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Abstract. Recently Sparse Representation-based classification (SRC)
has been successfully applied to pattern classification. In this paper, we
present a robust Coarse-to-Fine Sparse Representation (CFSR) for face
recognition. In the coarse coding phase, the test sample is represented
as a linear combination of all the training samples. In the last phase, a
number of “nearest neighbors” is determined to represent the test sam-
ple to perform classification. CFSR produces the sparseness through the
coarse phase, and exploits the local data structure to perform classifi-
cation in the fine phase. Moreover, this method can make a better clas-
sification decision by determining an individual dictionary for each test
sample. Extensive experiments on benchmark face databases show that
our method has competitive performance in face recognition compared
with other state-of-the-art methods.
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1 Introduction

Over the past few decades, face recognition (FR), has always been a very chal-
lenging topic in pattern recognition [1]. This is due to a variety of reasons,
including the fact that human faces are non-rigid 3D objects and many vari-
ables must be taken into account, including lighting conditions and temporal
variations in the face appearance due to aging. As such, the recognition from 2D
samples is an ill-conditioned problem which requires further efforts to become
well-conditioned.

Towards this end, a number of approaches have been developed. Among them,
global transform methods have been widely used in appearance-based FR, which
includes principal component analysis (PCA) |2] and linear discriminant anal-
ysis (LDA) [3]. These methods usually use the global structure information of
the entire training set to produce transform axes. Local transform methods, in-
stead exploit local training samples to compute the transform axes in a more
economical way [4-6].

The principles of locality and good approximation, underlying many learning
algorithms applied in biometrics, are very important to ensure an accurate repre-
sentation of the data samples to properly represent a subject. In many computer
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vision applications, these principles have been pursued by means of a coarse-to-
fine approach where an optimal representation is searched from the general to
the particular through a proper sequence of frequency bands. Successful cases
have been stereo disparity and optical flow computation [7]. A representative
example is the scale-space theory [8] for edge and region detection. Remarkably,
the Scale Invariant Feature Transform (SIFT), which has been largely applied
in biometrics, is a successful application of the coarse-to-fine approach [9]. The
same quest for locality and good approximation has been pursued in face-space
analysis [4-6]. We postulate, that the same principles of locality and good ap-
proximation can be successfully enforced by means of a coarse-to-fine strategy
to build an efficient face representation.

Recently, SR-based Classification (SRC) has demonstrated a good potential
for FR [10]. Nonetheless, what makes up the underlying theoretical foundation
for SR is still unclear. Zhang et al. |[11]proposed the Collaborative Representation
(CR) as the key element of SRC for face classification. More importantly, they
proposed CR-based Classification with Regularized Least Squares (CRC RLS),
which has significantly less complexity than SRC but leads to very competi-
tive results. In [12] Xu et al. also developed a Two-Phase Test Sample Sparse
Representation (TPTSR) method to perform face classification.

In order to preserve both locality and approximation accuracy, in this pa-
per we propose a coarse-to-fine strategy to build a sparse face representation,
namely a Coarse-to-Fine Sparse Representation (CFSR). In the coarse phase the
test sample is represented as a linear combination of the whole training set, and
the classes and the nearest neighbors producing the least representation error
are determined. In the fine phase the test sample is represented as a linear com-
bination of only the selected nearest neighbors. The classification is performed
by evaluating which class produces the least representation error. In this way, a
smaller number of candidates are retained for classification reducing the required
processing time.

Similarly to [11,/12] our method employs the l;—norm to recover the best face
representation. Unlike [12], in our approach not only a number of neighbors are
selected, but the closest classes are also selected in the coarse phase.

The reminder of the paper is organized as follows. Section 2 briefly reviews
SRC. In Section 3 the proposed CFSR is presented. The method is extensively
discussed and compared with similar approaches in Section 4. Section 5 presents
experimental results and Section 6 draws some conclusions.

2 How SRC Works for Face Recognition

Wright et al. [10] proposed SRC for face recognition. Denote by A; € R™*"
the set of training samples of the i*" subject class. Let A = [A1, A, ..., Az] be
the dictionary of training samples from L classes. Given a test sample y, The
procedures of SRC are summarized as follows.
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1) Normalize the columns of A to have unit lo—norm.
2) Represent over A via [; —minimization.

