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Abstract. One of the fundamental tasks of unsupervised learning is
dataset clustering, to partition the input dataset into clusters composed
by somehow “similar” objects that “differ” from the objects belonging
to other classes. To this end, in this paper we assume that the differ-
ent clusters are drawn from different, possibly intersecting, geometrical
structures represented by manifolds embedded into a possibly higher di-
mensional space. Under these assumptions, and considering that each
manifold is typified by a geometrical structure characterized by its in-
trinsic dimensionality, which (possibly) differs from the intrinsic dimen-
sionalities of other manifolds, we code the input data by means of local
intrinsic dimensionality estimates and features related to them, and we
subsequently apply simple and basic clustering algorithms, since our in-
terest is specifically aimed at assessing the discriminative power of the
proposed features. Indeed, their encouraging discriminative quality is
shown by a feature relevance test, by the clustering results achieved on
both synthetic and real datasets, and by their comparison to those ob-
tained by related and classical state-of-the-art clustering approaches.

Keywords: Local features, Intrinsic dimensionality, Dataset clustering,
Multi-manifold structures.

1 Introduction

At the present, continuous technological advances allow to work on multiple
sources to collect increasing amounts of informations, which are coded as vec-
tors of numerical values usually called features. Therefore, a real dataset X
usually comprises an high number N of D-dimensional feature vectors, that
is Xy = {z}¥, = {[z1,...,2p)i}}Y, € RP. In the pattern recognition field
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it is often useful to partition Xy in C disjoint classes (generally called clus-
ters) having somehow different peculiarities, thus obtaining: Xn = Ule X
and Vi # j,i,5 € {1,---,C}, X; N X, = 2.

For this reason, unsupervised clustering techniques usually aim to create com-
pact neighborhoods (clusters), by considering the clusters’ internal homogeneity
(similarity) and their external separation (dissimilarity). However, choosing the
proper function to measure the similarity and the dissimilarity is often difficult.
For this reason, and since clustering approaches are employed in a wide vari-
ety of fields, many techniques have been presented that differ for the employed
similarity criteria and for the automatic algorithm used to identify the best
partition. At the state-of-the-art, among the several recent surveys and com-
parative researches describing unsupervised biclustering or clustering methods,
those reported in [I87I25] are notable since they deeply consider the problem
of clustering high dimensional data belonging to sets eventually having high
cardinalities.

To cope with this kind of data, relevant literature works generally compute
their lower dimensional projections through classical techniques, e.g. Principal
Component Analysis (PCA) and its variants [2], and then apply either classical
clustering techniques, such as K-means and its (fuzzy) variants [21], the Expecta-
tion Maximization (EM, [8]) algorithm, or algorithms specifically designed for the
clustering problem to be handled. Furthermore, the similarity between points is
often computed by employing the common Euclidean distance; yet, as explained
in [I], this is a quite limited methodology that might not properly capture and
express the typifying geometrical structure underlying each cluster, specially in
case of high dimensional data. Consequently, though promising results have been
obtained, the problem of high dimensional dataset clustering is still open.

For this reason, and based on the aforementioned considerations, recent clus-
tering approaches change their perspective and view the ¢t cluster as a set
of points X, = {¢c(zic)}ic, C RP drawn from a low d.-dimensional space
(manifold) M, C R?% and embedded into an higher D—dimensional space R
(de < D) through a map ¢.(-). Under this framework the dimensionality d. of
M, generally called intrinsic dimensionality (id), becomes a distinctive feature.

This conceptual framework guarantees that each cluster is strongly typified
by the geometrical structure characterizing the cluster as a whole. This intrinsic
structure is the one inherited by the feature space M. in R% from which the
points of the cluster are supposed to be drawn. Therefore, the clustering of X
can be achieved by multi-manifold clustering techniques, aimed at identifying the
C intersecting manifolds underlying X n, and being (possibly) uniquely identified
by their distinctive id (where d; # ... # d¢). To this aim, most of the few
works proposed in literature [ITJ3I23124/12] code each point as a vector of local
id estimate, or local features related to them, with the aim of capturing the
geometrical structure underlying the neighborhood of the coded point. Indeed,
the discriminative power of these features allows to obtain promising results by
employing classical clustering algorithms.

