the Radon space in such a way that the initial image
can be exactly reconstructed from the Radon space. This paper is organized as
follows. In Section 2, we highlight some related works. In Section 3, we define the
FPDRT followed by its inversion algorithm presented in section4. Experiments
are then presented in section 5 to illustrate the performance of the FPDRT. In
final, a conclusion of our paper is provided in section 6.

2 Related Works

The use of the Radon Transform (RT) in pattern recognition is not recent. In
fact, the Radon Transform is well known in the literature as an efficient method
for segments detection as it has the capacity to transform thin lines to high
valued peaks in the Radon space [I]. This propriety gives rise to many appli-
cations related to the computer vision such as the detection of ship wake from
satellite images [2], [3], the centerline detection, line width estimation [4] and
the rectangular buildings contours extraction [5]. Although the RT was mainly
investigated for segments detection, its use was extended to recognize more so-
phisticated features, namely: rectangles, spots of circular and square shapes. We
give as example the work of Magli et. Al [6] where the authors apply the RT
and then the continuous wavelet transform to analyze the wave shapes of peaks
exceeding predetermined threshold. The wave shapes differ according to the na-
ture of the pattern itself. Another work using the RT for more general pattern
recognition is the study of Hmida et. Al [7] where the authors extract rectangular
buildings from high resolution satellite images. For this purpose, the authors per-
formed a one dimensional curve along the p direction for each anglef (cf. Eqlll),
denoted by Ry curve. Then, to enhance the rectangular shape, a comparison
between each curve Ry and a perfect curve corresponding to an ideal rectangle
is performed. The retained curve is the one that shows the highest matching
level. In addition to the extraction of buildings position and orientation, this
method enables the estimation of the rectangles width. As we have shown, the
RT by itself is not able to directly recognize generalized patterns as is the case of
segments features. It requires further complicated processing to make the shapes
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recognition task possible. Therefore, several researchers proposed to generalize
the Radon transform by projecting the image along arbitrary curves and shapes.
This new transform sums the pixels centered into the curves and concentrates
the result at the corresponding parameters in the Radon space. Hence, curves
give rise to high valued peaks in the radon space; the coordinates of the local
maximum are the parameters of the curve along which the projection was per-
formed.Deans was the first to introduce the generalized Radon transform [g].
Peter Toft in his thesis [9] defined the generalized Radon Transform and pro-
posed a discrete fast algorithm to estimate curves parameters and tested his
algorithm in synthetic hyperbolas curves. Hendriks et.Al in [I0] proposed a dis-
crete generalized Radon transform for the detection of hollow hyper-spheres in
D-dimensional space. However, the proposed generalized Radon transforms in
the above works [8], [9] and [I0] are not reversible. This is considered as a dis-
advantage since the geometric transforms are in general reversible in a such way
that the initial image can be recovered from the Radon space and vice versa.
Beylkin [II] presented a discrete version of the classical Radon transform and
showed that the transform is exactly invertible if some conditions are verified.
He showed that his transform holds also for generalized curves but his approach
does not yield the multi orientation property as the classical RT. This incon-
venience makes the transform inefficient for pattern recognition field where the
features may be distributed with correspondence to any possible orientation. In
this paper, we present a new approach aiming to generalize the classical Radon
Transform by projecting the image within polynomial curves. This transform
extends the exactly invertible classical Finite Radon Transform [12], is a multi
oriented transform and also exactly invertible.

