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Abstract. Recursive tree-structured segmentation is a powerful tool to deal with
the non-stationary nature of images. By fitting model parameters to each re-
gion/class under analysis one can adapt the segmentation algorithm to the local
image statistics, thus improving accuracy. However, a single model/segmenter
cannot fit regions with wildly different nature, and one should be allowed to se-
lect in a suitable library the tool most suited to the local statistics. In this paper,
we implement this dynamic segmentation/classification paradigm, using two seg-
menters, based on spectral and textural properties, respectively, and defining suit-
able rules for switching model locally. Experiments on remote-sensing mosaics
show that the multiple-model dynamic algorithm largely outperforms comparable
single-model segmenters.
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1 Introduction

Images are inherently non-stationary: most of the information they provide is related to
their non-stationary nature. Therefore, simple all-encompassing models cannot capture
the complexity of real-world images, and segmentation algorithms based on them are
bound to provide poor results. The recent literature testifies a considerable effort [1, 2]
towards the development of more complex models and segmentation algorithms for
images.

A natural approach is the use of tree-structured hierarchical models and segmenta-
tion algorithms, which adapt locally to each region and provide information at different
scales of observations of the image. Hierarchical segmentation can be obtained by re-
cursive algorithms, where the image is segmented in a small number of regions, each
of which becomes the root of a new local segmentation process, going on until some
stopping criterion is met.

A tree-structured segmentation algorithm was proposed in [3], based on local Markov
random fields (MRF) models, and hence called TS-MRF. TS-MRF proved to deal quite
effectively with image non-stationarity [3, 4], thanks to the opportunity to adapt lo-
cally the parameters of the MRF model attached with each node/region. and was also
faster than algorithms based on “flat” models. Nonetheless, its flexibility was limited
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to fitting locally the parameters of a given MRF model which could not deal equally
well with homogeneous, textured, and strongly structured regions. Therefore, in [5]
a dynamical segmentation paradigm with multiple models was proposed, but not im-
plemented, providing just a proof of concept based on supervised experiments. In this
work, following the paradigm of [5], we propose and implement a dynamical hierar-
chical segmentation/classification algorithm, DHC for short, based on two alternative
models for homogeneous and textured regions. Here, the major challenge is not the seg-
mentation itself, but the construction of the tree of regions that best describes the image,
including thus the selection, at each node, of the model that best fits the region under
analysis, and the definition of meaningful growth stopping criteria. To tackle these prob-
lems we define a suitable figure, attached with each node/region and each model, called
split-gain, which allows us to decide which region to split first, with which model, and
when to stop the algorithm.

2 Background

In this section we provide a short description of the basic segmentation algorithms, TS-
MRF and TFR, necessary for understanding the dynamic algorithm proposed here. We
assume the reader to have some familiarity with Bayesian segmentation and Markov
random fields, referring to specific references [6] for a more thorough treatment.

Tree-Structured-MRF (TS-MRF) is a recursive segmentation algorithm. The whole
image of interest, namely the set of sites S and the corresponding observables y is
associated with the root of a tree. Its segmentation divides the set of sites in K disjoint
subsets {S1, . . . ,SK}, each with its subset of observables, associated with the root
children. Recursion on the newly generated nodes, together with some suitable stopping
conditions, produces a tree of classes and the associated segmentation of the image. An
arbitrary number of classes could be considered at each node, but we restrict attention
to binary segmentation in order to avoid the challenging task of order selection. At each
node, segmentation is carried out according to the MAP criterion

x̂ = argmax
x

p(x|y) = argmax
x

p(y|x)p(x) (1)

where p(·) indicates probability mass/density function (pmf or pdf) x is the label map,
and x̂ is therefore the most probable map given the observables. The label map is mod-
eled as an Ising MRF, where the labels are assumed to be equally likely, only cliques of
two 8-connected sites are considered, c = (i, j), and the potentials are defined as

Vc(xi, xj) =

{

β if xi �= xj

0 otherwise.
(2)

With this definition, we obtain the global pmf

p(x) =
1

Z
exp[−βNE(x)] (3)

where NE(x) is the number of label transition or edges in the map or, under another
point of view, the total length of region boundaries in the map. With this prior pmf, label
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(a) (b) (c) (d)

Fig. 1. An example texture with its three components (clusters of segments)

transitions are penalized, with a strength depending on the edge-penalty parameter β:
the larger β the more regular the final segmentation map.