! The local id relative to one point is the id estimate computed on its neighborhood.
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Considering the works in literature, one of the most related to ours is that
described in [3], where the proposed clustering method (hereinafter referred to as
NS) is based on local id estimates obtained by exploiting a modified version of the
id estimator described in [6]. Precisely, in [6] the authors work on the k-nearest
neighbors (k << N) of each point to estimate its local id, and then cluster the
dataset by employing all the estimated local ids. Note that, as highlighted in
Section 4 of [20], when dealing with high id datasets a strong underestimation
problem affects most of the neighborhood based id estimators, causing unreliable
id estimations and consequent inaccurate clusterings. To reduce this problem
in [3] an effective “Neighborhood Smoothing” procedure is employed.

In this paper we describe some features that can be conceptually viewed
as local id estimates and local characteristics of the underlying manifold por-
tion (see Section [2); note that these features have been also exploited by ef-
fective global id estimators [I7U5/4]. In Section Bl we show how they can be
effectively exploited by classical clustering algorithms; indeed, a feature rele-
vance test, promising clustering results on both synthetic and real datasets, and
their comparison with those achieved by state-of-the-art clustering techniques
(see Section M), show the discriminative quality of the proposed features also
when applied to high dimensional points characterized by both high and low
ids.

2 Local id-Based Features

In this section we describe the three local features we exploited for dataset
clustering; they are derived from two relevant global id estimators [I7J5/4], that
compute the global id estimate that characterizes the manifold from which the
dataset Xy is assumed to be drawn.

The first local feature is successfully employed when estimating the (global)
id by the well-known Maximum Likelihood Estimator for id (MLE [I7]). The
rationale of our choice is that this feature, referred as d(x;, k) in the following, can
be theoretically viewed as a local id estimate computed in the k-neighborhood of
each point x; € X . More precisely, it is computed by treating the neighbors of
each point x; € Xy as events in a Poisson process and considering the Euclidean
distance r) (p;) between the query point x; and its j*" nearest neighbor as the
event’s arrival time. Since this process depends on the id that characterizes the
underlying manifold’s portion, MLE estimates it by maximizing the log-likelihood
of the observed process. In practice ci(:c,', k) is computed as:

—1
r(E+1) (g5 )

J(mz, Z og )

The other two local features used by our clustering approaches, referred as
v(x;, k) and 7(x;, k) in the following, collect informations related to the distribu-
tion of the pairwise angles in the k-neighborhood of each x; € X . They have
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been introduced and used by the global id estimators proposed in [5/4] since
they express further, and different, informations about the local geometry of the
unknown manifold’s portions underlying each data neighborhood. Indeed, their
exploitation has shown to improve the reliability of the computed id estimates
since they allow to reduce the underestimation problem [20] that affects most of
the id estimators when applied to high id data (for details see [5l4]).

The theoretical basis of these features is expressed by the following theorem
proved in [5l4]:

Theorem 1. Given two independent random unit vectors (1, x2) in R¢, drawn
from a uniform distribution on S, for increasing values of d the concentration
parameter T of the von Mises (VM) distribution describing the angle 0 between
x1 and xo converges asymptotically to the dimensionality d.

Taking into account this theorem, it is possible to consider local neighborhoods
in Xy to capture the information provided by the concentration of pairwise
angles. Practically, for each point #; € Xy its k nearest neighbors X! are
identified, they are centered to obtain X}C ={x; —x;: Va; € X}}, and then
used to compute:

z " wj

[EAEA

(1)

O(x.,x;) = arccos

Employing Equation ([Il) the (’;) angles of all the possible pairs of vectors in X}e

are computed to compose the vector 6; = {0(z;,z;): Ve, x; € X;i}lgz<j§k~

Considering Theorem [I each component of 0, = [91, e ,Q(k)] follows a VM pdf
2

of parameters v(x;, k) and 7(x;, k); therefore, the Maximum Likelihood (ML) of
the population direction v(x;, k) equals the sample mean direction:

(5) (3)
D(xi, k) = atans Zsin Gj,Zcos 0;
j=1 j=1

where atans(x,y) is the arc tangent of y/x.

Likewise, the ML of the concentration parameter 7(x;, k) equals the estimate
7(x;, k) calculated as a solution of n(x;, k) = ggigigg = A(7(x;, k)), where I,
is the modified Bessel function of the first kind with order v, and n(x;, k) is the
norm of the sample mean vector defined in [22] as:

2 2

L © L
n(zi, k) = (k) Zcosej + (k) Zsin@;-

Being A a non invertible function, in [54] A=*(n(x;, k)) is approximated by:

" 2n(ai, k) + s, k)° 4+ 27" ) <053
7(xi, k) = A" (n(mi, k) = { —0.4 + 1.39n(x, k) + ,_ %23 0.53 < n(zxi, k) < 0.85

1—n(x;,k)
1
(@i k)3 —an(ay k)2 +3n(a; k) n(ai, k) > 0.85
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3 The Clustering Approaches

In this section we describe how we employ either the classical Expectation Max-
imization algorithm (EM, [§]) or a simple variant of the Label Propagation Al-
gorithm (LPA, [I9]) to cluster input datasets coded by the geometrical features
described in Section 2} we underline that our choice of using classical and simple
clustering techniques is motivated by the fact that our aim in this research work
is to assess the discriminative ability of the features we are proposing.

