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Abstract. This paper presents a new method to automatically locate pupils in
images (even with low-resolution) containing human faces. In particular pupils
are localized by a two steps procedure: at first self-similarity information is ex-
tracted by considering the appearance variability of local regions and then they
are combined with an estimator of circular shapes based on a modified version of
the Circular Hough Transform. Experimental evidence of the effectiveness of the
method was achieved on challenging databases containing facial images acquired
under different lighting conditions and with different scales and poses.
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1 Introduction

As one of the most salient features of the human face, eyes and their movements play an
important role in expressing a person’s desires, needs, cognitive processes, emotional
states, and interpersonal relations. For this reason the definition of a robust and non-
intrusive eye detection and tracking system is crucial for a large number of applications:
advanced interfaces, control of the level of human attention, biometrics, gaze estima-
tion for example for marketing purposes, etc. A detailed review of recent techniques for
eye detection and tracking can be found in [1]], where it is clear that the most promising
solutions use invasive devices (active eye localization and tracking). In particular some
of them are already available on the market and require the user to be equipped with
a head mounted device [2]], while others obtain accurate eye location through corneal
reflection under active infrared (IR) illumination [3]]. Passive eye detection and tracking
systems are only recently introduced and they attempt to obtain information about eye
location just starting from images acquired from one or more cameras. Most popular
approaches in this area use complex shape models of the eye: they work only if the
important elements of the eye are visible and then zoomed, or high resolution views
are required [4]. Other approaches explore the characteristics of the human eye to iden-
tify a set of distinctive features around the eyes and/or to characterize the eye and its
surroundings by the color distribution or filter responses. The method proposed by As-
teriadis et al. [3] assigns a vector to every pixel in the edge map of the eye area, which
points to the closest edge pixel. The length and the slope information of these vectors
are consequently used to detect and localize the eyes by matching them with a training
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set. Timm and al. [6] proposed an approach for accurate and robust eye center local-
ization by using image gradients. They derived an objective function whose maximum
corresponds to the location where most gradient vectors intersect and thus to the eye’s
center. A post-processing step is introduced to reduce wrong detection on structures
such as hair, eyebrows, or glasses. In [7]] the center of (semi)circular patterns is inferred
by using isophotes. In a more recent paper by the same authors, additional enhance-
ments are proposed (using mean shift for density estimation and machine learning for
classification) to overcome problems that arise in certain lighting conditions and occlu-
sions from the eyelids [8]. A filter inspired by the Fisher Linear Discriminant classifier
is instead proposed in [9] to localize the eyes. A sophisticated training of the left and
right eye filters is required. In [10] a cascaded AdaBoost framework is proposed. Two
cascade classifiers in two directions are used: the first one is a cascade designed by
bootstrapping the positive samples, and the second one, as the component classifiers of
the first one, is cascaded by bootstrapping the negative samples. A method for precise
eye localization that uses two Support Vector Machines trained on properly selected
Haar wavelet coefficients is presented in [11]]. In [[12]] an Active Appearance Model (or
AAM) is used to model edge and corner features in order to localize eye regions.

Unfortunately, the analysis of the state of the art reveals that most of the methods uses
a supervised training phase for modeling the appearance of the eye or, alternatively,
introduces ad-hoc reasoning to filter missing or incorrect detection. For this reason,
although leading to excellent performance in specific contexts, they can not be directly
used in different contexts (especially in the real world ones) without some adjustments
of the models previously learned.

This paper explores the possibility to introduce a pupil detection approach that does
not require any training phase (or post filtering strategy). It detects the pupil in low-
resolution images by combining self-similarity and circularity information: in other
words the total variability of local regions are characterized by saliency maps that are
then related with gradient based features specifying point-wise circularity. This way the
proposed approach is more suitable to operate in real contexts where it is not generally
possible to ensure uniform boundary conditions. Experimental evidence of the effec-
tiveness of the method was achieved on benchmark data sets containing facial images
acquired under different lighting conditions and with different scales and poses.

