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Abstract. A trend in the computer vision community is observed to-
wards the simultaneous exploitation of color images and depth maps.
In this context we propose a novel approach for bi-layer segmentation,
whose main contribution is given by the integration of a color classifier
based on color sampling, within a depth-based segmentation framework.
We have run tests on datasets available online and the outcoming re-
sults pointed out the effectiveness of this approach and its suitability for
integration in automatic segmentation systems.

1 Introduction

Image segmentation is a fundamental brick of many video editing applications
and despite the large volume of literature, it can be still considered an open
research area. In the simplest scenario a single foreground subject needs to be
extracted from the background scene. Techniques exploiting the assumption of a
moving foreground and a static background are usually classified as Background
Subtraction [3]. Recently active depth sensors have become available as off-the-
shelf components and depth maps have been successfully integrated into the seg-
mentation pipeline, taking advantage of their invariance to lighting conditions.
However due to their reduced resolution, they are mostly used for the robust
automatic initialization of the foreground mask [10]. Furthermore the misalign-
ment with color images due to differences in viewpoints and spatial resolutions,
implies an additional non trivial calibration process. Depth maps extracted from
stereo or structure from motion do not suffer from these issues but provide a
much lower reliability. A sort of ideal setup composed by a time-of-flight camera
and a stereo camera, which combines robustness and resolution from both has
been proposed in [16]. In some case depth maps have been used to prepare a
trimap for a following alpha matting stage, and some matting techniques also
integrate the depth information into their core matte estimation [5]. However,
in our opinion their results still suffer from the broad initial trimap [11].

Binary segmentation systems using color and depth may be grouped in feature-
level fusion and decision-level fusion. Approaches in the first group typically use
a k-means clustering performed on feature vectors consisting of the color com-
ponents and the spatial position [4,6]. The decision-level fusion systems instead,
employ a graph-cuts framework, where the depth is integrated into the data term
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as a statistically independent variable [9,13,8,1]. Only in [15] the authors chose
a voting scheme to combine the output of three classifiers based on background
subtraction, color statistics and depth/motion consistency, and this approach is
the closest to our work, even though we integrate different classifiers. In this
paper we propose a statistical framework for video bilayer segmentation, which
uses two independent classifiers based depth and color data. An objective func-
tion is defined as a weighted sum of their scores, and space-time regularization
terms. All these terms are embedded in a segmentation graph as normalized
probability measures. We believe that the numerical homogeneity of the differ-
ent costs guaranteed by the probabilistic framework, allows for a more accurate
treatment of the critical case where the pixel data cannot be explained by any of
the distribution models and no useful information is provided by the classifiers.
A novelty aspect is provided by the exploitation of the color data only in terms
of color distance, whose statistical distribution model can be safely assumed con-
tent independent and learnt offline, providing a significant relief to the overall
system. Furthermore differently from other techniques we include the color clue
only in the second stage of a multiresolution framework, using color sampling.
The latter has been recently proposed for alpha matting [12,7], but we are not
aware of any attempt to exploitation for binary segmentation. The algorithm
also is intrinsically suitable for video segmentation as the smoothness terms are
homogeneously formulated both in space and time.

2 Graph Based Segmentation

Let us denote with L = {F,B} the space of binary segmentation labels and with
αi ∈ L the i-th pixel label. Using this notation the segmentation of a videose-
quence is represented by the vector α = [α0, . . . , αN−1]

T collecting the labels of
the N unclassified pixels. The corresponding estimation problem is formulated
as the minimization of an objective function comprised of three weighted terms:

α = min
α∈LN

⎧
⎨

⎩

N−1∑

i=0

ed,i (αi) + ws

∑

(i,j)∈Φs

es,i,j (αi, αj) + wt

∑

(i,j)∈Φt

et,i,j (αi, αj)

⎫
⎬

⎭
.