Precisely, we consider input sets composed of C clusters, that is Xy =
{2}y = {¢e(zie)}ie 31 CRP (n. is the cardinality of the ¢ cluster, and
N = ZCC:1 n.), and we assume that the C' clusters are composed of independent
identically distributed points z; . drawn from C different low-dimensional man-
ifolds (possibly characterized by different ids) embedded in the higher dimen-
sional space R by (possibly different) proper maps ¢. (¢1 # ¢ # -+ # dc).
Our aim is to exploit (i(wi, k), 0(x;, k), and 7(x;, k) to cluster X .

o 5 0 15

(a) d(@i, k) (b) o(@s, k) (c) 7 (@i, k)

o 5 0 5 2 B W B 4 4

Fig. 1. The three local parameters computed on points drawn by two manifolds having
id = 2 and id = 14 embedded in ®*°, and using k = 30

The first three clustering approaches we experimented employ only one of the
aforementioned features. Precisely, the algorithm transforms each point x; €
Xy € RP in a unique real value y; € R by computing the local feature being
used; this allows to obtain a 1-dimensional set {y;}¥; = Yy C R. If we consider
points belonging to different manifolds, each feature tends to be distributed as
a mixture of gaussian distributions (see Figure [I)). For this reason we chose to
employ EM on Yy . Precisely, being h(s) the pdf of the event y; and assuming
that h is the sum of C' normal distributions h(s) = Zle WeN (Yil ey 0¢), we =
ne/N, EM estimates from Yy the means {p1, ..., uc} and the standard deviations
{01, ...,0¢} of the C normal distributions. Employing the estimated values, each
point x; (coded as y;) is associated to the cluster ¢ € {1, ..., C} maximizing the
probability g.(yi, fie, 0c), i-e. the probability of a given ; to belong to the ct*
cluster. g.(y, tte, 0c) is defined as follows:

1 _1(yi—uc)2
c\Yis ey Oc) = €
9e(Yis fes 0c) /2
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The three algorithms obtained by employing d(azz, k), 0(x;, k), and 7(x;, k) are
called EM;, EM;, and EMz, respectively. These techniques depend on the number &
of the neighbors considered when computing the features, and on the parameter
C of the EM algorithm (the number of clusters).

To improve the results obtained by the aforementioned clustering methods,
we combine the three features d(z;, k), o(;, k), and 7(x;, k), to obtain, for each
x; € Xy C RP, a 3-dimensional vector y; € R3. We can then apply the same
procedure described above to assign each point to the cluster that maximizes
the probability g.(y:, e, X¢). This approach, called EMj, - still depends on the
parameters k and C.

Finally, to relax the dependence with respect to the parameter C' we sub-
stitute EM with the LPA variant proposed in [I9], obtaining LPA;, LPA;, LPAz,
and LPA Qb Briefly, this version of LPA automatically determines the number
of clusters by an iterative process that assigns each x; € Xy to the cluster
to which the maximum number of its & nearest neighbors belong. To this aim,
every point is initialized with a unique label and the labels are left to propa-
gate through the network of points; as the labels propagate, densely connected
clusters are formed, and they continue to expand until it is possible to do so.

4 Experimental Results

To obtain a preliminary assessment of the discriminative quality of the proposed
features, we initially employed them to augment the dimensionality of points
in the real datasets described below, and we apply a classical feature selection
technique provided by WEKA [I3].

The considered real datasets are: the Yeast dataset [15], which is composed of
1484 points in R® representing yeast proteins organized into 10 classes according
to their positions in cells; the Segmentation dataset [10], which is composed of
2310 points in R describing pixels randomly drawn from a dataset of 7 (classes)
outdoor images; the MNIST test dataset [16] containing 10000 grey-level images
of size 28 x 28 representing hand-written digits from 0 to 9 (10 classes). To use
the MNIST dataset, we downsampled its images to the size 12 x 12, we vectorized
them, and we appended the 576 gradient and curvature features described in [9],
thus obtaining a dataset composed of 10000 points in R72°.

