
Wide Area Camera Localization

Valeria Garro1, Maurizio Galassi1, and Andrea Fusiello2,�

1 Department of Computer Science,
University of Verona,

Strada Le Grazie 15, 37134 Verona, Italy
2 Department of Electrical, Mechanical and Management Engineering,

University of Udine,
Via Delle Scienze 206, 33100 Udine, Italy

Abstract. In this paper we describe a mobile camera localization system
that is able to accurately estimate the pose of an hand-held camera in-
side a known urban environment. The work leverages on a pre-computed
3D structure obtained by a hierarchical Structure from Motion pipeline
to compute the 2D-3D correspondences needed to orient the camera. The
hierarchical cluster structure, given by the SfM, guides the localization
process providing accurate and reliable features matching. Experiments
in outdoor challenging environments demonstrate the effectiveness of the
method compared to a standard image retrieval approach.
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1 Introduction

The problem of providing a precise localization of a portable camera has been
widely investigated in computer vision. A particular aspect of this issue is image-
based localization, i.e., computing the camera pose estimation of the device using
only the information given by the image or video itself. This topic is included
in a wide range of applications such as video surveillance and robot localization,
augmented reality application for eHeritage and gaming.

In these particular scenarios a very accurate level of localization is needed,
hence positioning systems employing only GPS or Wi-Fi sensors are not suf-
ficient. For example GPS signal is missing in indoor environment and even if
available outside, its accuracy could be affected by atmospheric conditions and
natural and artificial barriers, furthermore these type of sensors provide only the
3D position of the hand-held device but not the camera orientation. For these
reasons further techniques based directly on image processing must be included
in the system in order to provide a complete and precise camera pose estimation.
We propose a complete image-based system that provides an accurate camera
pose estimation of compact devices like smartphones, surveillance and consumer

� This work has been carried out while A.F. was with the University of Verona.

A. Petrosino (Ed.): ICIAP 2013, Part I, LNCS 8156, pp. 320–329, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Wide Area Camera Localization 321

cameras in a urban environment. Image-based techniques usually request as in-
put only a set of unordered images of the scene where one wants the positioning
to take place. Thanks to the recent improvement in computer vision research on
Structure from Motion (SfM) [1–5], in addition to this image archive we can also
rely on the 3D reconstruction of the environment. Implementations of different
SfM algorithms are available online1, furthermore in the last years several new
SfM techniques have been presented to improve scalability exploiting large scale
photo collections [2, 3] and to augment efficiency and precision using hierarchical
methods [4, 5].

A variety of approaches that exploit both 3D and 2D data for location recog-
nition has been presented in the computer vision literature. In [6] the authors
present a complete system integrating SfM and image-base technique for fast
location recognition. They propose the creation of a set of synthetic views in
addition to the initial dataset of images used for SfM reconstruction in order to
cover as much as possible the corresponding area and be able to compute also
the camera pose of query images taken far from the original dataset. In [7] a
typical computer graphics approach for visibility estimation is applied in order
to reduce the dataset of images to process during the retrieval step. The authors
divide the 3D points cloud into view cells and pre-compute a cell-to-cell visibility
data. These Potentially Visible Sets (PVS) determine the subset of 3D points
and related descriptors that have to be considered according to the current cell.

Recent works focus on a direct 2D-to-3D registration that omits the conven-
tional image retrieval step. In [8] a prioritized feature matching algorithm that
matches a limited set of representative 3D scene features to features in the query
image is proposed. In [9] the authors devised a direct matching procedure based
on visual vocabulary quantization of the 3D features and a prioritized corre-
spondence search. A further step has been introduced by [10] and [11], where a
unified formulation of searching strategies has been explored that includes both
2D-to-3D and 3D-to-2D matching on large scale datasets.

In this paper we present a localization system leveraging on spatial 3D in-
formation, that combined with an efficient image retrieval technique, provides
a fast and precise camera pose estimation of a single image or a video frame
capture with an hand-held device. Our algorithm relies on a hierarchical SfM
pipeline [4, 5] that besides the 3D points cloud creation provides a hierarchical
cluster structure that guides the reconstruction process. It computes a sparse
set of 3D points endowed with features descriptors (the “model”) by processing
a unordered set of images of the scene (the “images archive”). A set of 2D-3D
point correspondences between the current frame and the model is needed in or-
der to compute the camera pose estimation. Since typically the 2D points visible
in one image are a small subset of the whole reconstruction, it is highly advisable
to deploy pruning strategies to limit the set of 3D candidates. Our technique is
based on retrieving a small set of the most similar images to the current frame
from the archive and then limiting the candidates to those 3D points that are
visible in the retrieved images. The retrieval procedure follows a Bag-of-Words