(1)
The first contribution in (1), denoted as data term, takes into account the

coherence between the segmentation labels and the pixel data. As each pixel
carries a 3D color vector and a depth measurement, the data term can be further
expanded as a sum of two independent contributions, identified by the indexes
c and z:

ed,i (αi) = wcec,i (αi) + wzez,i (αi) . (2)

The other terms in (1), denoted as smoothness terms, provide the penalties
for each pair of neighbor pixels differently labeled, within the sets Φs and Φt

that collect the spatial and temporal cliques of the video sequence. The first
is formed using the 4-connected neighborhood, while the temporal pairs are
established using the background registration homographies. (Sec. 2.3).
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The minimization of the objective function (1) can be modelled using the
max-flow/min-cut optimization and solved via graph cut[18]. Video sequences
normally lead to a massive graph representation and the problem must be tacked
using technique ad hoc designed for this purpose [17]. We propose instead a more
straightforward multiresolution framework. The sequence is initially processed
at low resolution without the contribution of the color data terms. A trimap is
then expanded from the contour of initialized segmentation mask and a second
processing stage is performed at native resolution on the unknown area of the
trimap. Furthermore this approach allows for the exploitation of color sampling
in the computation color data term (Sec. 2.1).

2.1 Color Data Term

The data terms ec,i in (2) provide a measure of congruence between colors and
segmentation labels. The color likelihood is widely used for this porpose, how-
ever we claim that this may not be the ideal way to tackle the task, as the
color distribution within a video is strongly content dependent, and therefore an
a-priori specified model could be inappropriate for a specific sequence. Futher-
more the cumulative nature of global statistical models implies the loss of spatial
accuracy, whereas it is not unrealistic that the color has an similar global dis-
tribution both in the background and foreground areas, making such models
necessarily lose any classification power. On the other hand local models may
suffer numerical instability which lead to a poor data representation.

For these reasons we opted for a different approach, inspired by the Alpha
Matting technique proposed in [12], but implemented with a more aggressive
sampling model (Fig. 2). In the second segmentation stage the unlabeled pixels
are contained within the trimap stripe and for each of these two sample sets,
denoted as S{F,B}, are randomly drawn from near foreground/background areas.
We opted for a low set cardinality (3 samples). The two best samples are then
selected and the color data terms are computed as a probability measure using
the cumulative distribution of their distances in color space to the reference
pixel:

ec,i (αi) = Pc

(

d ≤ min
k∈S(F,B)

{di,k} |αi = αk

)

, (3)

The remarkable aspect of the cost formulation (3) is that it does not need the
inference of any specific color statistics for the video sequence.

Indeed, the color feature used in our segmentation framework is given by the
pixel distance in Lab color space under the condition of homogeneous segmen-
tation labeling. It is has empirically prooved that the corresponding probability
density function, fc (di,j |αi = αj), which is also used as kernel for the integration
of data terms, is roughly content independent and therefore the corresponding
model can be selected and characterized offline. Eventually we claim that us-
ing only the color distance as classification feature we can successfully process
any video sequence using a general statistical model. This approach at the same
time overcomes the typical drawbacks of the color likelihood inference and is a
remarkable advantage both in terms of performance and computational cost.
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Fig. 1. Statistical distribution of the color distance in smooth areas. In green is rep-
resented the normalized histogram computed from the sample set and in red the esti-
mated exponential model (λ = 48.64).

In our system the color distance likelihood have been estimated from 1e6
pixel pairs sampled from 50 web images with different content. The constraint
on homogeneous segmentation has been approximated by two simple conditions,
namely a spatial distance lower than 10 pixel and no edge across the connecting
segment. These conditions do not guarantee the homogeneous labeling of the
selected pixel pairs, however, we observed that the overall quality of the sample
set is sufficiently high for our purpose. By visual inspection of the histogram of
the color distance data obtained from the sample set we opted for an Exponential
model, f (da,b|αa = αb) = λe−λda,b , (Fig. 1).

The estimated model is then used to compute the data term (3) and the
selected samples provide the function argument. As color sampling needs the
availability of the sampling areas, in our multiresolution framework we can ex-
ploit the color data term only in the second segmentation round, when the
trimap expanded from the initialized segmentation mask provides them. A sec-
ond issue is related to the optimal setting for the trimap width. A narrow stripe
boosts the sampling accuracy as the spatial nearness increases the color corre-
lation between reference pixels and drawn samples. On the other hand a broad
stripe allows the system to recover in case of poor initialization. Eventually it
is extremely difficult to find a satisfying tradeoff. To overcome this problem, we
propose an aggressive sampling which relaxes the role of the trimap, namely not
only its foreground/background areas are sampled, rather the regions identified
by the initial segmentation instead are considered eligible as sampling domains.
In other words the samples can be drawn also inside the unlabeled stripe of the
trimap (Fig. 2.a,b). The sampling model is shown in more details in Fig. 2.c.
We denote with ω the half-width of the trimap and with δ the shortest distance
between an unclassified pixel x and the initialized segmentation contour. The
two sample set are drawn at si = x+(δ±dxi) ·ηi, where η is a random direction
aiming at the contour, dx is a random variable uniformly distributed in the in-
terval [0, 2ω] and the sign is negative if the initialized label of x and the sample
label are equal, positive otherwise.