Note that, according to [14] and to the results we obtained by employing the
id estimators described in [20], the MNIST clusters are characterized by id values
higher than those of Segmentation and Yeast; indeed, we obtained id values
between 2 and 4 for the Segmentation clusters, between 2 and 8 for the Yeast
clusters, whilst the id values of the MNIST clusters are in the range [7, 14].

As mentioned before, after augmenting the dimensionality of each vector in
each dataset by appending the proposed local features, each dataset is pro-
cessed by using the RankSearch feature selector (with GainRatio as a feature
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evaluator@) proposed in WEKA. We evaluated the relevance of each feature by
separately applying RankSearch on 10 disjoint sets (folds) randomly generated
from each dataset, and counting the number of times each feature is selected.
According to the obtained results, o(x;, k) seems to be not relevant since it is
never selected, while both d(x;, k) and 7 (x;, k) seem to be relevant (see Table I);
specifically, 7(x;, k) seems important when considering high id datasets, whilst
ci(:ci, k) is always selected for the low id ones. Nevertheless, as can be noticed
in the following experiments, when coupled with 7(x;, k) and J(mz, k), v(x;, k)
allows to improve the clustering results.

Table 1. Percentage of times each feature has been selected as relevant in the 10 fold
experiments

Dataset id  d(wmg, k) O(ms, k) 7@, k)

MNIST [7,14] 0% 0% 100%
Segmentation [2,4] 100% 0% 70%
Yeast [2,8] 100% 0% 100%

At this stage, we proceeded with tests on datasets generated by composing
two or three clusters, which belong to either the MNIST test dataset, or to the
synthetic datasets generated by the tool proposed in [I4] (see Table[]). Precisely,
to use the samples in the MNIST test dataset, we simply vectorized the 28 x 28 digit
images obtaining samples in R74. Though these points belong to 10 clusters (one
cluster per digit) each being typified by a (probably) specific id, all the samples
are already embedded in R7%4; therefore, no embedding procedure is needed.
To reduce the number of possible combinations, we run our clustering tests by
randomly choosing one cluster (digit 1 images), and combining it with the other
clusters to form all the possible cluster couples and triplets (obtaining 9 datasets
of cluster couples and 36 of triplets).

Similarly, the synthetic datasets were created by merging two or three synthetic
point sets (clusters), each comprising 1000 samples generated by the tool proposed
in [I4]. Note that each cluster is linearly embedded in a 40-dimensional space and
the points belonging to the different clusters are concatenated, thus producing a
point set containing either 2000 or 3000 points representing, respectively, 2 or 3
intersecting clusters. Furthermore, to reduce the possible combinations we ran-
domly selected one of the synthetic sets (the Myg with D = 15), and we inter-
sected it with 1 or 2 synthetic sets to obtain all the possible couples and triplets
(12 datasets of cluster couples and 66 of triplets). Note that, when the employed
generator requires to set a dimensionality D (see Table[2]), this parameter was set

to 10 for the cluster selected as the second, and 20 for the third one.
To objectively evaluate the effectiveness of employing the proposed features

for clustering, we compared the results achieved on both synthetic and real
datasets to those obtained on raw data by well-known clustering techniques

2 GainRatio evaluates the worth of a single feature by measuring the gain ratio with
respect to the class, where the gain ratio is defined as: H(Class)g(}é(efiﬁzl)“”twe),
being H the relative entropy function.
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Table 2. Brief description of the 13 synthetic datasets employed in our experiments,
where d is the id and D is the embedding space dimension. Note that for some datasets
the parameter D should be selected by the user.

Name d D Description

M1 D —1 D Uniformly sampled sphere linearly embedded.
Mo 3 5 Affine space.

M3 4 6 Concentrated figure, confusable with a 3d one.
My 4 8 Nonlinear manifold.

M 2 3 2-d Helix

Mg 6 36 Nonlinear manifold.

Mo 2 3 Swiss-Roll.

Mg 12 72 Nonlinear manifold.

My 20 20 Affine space.

Mo D —1 D Uniformly sampled hypercube.

M1 2 3 Moebius band 10-times twisted.

Mo D D Isotropic multivariate Gaussian.

Mis 1 13 Curve.