3 The Finite Polynomial Discrete Radon Transform

The FPDRT generalizes the FRT method defined by Flusser et. Al in [12] in order
to hold polynomial curves. The FRT is a discrete Radon Transform applied on
images sized of p X p where p is prime number. Starting from the assumption
that the image is periodic within p and thanks to some arithmetic operations,
the method is exactly invertible. The transform is performed by projecting a
digital image along straight lines of equation y = mx + ¢t where m and ¢ are
integers in Z,. The FPDRT extends the FRT to project the image with respect
to polynomials of equation y = ma"™ + ¢ where m and ¢ are integers in Z,.
Similarly to the FRT, our method is applied on digital images sized of p x p
where p is prime number. This restriction on the size of the image allows some
arithmetic proprieties that lead to an exact invertible algorithm. However, if the
FPDRT is needed for an image with an arbitrary size M x N , the image may be
padded out by zeros to achieve the nearest size p x p with p is the smallest prime
number that verifies p > sup{M, N}.It is to note that the FPDRT transform
also applies with a more generalized equation of polynomial @) such that

Q(r) = ma™ + a,_12" ' + ... + t where a,,_1, @p_2,....,a1 are the remaining
non- zero coefficient terms of @ .



252 1. Elouedi et al.

In the following two subsections, we describe the forward finite polynomial
transform and the inverse algorithm for it.

3.1 The Forward Finite Polynomial Discrete Radon Transform

The forward FPDRT is the first stage in the approach. It generates the radon
space presenting the polynomial projection result. The required p x p data is
defined as the finite group under addition Zf, so that the x and y axes range
both from 0 to p — 1 and the image is periodic within p in both the z and y
directions as follows

Iz +p,y+p)=1(z,y).

A projection R, (v,t) sums the pixels belonging to a polynomial mapped accord-
ing to a leader term coefficient m and intercepts v and ¢t which denote respectively
the z-axis and the y-axis translates. The equation of the forward projection is
defined as follows:

p—1p—1
Ry (v,t) = Z ZI(w,y) X0(y— <m(<x—v>p)" +1>,).
=0 y=0
p—1
= Zl(x,<m(<x—v >p)" 1t >y).
=0

(2)
for m,t,v € Zy,.

The notation < x >y means z(modN) . In addition to the horizontal projec-
tions R,, , we give the vertical projection Ry defined as the sum made over the
perpendicular polynomial curve of equation z =< 0y™ + v >,. i.e.

Ry (v) = I(v,y). 3)
y=0

Three properties emerge from the FPDRT projection:

a) Each projection R,, sums exactly p distinct points from the image I .

b) The pattern of sampled pixels by R,, is unique for each m in Z,,. For a given
fixed v and t' in Z, and for m varying in Z,, all the projections R, (v’,t")
intersect only once at coordinates (v',t).

c¢) For given fixed values m’ and v" in Z,, , all the projection functions R,/ (v', t) ,
for t in Z,, select distinct points from I .In other terms, The horizontally shifted
polynomials are parallel and there is no intersection between them.

Considering the properties a) and c), it can be seen that, for fixed values m and
v and for ¢ ranging in Z,, , all pixels from I(z, y) will be chosen just once by the
projection functions Ry, (v,t) . Therefore ,
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p—1 p—1p—1
ZR,”(U,t) = Z Z = Isum. (4)
t=0 z=0y=0

where Isum is the total sum of the image pixels. The Fig. 1 presents an
illustration of the FPDRT projections applied on a simple 5 x 5 sized image I:
The curve projected here is a parabola of equation y = m(z —v)? +t(mod5).The
vertical axis is chosen to be the x-axis and the y-axis is the horizontal one. In
this example, we have chosen the x values to range from —(p—1)/2 to (p—1)/2
instead of [0, p — 1]. This change is made for pattern recognition considerations
in order to extract patterns of pixels that fit the feature of parabolas which are
symmetric curves. This change does not affect any of properties of the FPDRT
transform. The vertical translate v follows the values of x and then ranges from
—(p—1)/2 to (p—1)/2. The periodicity of the image is also preserved in a way
that if (z —v) exceeds (p—1)/2 ( respectively —(p —1)/2), the vertical translate
v will be wrapped back to the beginning of the column i.e. at —(p — 1)/2 value
( respectively to the end of the column i.e. to (p — 1)/2 value ) in that way:

if (x —v) €] —p,—(p — 1)/2][,then (v —v) = (z — v)(modp)
if(z — v) €)(p — 1)/2,pl, then ( — v) = (& — v) (mod(—p)).