2 Overview of the Proposed approach

Figure [1] schematically shows the main steps of the proposed approach. Each input im-
age is initially analyzed by using the boosted cascade face detector proposed by Viola
and Jones [13]. The rough positions of the left and right eye regions are then estimated
using anthropometric relations. In fact, pupils are always contained within two regions
starting from 20x 30 percent (left eye) and 60x30 percent (right eye) of the detected
face region, with dimensions of 25 x20 percent of the latter [14]. The innovative pro-
cedure based on the combination of self-similarity and circularity information is finally
applied to the cropped patches in order to accurately find the pupil location.
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Fig. 1. A quick overview of the proposed multistep approach for pupil localization

2.1 Self-similarity Space Computation

The key idea is to initially find regions with high self-similarity, i.e. regions that retain
their peculiar characteristics even under geometric transformations (such as rotations
or reflections), changes of scale, viewpoint or lighting conditions and possibly also in
the presence of noise. Self-similarity score can be effectively computed as a normalized
correlation coefficient between the intensity values of a local region and the intensity
values of the same geometrically transformed local region [[15]. A local region is self-
similar if a linear relationship exists:

I(T(x)) =a+bI(z) Vo € P (1)

where P is a circular region of radius r and z is a point located in P. I(z) denotes
the intensity value of the image I at location x, and T represents a geometric transfor-
mation defined on P. For the purposes of the paper, T is limited to a reflection and a
rotation. Both reflection and rotation, preserve distances, angles, sizes, and shapes. To
better clarify the notions of reflection and rotation into the specific context under con-
sideration, point locations can be represented in polar coordinates, hence = = (r, ¢).
Every reflection is associated to a mirror line going through the center of P and hav-
ing orientation denoted by ¥ € [0; 27]. Having said that, a reflection is defined as the
geometric transformation that maps the location (r, ¢) to location (r, 29 — ¢).

Similarly every rotation has a centre and an angle. Let the centre of the rotation be
the centre of P and let the rotation angle « be one of the angles 2;, where n is an
integer. A rotation maps the location (r, ¢) to location (r, ¢ + ).

Given these preliminary concepts, from the operational point of view, the cornerstone
of this first phase is the search of the points that are closest to satisfy the condition
in equation [Il considering that on real data, it can hardly be fulfilled for all points of
P. This way, highlighted points should correspond to the pixels of the eye which has
both (almost) radial and rotational symmetry. In particular the strength of the linear
relationship in equation[Ilcan be measured by the normalized correlation coefficient:

> U(:) = DU(T () — 1)

nee(P,T) = K B
VO @) = D2 (T () - 2

2
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Here i counts all points of P and I represents the average intensity value of points of
P.

At a given location, the normalized correlation coefficients in equation Q] can be
computed for different mirror line orientations or different angles of rotation. All give
information of region self-similarity.

In this paper the average normalized correlation coefficient computed over all ori-
entations of the mirror line (radial similarity map S) at a given location is used as a
measure of region self—similarityﬂ],

Let the sampling intervals for § be A0 = %\’; the similarity measure is then computed
as

1 N-1
S(P)= > nee(P,Ty,) (3)
=0

To overcome the problems related to the processing near the borders, for the calcula-
tion of the self-similarity scores, a wider area (10 pixels in each direction) is considered
and then the portion of the self-similarity space relative to the original size of the eye
patches is extracted. At the end a (m x n x M) data structure S, is available where
m X n is the size of the input image and M is the number of sampled radii r (i.e. the
number of considered scales). Local maxima and minima are then obtained by com-
paring each pixel value to its eight neighbors in the current similarity map and nine
neighbors in the scale level above and below. A point is selected only if it has an ex-
treme value compared to all its neighbors. The self-similarity map (of size m x n) at
the scale corresponding to the region (among the selected ones) with the highest self
similarity score is the outcome of this first phase.