A key element of TS-MRF is the so called split-gain which, for each node, measures
the convenience of actually proceeding with a further split of the associated class. For
each leaf node we compute the associated split-gain, and proceed to split the node with
the maximum gain, provided it is positive. Therefore, the segmentation tree is shaped
by this measure, defined formally and analyzed in depth in the next Section, which also
provides the necessary stopping condition.

The Texture fragmentation and reconstruction (TFR) algorithm [7–9] is oriented
to the segmentation of textured images. Fig.1 shows a simple texture (a close view
of a fabric) together with its decomposition in three basic components, each of which
is, in turn, a collection of elementary segments with about the same color, size, and
shape. This simple description fits very well a large variety of natural textures, and TFR
translates it in three major processing steps

1. color-based segmentation;
2. segment clustering;
3. progressive cluster merging.

The first step detects all elementary connected regions with homogeneous color by
means of any conventional region-based or edge-based segmenter. The second steps
forms clusters of segments like those shown in Fig.1(b-d), which are the building blocks
of textures. To this end, each segment is characterized by a vector of features. These in-
clude color, position, size, and shape, but the most discriminating features are related
to spatial context, as natural for textures. For example, all black segments of Fig.1(a)
have a red segment on their right, a distinctive contextual feature of this specific texture,
not easily found in others. Once correctly featured the segment, it is relatively simple
to retrieve meaningful clusters by means of standard data analysis techniques. The fi-
nal step reconstructs the desired textures by progressive pair-wise merging of clusters.
A suitable merging gain (called texture score) [9] is defined to decide which texture
components should be merged at any step and when to stop the process.

Like TS-MRF, also TFR produces thus a hierarchy of nested segmentation maps. In
the latter case, however, the process is a bottom-up merging, starting from the basic
clusters of segments to obtain larger and larger textures. However, TFR can be triv-
ially re-engineered to become a top-down process. By forcing the merging process to
proceed until only two textures remain, we obtain a binary TFR (B-TFR) algorithm.
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Recursive application of the B-TFR, then, gives rise to a tree-structured top-down seg-
mentation, called recursive TFR (R-TFR) [10], which provides different (and typically
better) results than TFR.

3 Dynamic Hierarchical Classification

DHC is a recursive algorithm, therefore it can be associated with a tree, where each
node corresponds to a region (not necessarily connected) of the image. The root of
the tree corresponds to the whole image while the leaves correspond to the elementary
segments or classes produced by the segmentation process. We restrict attention to two-
class segmentation and therefore deal with binary trees. A binary tree T is formally
identified by a set of nodes {t ∈ T } and their mutual relationships. Except for the root,
each node t has one parent u(t), and each internal node has two children l(t) and r(t),
with u[l(t)] = u[r(t)] = t. In the following, to simplify notation, we will associate
nodes with integers, with t = 1 corresponding to the root, l(t) = 2t, r(t) = 2t+ 1 and
u(t) = �t/2�.

With each node t in T we associate

– a set of sites St ⊆ S, corresponding to a segment of the image;
– a set of observed data yt = {yi : i ∈ St}, that is the restriction of y to St.

A segmentation map xt for node t is a field of labels defined on St, with xt
i ∈ {2t, 2t+

1}. When node t is split according to map xt two new nodes are generated: node 2t
with S2t = {i ∈ St : xt

i = 2t}, and y2t = {yi : i ∈ S2t}, and node 2t + 1 with the
associated items defined in a similar way.

Initially, the tree comprises only the root, T = {1}, which is also its unique leaf.
We use the B-MRF segmentation algorithm to compute the segmentation map xS,1,
where the S superscript indicates spectral-based, with split gain GS,1. Likewise, use the
B-TFR segmentation algorithm to compute the segmentation map xT,1, with split gain
GT,1, where T indicates texture-based. Then we set G1 = max(GS,1, GT,1). If G1 ≤ 0
the root is not split, because none of the two segmentation maps provides an improved
representation of the data. Otherwise, it is split using the technique with the largest split
gain, that is,

x1 =

{

xS,1 if GS,1 > GT,1

xT,1 otherwise
(4)

In the generic step of the algorithm, the leaf with the largest split gain is split using the
same logic, provided the gain is positive, otherwise the algorithm stops.