The proposed sampling strategy allows our system to cope in a natural way
with a typical problem of trimap-based processing. Large portions of the fore-
ground or background areas disappear when their linear extent is smaller than
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(a) (b) (c)

Fig. 2. Sampling model. The colors green, orange and grey identify the foreground,
background and the unlabeled area of the trimap, and in yellow, blue and red are
represented three reference pixels and the background and foreground samples. The
conservative sampling draws the samples outside the grey stripe (a), in our approach
instead, the initialized mask defines the sampling regions and the samples may belong
to the unlabeled stripe (b). (c) Shows the sampling model.

size of the morphology operator used to expand the trimap. This happens for
example when a segment has small internal holes, thin in- or out-ward lobes,
or it is too close to the image border. In all these circumstances the sampling
scheme shown in Fig.2.a is unfeasible as the nearby sampling areas have been ab-
sorbed into the trimap. Our approach instead, naturally tackles this problem as
the trimap identifies only the unclassified pixels whereas the sampling domains
are provided by the initial segmentation.

2.2 Depth Data Term

Similarly to (3) the depth data terms are computed from the depth distribution:

ez,i (α) = Pz

(

z
α=F

≶
α=B

zi|α
)

. (4)

We observed a general trend to use a Gaussian Model (GM) to capture depth
likelihoods. According to our experience this representation is error prone in
those areas where the segmentation inference should be easier. When the back-
ground contains multiple depth layers a GM polarizes towards one of them and
the likelihood drops very low for high depth values. It is evident however, that
pixels with very high depth measurements most likely belong to the background.
Furthermore it is non-sporadic the case that the probability densities cross in
the far depth zone making the depth classifier unreliable. Therefore we suggest
a Single Side GM which better describe the natural distribution of depth data:

⎧
⎨

⎩

f (z|α = F ) = CF · e− 1
2

(
3z
zB

)2

f (z|α = B) = CB · e− 1
2

(
3(z−1)
1−zF

)2 , 0 ≤ z ≤ 1 (5)

The parameters CF and CB are estimated by constraining the probability
densities intergation, and the values zF and zB are given by the first two peaks
detected in the depth histogram. The underlying assumption is that the first two
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peaks in the depth histograms provide a rough localization of the foreground
and background, and accordingly we define the standard deviations to force the
corresponding likelihoods near to zero for z ≥ zB and z ≤ zF respectively.

2.3 Smoothness Terms

The space smoothness terms in eq.(1) are related to the image contrast, in order
to penalize a labeling swap inside untextured areas. Almost each graph-based
segmentation technique uses the color distance between neighbor pixels as a
simple approximation of the local contrast. We propose to increase the dimension
of the measurement domain up to four pixels, in order to make the measure more
robust against image blur. If we denote with (l, i, j, k) a quadruplet of consecutive
pixels, then the (i, j) contrast is defined as γi,j = max{dl,j , di,k}. This is still a
distance in color space, therefore we suggest to compute the space smoothness
term again using the precomputed color distance likelihood:

es,i,j (αi, αj) = δαi,αj · Pc (d ≥ γi,j |αi = αj) , (6)

where δi,j denotes the delta Kronecker function.
The underlying idea of the smoothness penalties is similar in the temporal

or spatial domain, therefore we opted for reusing the cost expression (6) on the
temporal cliques as well. The temporal smoothness terms are then computed as

et,i,j (αi, αj) = δαi,αj · Pc (d ≥ τi,j |αi = αj) . (7)

where τi,j is the color distance of temporal clique (i, j). These are created by
means of the background registration homographies between consecutive frames.
At each frame t the registration homography is estimated using the Inverse
Compositional Alignment [2] to minimize the photometric registration error:

Ht = min
H∈H

{
∑

i∈Ω

f (zi|α = B)
�
�
�It,i − Ĩt+1,i

�
�
�

2
}

(8)

where H is the space of 2D projective transformations, Ω is the registration
support, It,i is the color of i-th pixel at time t and the notation Ĩ means the
homography warping. The depth likelihood (5) is used as weighting mask in order
to polarize the homography estimation towards the background alignment, and
the registration support Ω is defined over highly textured areas.