@:argmcgn{IIy*AaHg+>\||0‘H1} (1)

where A is a small positive constant balancing the reconstructed error of y
and the sparsity of a.
3) Compute the residuals.
ei(y) = lly — Asdull, (2)
where &; is the coefficients vector associated with only the it" class.
4) Perform classfication via

identity(y) = argmin{e; } (3)
K3

3 Coarse-to-Fine Sparse Representation

To improve the performance of sparse representation for robust FR, we propose
here a coarse-to-fine sparse representation (CFSR) scheme for FR, and present
the details of CFSR in this section. Let A = [A1, Aa, ..., A] be the dictionary of
training samples from L subjects, where A; is the set of training samples of the
i*" class. Given a test sample y The main steps of CFSR are as follows:

1) Build dictionary A using all normalized training samples.

2) Represent y over A via ly—minimization and use the coarse phase to deter-
mine S classes best representing y with M nearest neighbors.

3) Build dictionary B using the selected S x M nearest neighbors.

4) Code y over B via lo—minimization and use the fine phase to determine the
identity of y.

3.1 The Coarse Phase of CFSR

The coarse phase of CFSR seeks to represent y as a linear combination of all
the training samples and uses the representation result to identify S(S < L)
classes which produce the S greatest contributions in representing y. Differing
from SRC in [10], we use the lo—norm for classification:

a = argmind|ly — Aally + A} (4)
where A is the regularization parameter. This can be solved as:
a=(ATA+A)TATy (5)

where [ is the identity matrix.
Let {®1,1,.., X1, L1, ---, TL,n} be the set of all training samples, where
x; j is the j*" sample of the i'" class. Now we rewrite y = Aé as follows

YR O1T11 . F AL TN (6)
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where a = [@1.1, ..., oL n], @ ; is the coefficient of z; ;. Note that each training
sample makes its own contribution to representing y. We compute the sample
specific representation residual e; ; = ||y — d&; jx; |, to evaluate the error of each
training sample in representing y.

For each class, we exploit e; ; to identify M training samples that have the M
smallest errors and refer to them as the M nearest neighbors of the test sample.
Then for the it class, we take the cumulative residual of the M neighbors as its
error, i.e. e; = > e;,; in representing y. Next we exploit e; to identify

jEMmneighbors
S(S < L) classes which have the S smallest errors in representing the test
sample. We consider that y is from one of the selected S classes. Consequently,
CFSR classifies y into only one of the S classes. In other words, we perform a
coarse classification of the test sample in this phase.

3.2 The Fine Phase of CFSR

Let ¢ = {c1, ..., cs} stand for the set of class labels of the determined S classes.
Denote by B = [Bi, Ba, ..., Bg] the dictionary of S x M nearest neighbors from
the selected S classes, where B; is the set of M neighbors of y from the ct
class. The fine phase of CFSR uses only the S x M neighbors to represent y and
exploits the representation result to classify the test sample. That is, we code y
by dictionary B via l—minimization. There is

B = argmin{lly — BB, + nllBll.} (7)

where p is the regularization parameter. The fine classification by /3 is the same
as the classification by & in SRC [10] as follows

identity(y) = argmin{y — BiBi} (8)

4 Analysis of Coarse-to-Fine Strategy

The I; —minimization adopted in [10] makes SRC very expensive. In [11] Zhang et
al. revealed that it is the collaborative representation (CR) mechanism, but not
the 1 —norm sparsity, that plays the essential role for face classification in SRC.
Moreover, the ls—norm was adopted to produce a certain amount of “sparsity”
and consequently obtain a more efficient classification.

CFSR shares some differences and similarities with these two methods. They
are different in that CFSR uses the linear combination of only a subset of the
training samples to represent the test sample. In this regard, we can view CFSR
as a local transform method. Local transform methods such as the local Fisher
discriminant analysis proposed in [6] can achieve good classification performance
by using the local data structure of patterns. Besides, CFSR is able to make a
better classification decision by determining an individual dictionary for each
test sample, while all the test samples share the same dictionary in SRC and
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CRC RLS. The adopt of ls—norm in CFSR bears a lower computational com-
plexity as compared to SRC.

CFSR is also similar to TPTSR [12]. This method first identifies ) nearest
neighbors for the test sample and then uses these neighbors to represent and
classify the test sample. We can consider the first stage of TPTSR as a special
Nearest Neighbor (NN) classifier, while the coarse stage of CFSR can be viewed
as an improvement to the Nearest Subspace (NS) method. More importantly,
we do not use all the training samples in each class, but only a subset of them
to represent the test sample.

The selective inclusion of representative samples, performed in the“coarse
phase”, allows to discard noisy samples (for example with occlusions or expres-
sion changes) which may compromise the representation and hence recognition
accuracy. This makes the algorithm more robust to variations in facial appear-
ance.