Eventually, it all comes down to the definition of the spectral and textural split gains,
which quantify the improvement in representation accuracy, if any, granted by segmen-
tation. In [3] the split gain for TS-MRF is defined as the log likelihood ratio between
the competing single-class (no split) and two-class (split) descriptions of the data. In the
single-class description of node t, there is only one label available, and only one pos-
sible label field, with unit probability. The observables are assumed to be independent
and identically distributed (i.i.d.) Gaussian with parameters estimated from the data.
In the two-class description, instead, the label field is random, xt ∈ {2t, 2t + 1}N ,
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and is described by the Ising MRF model of (3), while the observable are conditionally
independent, given the label, following two Gaussian laws with different parameters.

Before the log, we therefore have

exp(GS,t) =
p(xt)p(yt|xt)

p(yt)
= p(xt) · g

2t(y2t)g2t+1(y2t+1)

gt(yt)
(5)

where gt(·) is the Gaussian distribution that best fits the observables yt, with parameters
estimated on the data, and gt(yt) =

∏

i∈St gt(yi).
Equation (5) shows clearly the balance among two competing costs/gains. The last

fraction makes clear that the two-class hypothesis can provide a better description of the
observables as these can be suitably grouped and each group can be explained by a dedi-
cated distribution, g2t(·) or g2t+1(·), while in the single-class case a unique distribution
gt(·) must explain all data. This obvious description gain is balanced by the cost of
describing the grouping itself, represented by p(xt), which is absent in the single-class
case. Therefore, the split gain balances the fitting gain, related to a better description of
the data, with the segmentation cost, related to the number of edges NE(x

t) and hence
to the map complexity.

We now want to define a split gain for B-TFR segmentation in order to compare
the two solutions in a meaningful way. Therefore, we follow the same conceptual path,
defining the split gain as a balance between the fitting gain of the data and the segmen-
tation cost. In the case of textures, however, it makes no sense trying to describe data
by means of a single Gaussian distribution. When we decide not to split a region, in the
TFR framework, it is because we believe it is accurately represented by a single texture,
not a single homogeneous field, therefore, its fitting must refer to some kind of mixture
distribution. In other words, the region under analysis is considered under two comple-
mentary points of view: i) based on spatial properties, it is regarded as a single textured
region, ii) based on color, it is divided again in two classes, each represented by its own
distribution. Again, we choose the simplest possible mixture to describe data, that is,
the mixture of two Gaussians. Therefore, even in the no-split hypothesis, the likelihood
of the data is written as

p(yt) = m(yt) =
∏

i∈S̃2t

g̃2t(yi)
∏

i∈S̃2t+1

g̃2t+1(yi) (6)

where m(yt) is the best mixture of Gaussians for the data of node t, S̃2t and S̃2t+1

are the two segments in which St would be divided by the color-oriented clustering
map ct (not by the B-TFR map xt), and g̃2t(·), g̃2t+1(·) are the associated best fitting
Gaussian distributions. Accordingly, in analogy with the former case, the splitting gain
for B-TFR is written (again, before the log) as

exp(GT,t) =
p(xt)p(yt|xt)

p(yt)
= p(xt) · m

2t(y2t)m2t+1(y2t+1)

mt(yt)
(7)

where the map description cost is computed with xt regarded as an Ising MRF.
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Given the estimate of mean vector μ and covariance matrix C for each set of observ-
able data, we can write the Fitting cost as

F (yt) = − log[gt(yt)] = αt +
N t

2
log |Ct|+

∑

i∈St

1

2
(yi−μt)T [Ct]−1(yi−μt) (8)

with αt = N tB log(2π)/2, by which, taking into account also (3), we can write (5)
explicitly as

GS,t =
[

F (yt)− F (y2t)− F (y2t+1)
] − [

βtNE(x
S,t) + logZt

]

(9)

where the first square brackets accounts for the fitting gain (cost reduction) granted by
the split, and the second for the map description cost. Likewise, for a TFR split we can
write

GT,t =

[

2t+1
∑

τ=2t

F (ỹτ )−
4t+3
∑

τ=4t

F (ỹτ )

]

− [

βtNE(x
T,t) + logZt

]

(10)

Since all terms scale linearly with the segment dimension, N t, we normalize the
split gain to it. This has no influence on the comparison between MRF and TFR, but
modifies the split order in favor of needy classes, rather than large ones.