3 Results

In our test we used the weight set {wc = 0.6, wz = 0.4, ws = 1.0, wt = 1.0} to
build the objective (1). Different configurations have been also tested and the
results do not change significantly. Furthermore we point out that the assignment
of meaningful values to the cost weights is an easy task, as each cost term ranges
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in the interval [0, 1]. The image resolution for the initialization round has been
set to 160x120 pixels.

We performed a preliminary evaluation on a data set freely available online
with the corresponding ground truth 1. In Table 1 we present our results com-
pared with those obtained by TofCut [14], the technique proposed by the dataset
provider. In the same paper the performance of other three algorithms challenged
with the same dataset have been measured. For simplicity we chose not to report
these additional results also here, as TofCut is anyway able to outperform all of
them. In Fig. 3 some sample frames from the dataset are shown with the corre-
sponding segmentation mask. These results show that the proposed method can
outperform TofCut.

Table 1. Comparison between TofCut and the proposed Color Sampling Segmentation
with and without temporal smoothness (CSS, CSSt), on four test video sequences. As
perfomance indicator the average percentage of misclassified pixels over the whole
sequence is computed.

Seq.ID # Frames % Err
TofCut CSS CSSt

WL 200 1.35 0.84 0.59

MS 400 0.51 0.27 0.21

MC 300 0.15 0.14 0.12

CW 300 0.38 0.25 0.22

Although the proposed technique turned out to be very accurate, however it
is worth further discussing its weak aspects, which will be object of the future
refinement work. In this system we did not introduce any adaptive weighting
to control the contribution of depth and color clues across the time according
to their reliability. Unlike TofCut we opted for a set of constant weights as our
main focus was the evaluation of the performance level when color sampling is
integrated into a binary segmentation framework. Nevertheless, we consider the
adaptive weighting an important feature which will be restored in the future
development. The effect of this choice affects only the sequence CW, as a second
moving subject is included by our algorithm in the foreground layer whereas
in the ground truth it is labeled as background. The error rate provided in
Table 1 for this sequence, is computed without considering the frames where
this subject is present, otherwise by including the all sequence the error rate
raise over %2. However we still consider this result relevant. Indeed, the moving
subject is perceived by the depth sensor at the same distance as the static
foreground, therefore the misclassification is mostly due to the limitations of the
sensor rather than to the segmentation algorithm itself. We do not believe that
it is relevant for the algorithm design to accurately model the sensor limitation,
many sensors are indeed available on the market which may not suffer of this

1 http://vis.uky.edu/~gravity/Research/ToFMatting/ToFMatting.htm

http://vis.uky.edu/~gravity/Research/ToFMatting/ToFMatting.htm
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WL
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MC
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Fig. 3. Segmentation samples from each of the four dataset

problems. Furthermore for some applications, like video segmentation for 2D/3D
conversion, distinct objects with so similar depth can be considered as part
of the same foreground layer even if spatially distant. It is also interesting to
notice that after the moving subject disappeared, the algorithm does not suffer
from any error drift and it is able to recover correctly the segmentation mask
corresponding to the main foreground subject.

Further tests have been run on two stereo-sequences at 1920x1080 HD reso-
lution, with a moving foreground and a static but highly textured background.
The sequences have been pre-processed using the graph-based matching software
available online2, to extract the depth maps, and the occluded pixels produced
by the disparity estimator have been roughly filled using a median filter. In Fig.
4 a sample frame from each of the sequence is shown.

2 http://pub.ist.ac.at/~vnk/software.html

http://pub.ist.ac.at/~vnk/software.html
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Fig. 4. Segmentation samples from HD stereosequences. The color frames and the
disparity maps are shown on the left and the segmented foreground on the right.

4 Conclusion

We presented a novel approach to bi-layer segmentation which integrates color
sampling within a depth based segmentation framework. The results obtained
from real video sequences, in different formats and with challenging content have
confirmed the effectiveness of the approach. Our segmentation system does not
require at runtime the estimation of any statistical model for the color data, this
is a remarkable advantage as one of the weakest part of almost every Bayesian
segmentation framework is therefore completely dropped. Furthermore the pro-
posed objective function encapsulate depth, color and smoothness clues only in
terms of probability measures, leading to a consistent normalized range for the
edge capacities. This is also a simple but remarkable aspect since it greatly sim-
plifies the choice of the weighting factors for non-expert users. We believe that
this work has produced interesting results and it is a promising starting point
for the design of a really operative video editing tool.
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