2.2 Circularity Measurements

The second phase starts with the estimation of the spatial distribution of circular shapes
and this is done by a modified version of the Circular Hough Transform (CHT). A circle
detection operator, that is applied over all the image pixels, produces a maximal value
when a circle with a radius in the range [Rmin, Rmaz] is detected. It is defined as
follows:

. f fD(x,y) e(a, p) - O(a—z, 8 —y)dadf

u(z, 4)
( y) QW(Rmax - Rmim)
The domain D(x,y) is defined as:
D —_ §R2 R2 < o 2 o 2 < R2 5
(:L’, y) {(a’ ﬂ) 6 ‘ min — (a :L.) + (/B y) —_ max ( )
where e is the normalized gradient vector:

O =Um g

! The self-similarity coefficients computed when 7 is a reflection are equal to those computed
when 7' is a rotation. This has been mathematically proven in [15]
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and O is the kernel vector

cos(tan~t(y/x)) sin(tan=1(y/x)).p
\/a:2 + 32 ’ \/a:2 + y2
The use of the normalized gradient vector in the equation () is necessary in order

to have an operator whose results are independent from the intensity of the gradient in
each point.

O(z,y) = | (N

2.3 Pupil Localization

The final step of the proposed approach integrates the selected self-similarity map and
the circular shape distribution space. Both data structures are normalized in the range
[0,1] and then point-wise added. The peak in the resulting data structure is the point
that is finally selected as the pupil center.

FigurePlshows an example of how the proposed procedure works; in particular figure
shows the cropped region of the eye whereas figure shows the points with
highest self similarity values across all the scales. The resulting self-similarity map at
the peak scale is then reported in figure and figure 2(d)] reports the circular shape
distribution space built by using the modified version of the Circular Hough Transform.
Finally figure shows the joint space obtained by appropriately combining the two
data structures. Notice how this joined space is the most suited to easily locate the pupil
that is highlighted in figure 2(D)] by a red circle.

From section [2| it is quite straightforward to derive that the proposed approach is
invariant to rotation, illumination and scale changes. Moreover it works without making
the assumption that the image sequences contain only face images.

3 Experimental Results

Experimental evidence of the effectiveness of the method was achieved on challenging
benchmark data sets. The MATLAB implementation of the boosted cascade face detec-
tor proposed by Viola and Jones [[13] with default parameters is used in our experiments,
discarding false negatives from the test set.

In the first experimental phase the BiolD database [[16] is used for testing and in
particular the accuracy of the approach in the localization of the pupils was evaluated.
The BiolD database consists of 1.521 gray-scale images of 23 different subjects and has
been taken in different locations and at different times of the day under uncontrolled
lighting conditions. Besides non-uniform changes in illumination, the positions of the
subjects change both in scale and pose. Furthermore in several examples of the database
the subjects are wearing glasses. In some instances the eyes are partially closed, turned
away from the camera, or completely hidden by strong highlights on the glasses. Due to
these conditions, the BioID database is considered a difficult and realistic database. The
size of each image is 384 x 288 pixels. A ground truth of the left and right eye centers is
provided with the database. The normalized error, indicating the error obtained by the
worse eye estimation, is adopted as the accuracy measure for the found eye locations.
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Fig. 2. The outcomes of the proposed approach

This measure is defined in ase = maz(d’eg’d”g"‘) where djc ¢ and d;;gnt are the
euclidean distances between the found left and right eye centers and the ones in the
ground truth and w is the euclidean distance between the eyes in the ground truth. In
this measure, e < 0.25 (a quarter of the interocular distance) roughly corresponds to the
distance between the eye center and the eye corners, e < 0.1 corresponds to the range
of the iris, and e < 0.05 to the range of the pupil.