As for any parameterized learning scheme, the representation performance of
CFSR is affected by the variability of the free parameters, in this case S and
M. Moreover, as the optimal values of S and M depend on the structure of the
training dataset, they cannot be determined theoretically. Therefore, as discussed
in section 5.3, the optimal values of S and M are determined empirically from
the training data.

5 Experimental Results

We tested the performance of CFSR on several representative face databases:
Extended Yale B [14], AR [15] and ORL [16]. The competing methods included
the original NS [17], SRC [10], CRC RLS [11] and TPTSR [12]. Before per-
forming the classification, we first applied PCA to reduce the dimensionality. In
SRC we choose SPGL1 sparse reconstruction solver for /{ —minimization. The
parameters A and g in both CFSR and TPTSR are set as 0.001 and 0.001. In
CRC RLS, we also set A as 0.001. All the experiments were run using MATLAB
on a 3.16GHz PC with 4.0GB RAM. In order to compare the performances of
the algorithms under the same testing conditions, the reported results were all
obtained by running the different algorithms on the same computing platform
and on the same datasets, not from the results reported in the original papers.

5.1 Face Recognition

Extended Yale B Database: The Extended Yale B database consists of 2,414
frontal face images of 38 individuals. All the images are cropped and normalized
to 54 x 48. For each subject, we randomly select 20 images for training and used
the remaining for test. For feature dimension, we choose 30, 64, 150, 300 and 500.
To make a reasonable comparison between CFSR and TPTSR, the numbers of
selected nearest neighbors used in these two methods should be the same. That
is the value of S x M should be equal to that of ). In this experiment, we
set M, S and @ as 4, 10 and 40, respectively. Fig. [l (a) shows the recognition
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accuracy versus feature dimension by NS, SRC, CRC RLS, TPTSR and CFSR.
It can be seen that CFSR achieves better results than the other methods in
all dimensions. With a feature dimension equal to 150, CFSR already achieves
about 96.9% accuracy, compared to 94.9% for TPTSR, 95.4% for CRC RLS,
93.5% for SRC and 95.0% for NS.

AR Database: The AR database consists of over 4,000 frontal images from
126 individuals [15]. For each individual, 26 pictures were taken in two separate
sessions. As in [10], we choose a subset of the dataset consisting of 50 male
subjects and 50 female subjects. For each subject, we select eight images with
various illuminations, expressions and occlusion from Session 1 for training, and
use all the thirteen images from Session 2 for test. The images were cropped to
60 x 43. We selected five feature dimensions: 30, 54, 120, 300 and 500. In this
experiment, the parameters M, S and @ are set as 6, 50 and 300, respectively.
Fig.[2(a) shows the results. We can see that on this database when the dimension
is very low, CFSR performs slightly worse than TPTSR and SRC. For example,
when the dimension is 30, the accuracies of CFSR, TPTSR and SRC are 51.2%,
52.1% and 52.5%, respectively. However, increasing the feature dimension, CFSR
performs better than all the other methods except for a feature dimension equal
to 300. The best recognition accuracies of CFSR, TPTSR, CRC RLS, SRC and
NS are 85.2%, 84.3%, 85.1%, 73.1% and 62.4%, respectively.

ORL Database: The ORL database contains 400 images from 40 subjects, each
providing 10 different images. In this experiment, we randomly select 5 images
of each subject for training, with the remaining 5 images for test. We compute
the accuracies with five dimensions 40, 80, 120, 160 and 200. In this experiment,
the value of M, S and @ are respectively set as 3, 5 and 15. The results are
illustrated in Fig. Bl (a) We can see that CFSR consistently outperforms all the
other methods. With a feature dimension equal to 160, the accuracy for CFSR
is 2.5%, 6.5%, 2% and 3% higher than that of TPTSR, CRC RLS, SRC and
NS, respectively. It can be seen also that CRC RLS performs worse than all the
other meth performs worse than all the other methods on the ORL database.

5.2 Computational Complexity

In this section, we compare the running time of CFSR and other competing
methods. Eigenfaces of dimensionality of 150, 120 and 120 are respectively used
as the input facial features on Extended Yale B, AR and ORL databases. Table.
[ shows the accuracies and the computation time required for different methods.