The horizontal translate ¢ follows the y values and ranges from 0 to p — 1.The
shaded pixels from Fig.1.a present the set of summed pixels by R;(0,0) which
corresponds to the parabola of equation y = (22)(mod5). When we horizontally
shift the curve by a one pixel (i.e. when ¢ = 1 and the parabola equation is
y = (2% + 1)(mod5)), the projection function R;(0,1) sums the shaded pixels
of the Fig.1.b. The pixels of coordinates (—2,5) and (2,5) are wrapped back by
the mod(5) respectively to (—2,0) and (2,0). It can be seen that each function
R1(0,0) and R;(0, 1) sums exactly 5 distinct pixels and since the corresponding
two parabolas are parallel, the related sets of pixels do not intersect. When we
translate the same curve vertically (i.e. for v = 1), the periodicity of the image
within the z-axis allows the pixel (-2,4) to be selected (Fig.1.c). Fig.1.d shows
the pattern of pixels selected by the vertical projection Ra (1).

3.2 The Inverse Polynomial Discrete Radon Transform

The reconstruction of a point I’(v,t) consists in summing all the projections
R,,(v,t) as well as the vertical projection Ry (v) that have already selected and
summed the point I(v,t) . In fact, the property (b) states that for fixed values
t and v, all the projections R,,(v,t) as well as the vertical projection Ry (v)
sample distinct patterns pixels and intersect only at the point (v,t). Then, all
the pixels of the initial image are summed just once except the point (v,t)
which is selected (p + 1) times ( p times by the R,,(v,t) projections and once
by the vertical projection Rg-(v)). Then, we can conclude that the total sum of
the image pixels plus p times the value of I(v,t) is obtained by summing the
projections R, (v,t) andRg (v) . As the proprety c) states that the sum of the
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Fig.1. Discrete parabolas in 5 x 5 arrays. a) shaded points lie on the center of a
parabola of equation y = 2%(mod5).The selected pixels are summed to give R1(0,0).
b) Shaded pixels correspond to the horizontally shifted parabola of equation y = (22 4+
1)(mod5).c) Shaded pixels lie on the vertically translated parabola of equation y =
((z — 1)?)(mod5). d) The vertical projection Rp (1).

total pixels of the image can be found by summing all the parallel polynomials
for a fixed m and v, then we define the following equation as the reconstruction
equation:

I(v,t) =1/p x (i Ry (v,t) + R (v) — Isum). (5)

m=0

Where Isum = Y P"} Ry, (v,t), with v,t € Z,.

4 The Pattern Recognition Task

In the classical Radon transform, the direction of straight lines along which the
projection is processed is set by the angle 6 (cf. Eq.[d). In the FRT method[I2],
the integer m presents the gradient of the straight line m = tg=1(6). The varia-
tion of the grdient m leads to the variation of the straight lines directions which
preserves the multi orientation property of the classical Radon transform. In our
case, the integer m presents the leader term coefficient of the polynomial and
thus the variation of m leads to the variation of the scale of the polynomial
and has no effect on its orientation. Nevertheless, the multi orientation property
is required to our transform, in order to project the image according to differ-
ent orientations which allows to answer to the pattern recognition requirements
since a polynomial must be accurately extracted whatever its orientation in the
image. Therefore, we have added the angle 6 as a new parameter which sets the
orientation of the polynomial projection.We express the multi-oriented FPDRT
by the following equation where we apply the FPDRT on the —#-rotated image
I_y instead of I:
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p—1lp—1

R o(v,t) = ZZI_ z,Y) X 0(y— <m(<xz—v>,)" +t>p). (6)
z=0 y=0

The inversion algorithm leads to the exact reconstruction of the rotated image
I_y . The initial image I can be found by the inverse rotation of I_¢ .