In figure 3] the performances of the proposed approach on the BiolD database are
reported (blue line) and compared with those obtained using self-similarity (i.e. the
point with the maximum value in the saliency map) or circularity (i.e. the point with
the maximum value in the accumulation space) information. The graph shows that the
combination of the feature related to appearance (that is to say the self-similarity) and
to oriented edge location as feasible centers of circumferences (i.e. Modified Circular
Hough Transform) allows to increase the localization performance. These results are
very encouraging especially when correlated with state-of-the-art methods in the liter-
ature. To this end in figure [ the comparison with some of the most accurate techniques
in the literature which use the same dataset and the same performance metric is shown.
Looking at the graph it can be seen that only the methods proposed in [8] and [6] pro-
vide slightly better results both for e < 0.1 and e < 0.05 measures. In general the
proposed approach outperforms most of the related methods, even if it does not make
use of supervised training or post processing adjustments.

In figure 3l two images of the BiolD database processed by the proposed approach
are shown. In the one on the left pupils are correctly detected (normalized error 0.0267),
whereas in the one on the right some highlights on the glasses mislead the algorithms
that miss the detection of the pupil of the left eye (normalized error 0.1158).

To systematically evaluate the robustness of the proposed pupil locator to lighting
and pose changes, one subset of the Extended Yale Face Database B [18] is used.
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Fig. 3. Results obtained on the BiolD database
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Fig. 4. Comparison with state-of-the-art methods in the literature on the BiolD database

The full database contains 16128 images of 28 human subjects under 9 poses and 64
illumination conditions. The size of each image is 640 x 480 pixels. In particular the
system was tested on the 585 images of the subset #39B. The performance in accu-
racy of the proposed approach on this challenging dataset are 61,66% (e < 0.05) and
73,16% (e < 0.01). By analyzing the results, it is possible to note that the system is
able to deal with light source directions varying from +35° azimuth and from +40°
elevation with respect to the camera axis. The results obtained under these conditions



510 M. Leo et al.

Fig. 5. Two images of the BiolD database processed by the proposed approach (first row) and the
the corresponding details on the eye regions (second row). In the image on the left both pupils
are correctly detected, whereas in the one on the right some highlights on the glasses mislead the
algorithms that miss the detection of the pupil in the left eye.

Fig. 6. Some images of the Extended YALE database B in which the approach correctly detects
the pupils

Fig.7. Some images of the Extended YALE database B in which the detection of the pupils is
either less accurate or completely fails

are 77,95% (e < 0.05) and 84, 66%(e < 0.01). For higher angles, the method is often
successful for the less illuminated eye and sporadically for the most illuminated one: if
the eye is uniformly illuminated, the pupil is correctly located, even for low-intensity
images. In figure [6] some images of the Extended YALE database B in which the ap-
proach correctly detects the pupils even under different lighting conditions and pose
changing are shown. In figure [7] some images in which the detection of the pupils is
either less accurate or completely fails are instead shown.
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4 Conclusions and Future Works

A new method to automatically locate pupils in low-resolution images containing hu-
man faces is proposed in this paper. In particular pupils are localized by a two steps
procedure: at first self-similarity information is extracted by considering the appear-
ance variability of local regions and then they are combined with an estimator of circu-
lar shapes based on a modified version of the Circular Hough Transform. The proposed
approach does not require any training phase or decision rules embedding some a priori
knowledge about the operating environment. Experimental evidence of the effective-
ness of the method was achieved on challenging benchmark data sets. The results ob-
tained are comparable (sometimes outperform) with those obtained by the approaches
proposed in literature (making use of training phase and machine learning strategies).

With regard to the computational load, the calculation of the similarity space has a
complexity O(kM?) where k is the number of pixels in the image and M represents the
maximal considered scale. The circle detection has instead O(kn) complexity where k
is again the number of pixels in the image and n is the dimensionality of the operator
used in the convolution implemented by equationdl However considering that the cal-
culation of the two spaces is embarrassingly parallel (no effort is required to separate
the problem into a number of parallel tasks) it is possible to approximate the computa-
tional load to the maximum of the two terms above. This therefore leads to a complexity
comparable to that of the state of the art methods, however, offering better performance
of detection and although not requiring training or other specific post-processing steps
that limit their ability to work under various operating conditions.

Future work will address the improvement of the construction of the area of circular-
ity through techniques derived from differential geometry in order to make the system
even more accurate.
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