A further suitable normalization concerns the data dimensionality. In fact, when
B � 1 (think of hyperspectral images, with hundreds of bands), the regularization
term related the map description cost becomes negligible w.r.t. the fitting gain, leading
to a sure oversegmentation of the image. Our simple Gaussian model cannot automat-
ically take into account this phenomenon. By normalizing the fitting gain term by the
number of bands we increase the probability of stopping, splitting a node only when it
is clearly necessary.

Finally, it is well known that the partition function Zt cannot be computed exactly.
Some good approximations have been proposed in the literature, especially for the Ising
model, but only for the case of rectangular lattices, a constraint that we meet only for the
segmentation of the root. Therefore we neglect it altogether, but compare the splitting
gain with a small positive threshold, tuned by preliminary experiments, rather than zero.

Eventually, the split gains are defined as

GS,t =
1

N t

{

1

B

[

F (yt)− F (y2t)− F (y2t+1)
]− βtNE(x

T,t)

}

(11)

and

GT,t =
1

N t

{

1

B

[

2t+1
∑

τ=2t

F (ỹτ )−
4t+3
∑

τ=4t

F (ỹτ )

]

− βtNE(x
T,t)

}

(12)

4 Experiments and Discussion

To test the proposed algorithm, we carry out numerical experiments on multispectral
remote-sensing images. Segmentation is especially relevant in this context not only as



Dynamic Hierarchical Segmentation of Remote Sensing Images 377

Mosaic GT TS-MRF R-TFR DHC

Fig. 2. Results on Prague benchmark. Left to right: mosaic, ground truth, TS-MRF, R-TFR, DHC.

an help for image analysis, but also in related applications, such as content-based image
retrieval [11], or region-based image compression [12, 13] and denoising [14]. Objec-
tivity and reproducibility of results are guaranteed by resorting to the publicly available
Prague remote-sensing segmentation benchmark [15], which provides a number of mul-
tispectral mosaics with attached ground-truth, with many challenging cases. Results are
compared under a large number of criteria with those of TS-MRF and R-TFR under two
conditions i) fixed number of nodes ii) best number of nodes (with maximum correct
segmentation). In any case, we keep the tree structure provided by the algorithm, with
no user intervention.

Fig.2 shows some of the mosaics used in the experiments together with the associated
ground truth and with the best segmentation provided by TS-MRF, R-TFR and DHC,
respectively. Visual inspection testifies the superiority of the dynamic model approach:
TS-MRF captures well the image structure, most of the times, but produces an obvious
fragmentation of regions; on the other hand, TFR provides a more compact map, but
happens to erroneously merge some segments. Most of these problems are overcome
by DHC. Numerical results in Table 1, referring to a total of 20 mosaics, fully confirm
this impression, with DHC almost always the best technique both for the fixed-number
and best-number cases. In particular, DHC provides a 5 percent points improvement in
overall Correct Segmentation (CS) w.r.t. the best fixed-model reference (R-TFR).

To gain insight into the reasons of such an improvement consider the segmentation
tree of Fig.3, obtained by using exclusively the TS-MRF technique. In the box associ-
ated with each node we report the TS-MRF split gain (spectral gain, SG) and also, in
smaller font, the TFR split gain (or texture gain, TG), which however is not taken into
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Table 1. Numerical results on Prague benchmark for DHC, R-TFR and TS-MRF (with manual
selection of the number of classes); (Benchmark criteria: CS = correct segmentation; OS = over-
segmentation; US = under-segmentation; ME = missed error; NE = noise error; O = omission
error; C = commission error; CA = class accuracy; CO = recall - correct assignment; CC =
precision - object accuracy; I. = type I error; II. = type II error; EA = mean class accuracy estimate;
MS = mapping score; RM = root mean square proportion estimation error; CI = comparison
index; GCE = Global Consistency Error; LCE = Local Consistency Error; dD = Van Dongen
metric; dM = Mirkin metric; dVI = variation of information).