(EM and LPA variant) and by the multi-manifold clustering approach (NS) pre-
sented in [3]. Note that, for each method, the parameter settings were chosen to
obtain the best mean results (see Table [3). To assess the compared clustering
ZL%IFM)

techniques we employed the following measure: accuracy = , where

X is the indicator function, [; is the label associated to the sample point x; by
the employed clustering approach, and [; is the correct label for that point.

Table 3. The methods used in our experiments and the chosen parameters. k is the
number of neighbors for each point, kips is the number of neighbors considered for Label
Propagation, C is the number of clusters in the dataset, v is the edge weighting factor,
M is the number of Least Square (LS) runs, NNV is the number of re-sampling trials per LS
iteration, @ is the number of different re-sampling values to be considered by NS.

Method Parameters
Neighborhood Smoothing (NS) k = 20,y = 1,M = 1,N = 10,Q = 10
EM C= {2,3}
EM; k=30, C ={2,3}
EM; k=30, C ={2,3}
EM: k=30, C ={2,3}
EM; . k=30, C={2,3}
EMj 5,2 k=30, C ={2,3}
LPA kipa = 15
LPAJ kipn = 15
LPA, kipn = 15
LPA: kipa = 15
LPA; - Fipn = 15
LPA; , k = 30, kips = 15

Tabled shows the mean accuracies achieved on the synthetic and real datasets
composed by two clusters, and those obtained on the datasets composed by three
clusterdd. Tt is possible to notice that EM; Qo4 which combines the information
captured by the proposed local features, generally outperforms the other meth-
ods. Moreover, it is important to hlghhght that 7(x;, k) is a very discriminative

3 Note that the dataset points are coded by employing only the proposed features.
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information, especially when facing datasets with high id, but it needs to be
combined with ci(:ci, k) and D(x;, k) to effectively cope with datasets composed
by clusters characterized by both high and low ids and eventually embedded in
high dimensional spaces. This consideration is further shown by the lower accu-
racies achieved by coding the points combining 7(a;, k) and d(x;, k) to obtain
LPA; - and EM Qe Note that we run these further tests since the feature selection
approach has highlighted that these features are the most discriminative ones.

Table 4. Mean accuracies computed on synthetic cluster couples (Mio + M..), real
cluster couples (MNIST; + MNIST.), synthetic cluster triplets (Mio + 2M.), and real
cluster triplets (MNIST; + 2MNIST.). In boldface the best results have been highlighted.

Dataset Measure NS EM EM; EM; EM; EMj; . EM; , . LPA LPA; LPA; LPA; LPA; . LPA; , .
Mg A, Mmean  0.740.640.780.64 0.87 0.86 0.88 0.750.18 0.16 0.20 0.78  0.87
o+Me g 0.12 0.17 0.19 0.07 0.16 0.17 0.15 0.20 0.05 0.03 0.07 0.25  0.18
mean  0.77 0.53 0.68 0.51 0.93 0.88 0.95 0.61 0.21 0.14 0.18 0.83  0.89
MNISTy +MNIST. g 0.08 0.01 0.06 0.01 0.02 0.12 0.03 0.17 0.04 0.04 0.05 0.17  0.14
Mugioa, ™Mean  0.310460.63052071 0.71 0.72 0.630.06 0.05 0.06 0.64  0.65
10 * std 0.22 0.16 0.17 0.10 0.17 0.19 0.17 0.16 0.02 0.02 0.02 0.22  0.22
mean  0.36 0.37 0.52 0.37 0.72 0.70 0.74 0.39 0.08 0.04 0.07 0.57  0.60
MNIST, +2MNIST. ) 0.22 0.01 0.03 0.03 0.08 0.10 0.08 0.08 0.04 0.02 0.03 0.12  0.08

5 Conclusions

In this paper we show that effective clustering results can be obtained by viewing
dataset clustering as a multi-manifold clustering problem, where the dataset to
be clustered is assumed to be drawn from a geometrical structure composed of
several, eventually intersecting, clusters drawn from manifolds embedded into a
higher dimensional space, and being characterized by (possibly) different ids.
Under this assumption, we achieve promising clustering results by coding the
input data by means of local id estimates and features related to them. The
promising discriminative quality of the proposed features is shown by a fea-
ture relevance test, by the clustering results achieved on both synthetic and
real datasets, and by their comparison to those obtained by related and classi-
cal state-of-the-art clustering approaches. Note that the proposed features have
shown their discriminative power also when applied to a difficult problem such
as the clustering of high dimensional datasets characterized by high and low ids.

To further assess the quality of the proposed features, our future works will
be focused at their usage to deal with supervised classifion problems.
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