On Extended Yale B, with M = 6 and S = 5, CFSR achieves the best accuracy
(96.9%), compared with the best accuracy of TPTSR (96.1%), 93.5% for SRC,
95.4% for CRC RLS and 60% for NS. Although CFSR is much slower than
NS and CRC RLS, its computational speed is 2.51 and 1.37 times faster than
TPTSR and SRC (measured on the same computing platform and processing
conditions). On the AR database, CFSR achieves a significantly higer accuracy
compared to all other methods, and it is faster than both TPTSR and SRC.
For the experiments on ORL, TPTSR is slightly faster than CFSR but reports a
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Fig. 1. Results on the Extended Yale B database (a) Comparison with state-of-the-art
(b) Comparison with EUSR

Fig. 2. Results on the AR database (a) Comparison with state-of-the-art (b) Compar-
ison with EUSR
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Fig. 3. Results on the ORL database (a) Comparison with state-of-the-art (b) Com-
parison with EUSR
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Table 1. Computed best recognition accuracy and computation time required on the
Extended Yale B, AR and ORL databases

Datasets Extended Yale B AR ORL
Algorithms Rate(%) Time(sec) Rate(%) Time(sec) Rate(%) Time(sec)
NS 95.0 0.0084 60.0 0.0058 96.5 0.0016
CRC RLS 95.4 0.0018 78.7 0.0042 93.5 0.0008
SRC 93.5 1.203 69.5 1.0453 96.0 0.3044
TPTSR 96.1 0.6546 80.0 0.5615 98.0 0.0157
CFSR 96.9 0.479 81.2 0.5499 98.5 0.0158

lower accuracy. In comparison with SRC, CFSR is 19.27 times faster and reports
2.5% increase in recognition accuracy.

NS and CRC RLS both code a test sample by a dictionary via l—minimization.
The dictionary of NS is comprised of training samples from the same class, while
the dictionary of CRC RLS consists of all the training samples. In all the com-
peting methods, NS and CRC RLS are the two most efficient methods. However,
CFSR performs better than both of them in accuracy, especially when the feature
dimension is low, CFSR achieves much higher accuracy than CRC RLS.

5.3 Influence of S and M

The total number of training samples and classes, the distribution of the samples
and the local structure of the test samples can all affect the optimal values of §
and M. For example, if a test sample is very close to the boundaries of several
classes, S and M should be large to capture the complexity of the local structure
of the face manifold. On the contrary, if the test sample is close to a class center,
S and M can be set to be arbitrarily small. Fig. [ illustrates the relationship
between the recognition accuracy and the values of S and M, as computed on
the AR database. As it can be noticed, the accuracy may not be directly related
to increasing values of S and M. For example, if S = 20 and M = 4, the accuracy
is equal to 77.9%, while it drops to 75.6% when S = 20 and M = 8. Nonetheless,
despite the complexity of the AR dataset, which includes both changes in facial
expression and occlusions, the figure demonstrates a graceful degradation of
accuracy when varying the S and M parameters.

5.4 The Rationale for the Coarse Phase

One of the main objectives for the coarse phase is to select the most represen-
tative training samples for a test face. An obvious argument is whether it is
more practical to directly compute the distance with all other face samples in
the training set instead of deducing the data from the sparse representation. In
order to test this option we run the same classification tests described in section
5.1, with a modified version of the CFSR algorithm (dubbed EUSR) where, in
the coarse phase, the Euclidean distance between the test sample and all sam-
ples in the training set is computed to select the nearest neighbors. The fine
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Fig. 4. Relationship between S, M and recognition accuracy on the AR database

phase of EUSR is the same of CFSR. The accuracy versus the values of feature
dimension, computed on the three datasets, are reported in Fig. [ (b), Fig.
(b), and Fig. Bl (b).

As it can be noticed, the coarse-to-fine strategy entirely based on the sparse
representation consistently achieves the best recognition accuracy, as compared
to the algorithm based on the Euclidean distance. This demonstrates the effec-
tiveness of the proposed approach.

6 Conclusion

The large variability of face appearance resulted in the design of a large number
of classification algorithms together with several different representations for face
classes. The ill-conditioning nature of the face recognition problem makes it very
hard to devise a unique methodology which both allows to well represent a large
number of classes of individuals and, at the same time, achieving robustness to
noise, induced by the data capturing.

This paper proposed a novel method to achieve both accurate representa-
tion and robustness to noise through a Coarse-to-Fine Sparse Representation
(CFSR)technique. The coarse phase determines an individual dictionary for each
test sample by selecting S classes which can produce the least residual when rep-
resenting the test sample with their corresponding M nearest neighbors. The fine
phase seeks to represent each test sample with their corresponding dictionaries
and perform the final classification by exploiting the resulting representation.
Our approach has been tested on several representative face databases. The ex-
perimental results show the competitive performance in comparison with other
state-of-the-art techniques.
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