Benchmark – ALI
DHC

Optimal # of

classes

R-TFR
Optimal # of

classes

TS-MRF
Optimal # of

classes

DHC
Given # of

classes

R-TFR
Given # of

classes

TS-MRF
Given # of

classes

↑CS 84.60 78.45 66.45 75.05 70.33 55.49
↓OS 6.78 10.39 9.34 7.56 12.95 7.58
↓US 8.73 14.33 12.09 16.77 17.45 20.44
↓ME 4.70 2.90 14.26 4.07 8.28 15.33
↓NE 5.33 1.28 14.77 4.62 6.85 14.57
↓O 1.69 1.22 4.39 3.24 1.07 8.15
↓C 0.70 3.11 6.07 0.52 4.78 6.40
↑CA 89.69 84.74 80.82 83.36 80.52 73.11
↑CO 92.80 89.72 86.98 88.64 86.42 81.33
↑CC 92.78 88.98 87.88 87.19 88.30 81.47
↓ I. 7.20 10.28 13.02 11.36 13.58 18.67
↓ II. 0.90 1.25 2.64 2.25 1.98 4.23
↑EA 92.29 88.37 86.27 86.73 85.58 79.27
↑MS 89.59 85.45 81.60 82.95 79.63 72.00
↓RM 1.94 3.46 3.66 3.42 4.23 5.40
↑CI 92.53 88.84 86.83 87.24 86.44 80.27
↓GCE 4.38 4.34 10.26 5.74 8.45 12.31
↓LCE 2.67 2.25 6.72 2.80 2.84 6.52
↓dD 4.61 6.20 9.07 6.70 8.42 11.79
↓dM 2.17 3.06 5.66 4.33 4.60 8.38
↓dVI 14.51 14.43 14.77 14.30 14.57 14.44

account for the segmentation. The four-class mosaic associated with the root, node 1, is
split along the red line with a large gain, SG=0.63. Both children nodes have a positive
split gain, close to zero the left one, quite large the right one, which is therefore split
first, generating nodes 6 and 7. Now look at node 6: although two different regions are
clearly recognizable, the spectral gain is negative, because both regions are internally
textured, and hence poorly represented by a single Gaussian fit. This node will no longer
be split, with an unrecoverable undersegmentation. Going on we obtain only a wrong
split of node 7 and possibly (depending on the decision threshold) of other nodes. In this
case, instead, TFR would have split node 3 along the yellow line, correctly separating
the two regions, with a relatively large texture gain TG=0.16.

Consider now the symmetric situation of Fig.4, where only the TFR segmenter is
used. After splitting nodes 1, 3, and 2, in this order, along the red lines, the algorithm
either stops, if the decision threshold exceeds 0.07, or splits unduly node 5 which cor-
responds to a homogeneous region. Node 6 is not split because the relatively large gain,
TG=0.10, is obtained with a wrong split (not shown) which singles out an exceedingly
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3rd

(1)
SG=0.63
(TG=0.53)

(2)
SG=0.07
(TG=-0.01)

(3)
SG=0.70
(TG=0.19)

(6)
SG=-0.02
(TG=0.16)

(7)
SG=0.14
(TG=0.03)

1st

2nd

Fig. 3. Tree structured segmentation of mosaic # 2 by TS-MRF

(1)
TG=0.71
(SG=0.30)

(2)
TG=0.11
(SG=0.77)

(4)
TG=-0.05
(SG=-0.04)

(5)
TG=0.07
(SG=-0.05)

(3)
TG=0.26
(SG=0.09)

(6)
TG=0.10(∗)

(SG=0.34)

(7)
TG=-0.02
(SG=-0.20)

1st

3nd

2rd

Fig. 4. Tree structured segmentation of mosaic # 2 by R-TFR

small region, and is hence rejected (marked with a *). The problem is that the two class
region associated with node 6 is already well represented by a mixture of Gaussians,
making a further textural split not convenient. For the same node, however, the spectral
gain would be much larger, corresponding to the correct separations of the two large
component regions along the yellow line.

In both cases, the use of the competing models would definitely improve the segmen-
tation path and the final result. These results, however preliminary and limited, clearly
show the potential of the dynamic hierarchical classification paradigm. Significant fur-
ther improvements can be expected by including other image models and segmentation
engines. The problem remains of how to define suitable metrics to switch between one
model and the other.
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