5 Experiments

We have applied the FPDRT to synthetic and real images. Fig.2 shows the result
of the FPDRT on a synthetic image containing two parabolas of equation y = 2.
The first whose vertex is positioned at (0,0) was rotated according to the angle
0 = 45° and the second was vertically shifted to the position (10, 0).we have var-
ied the projection anglef by increasing it by 5° unit step in the range [0°, 180°].
The Radon spaceR; oo presented in Fig.2.b shows a peak at the parabola vertex
position (10,0). A peak at (0,0)is also depicted in the Radon space Rj 50 (cf
Fig.2.c ) corresponding to the vertex position of the rotated parabola.

Initial image
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Fig. 2. a): The initial image presenting two parabolas of equation y = z?.the first
parabola is translated by the vector (v,t)=(10,0) and the second is rotated with respect
to the angle 6 = 45.(b): The radon space for # = 0 shows a peak at (10,0).(c):The radon
space for § = 45° shows a peak at the position (0,0) of the rotated parabola.

Fig.3 presents the result of the FPDRT on a real fingerprint image. We have
first binarized and thinned the initial image (Fig.3.b) on which we have applied
the FPDRT by projecting it over parabolas of equation: ay = ma2. Fig.3.c
presents the radon space for § = 0°, a = 50 and m = 3. Clearly, a peak is
depicted at the position of the vertex of the pointed parabola.

We have also tested the FPDRT on a real image presenting built arches (cf
Fig.4.a). Fig.4.b presents the binarized image.Peaks are shown in Fig.4.c and
Fig.4.d .

In the same manner, Fig.5.a presents a synthetic image containing two hyper-
bolas of equation y = 2. The first is shifted by the vector (10,0) and the second
is shifted by the vector (-10,10). The radon space R oo shows two peaks related
to the two hyperbolas position shift.



256 1. Elouedi et al.
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a) Fi.ngerprinf image

b) Binarized and thinned Fingerprint image )
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Fig. 3. a) A grey level fingerprint image where the vertex of the parabola we object to
locate is pointed by a red arrow. (b) The binarized and thinned image. (¢) The Radon
space resulted from the application of the PDRT on the binarized and thinned image
showing a peak at the vertex position pointed by the red arraw.
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Fig. 4. a) Arches image. b) Binarized image. c) The Radon space applied on the bi-
narized image,d = —90°,a = 50, m = 1 showing two peaks at(-90,140) and (-60,140)
d)The Radon space applied on the binarized image,0 = —90°,a = 50, m = 3 showing
two symmetric peaks at (-110,50) and (-110,240).
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We have also tested the inversion algorithm on several p X p sized images. The
inversion was exact for each test. As an example, Fig.6 shows the result for an
initial image which was projected with parabolic curves of equation y = x2 .
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Fig. 5. a) : The initial image presenting two hyperbolas of equation y = 3. The first
at the left was translated from the origin(0,0) by the vector(v,t)=(10,0)and the second
was translated by the vector (v,t)=(-10,10).(b): The radon space for # = 0 shows peaks
at corresponding (v,t) positions.

Initial image ) Reconstructed image

Fig. 6. Exact inversion illustration. (a):the initial image. (b) The polynomial Radon
space performed by projecting parabolas where the projection angle § = 0 and m = 1.
(c) The reconstructed image.

6 Conclusion

In this work, we have introduced a new approach that generalizes the classical
Radon transform by allowing the projection of the image over polynomial curves
following different directions. We showed through synthetic and real images the
accuracy of the approach in detecting the orientation as well as the position of
different polynomials in the image. An another advantage of the FPDRT ap-
proach is its exact invertibility. Therefore, the transform is particularly advanta-
geous in applications which require both exact inversion and curves recognition.
A possible application can be fingerprint or palmprint recognition where we need
polynomial curves recognition for identifying persons and the exact inversion for
encrypting images for security considerations.
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