1 http://homes.cs.washington.edu/~ccwu/vsfm/ or http://www.3dflow.net/

http://homes.cs.washington.edu/~ccwu/vsfm/
http://www.3dflow.net/
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(BoW) approach with tf-idf weighting [12, 13] in order to give a compact repre-
sentation of each image of the archive. Additionally this last step exploits also
the hierarchical organization (called “dendrogram” or binary clustering tree) of
the images archive produced by the clustering stage of the SfM algorithm.

More in details, the leaves of the binary cluster tree are associated with the
single images of archive, the inner nodes represent a cluster of two or more images
created during the reconstruction process of the SfM algorithm. The proposed
approach leads to a fast and precise search algorithm. It is more efficient than the
classic indirect image retrieval approach because the BoW vectors comparison
is limited to a particular set of the inner nodes of the dendrogram avoiding
a comparison procedure with the complete image archive. At the same time
it guarantees more coherent retrieval results preventing the retrieval of single
“outlier” image.

We test the performance of the algorithm in four different urban scenarios. In
particular on the last more challenging dataset we have built also an handmade
ground-truth in order to compute quantitative results on a video frame sequence.

2 System Overview

The system involves two main stages (see Fig.1):

– An “off-line” stage that runs the SfM pipeline and indexes each node of the
dendrogram according to the Bag-of-words approach;

– An “on-line” stage during which the video stream captured from the mobile
camera is transmitted over Wi-Fi connection to a server that processes each
frame accordingly in order to orient the camera.
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Fig. 1. System Overview. The “off-line” data pre-processing step are represented on
the left of the image, the “on-line” stages are outlined on the right.
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2.1 Offline Data Pre-processing

The off-line stage is devoted to compute a 3D reconstruction of the environment
from the images archive. After running the SfM pipeline [4, 5] we obtain a 3D
points cloud where each 3D point is endowed with a set of SURF [14] features
descriptors, and a binary cluster tree (dendrogram) from which we can infer a
hierarchical clustering of images.

Indexing and retrieval follows the well-known Bag-of-Words (BoW) frame-
work. With the BoW approach images are represented by an histogram of oc-
currences of visual words from the codebook. These visual words are usually
provided by quantization of the entire set of feature descriptors associated with
the 3D points of the model. Additionally, we represent also each inner node of
the dendrogram by a BoW histogram. Each inner node is a cluster of images
and its BoW vector is computed using the feature descriptors related to the
subset of 3D points visible from the images belonging to that cluster. The root
of the binary cluster tree (level 0) identifies the whole 3D reconstruction. If the
dendrogram is well balanced, its first levels are associated with big portions of
the 3D points cloud, therefore their BoW histograms are not very discriminative
and can be excluded from the retrieval step.

Different approaches can be employed for the descriptors quantization depend-
ing on the size of the dataset: for a relatively small dataset k-means clustering
can be sufficient, however, in the pursue of scalability, more complex data struc-
tures like vocabulary tree [15] or random forest [16] must be used. We apply also
the “term frequency - inverse document frequency” (tf-idf) weighting scheme:
given a visual word t in an image d, its weight is given by: tf-idft,d = tft,d× idft.
The term frequency (tf) is simply the (normalized) occurrence count of a visual
word in the image: tft,d =

nt,d∑
k nk,d

where nt,d is the number of occurrences of the

visual word t in the image d. The inverse document frequency (idf) evaluates the

general importance (or rarity) of the visual term: idft = log |M|
1+|{i:nt,i �=0}| where

M is the set of all images and {i : nt,i �= 0} is the set of images where the visual
word t appears at least one time.

2.2 On-Line Processing

The on-line phase consists first in retrieving from the archive the most similar
images to the current one, in order to limit the 3D matching candidates to those
points that are visible in the retrieved images. Then the 2D-3D matches are used
to orient the camera by solving an exterior orientation or Perspective-n-Point
problem camera pose (PnP) problem. In particular, the on-line stage consists of
the following steps, as illustrated in Fig. 1:

1. Fast-Hessian features detection and SURF descriptor extraction [14];
2. Retrieval of the most similar images exploiting the dendrogram and recover

of SURF descriptors related to the 3D points viewed by the retrieved images;
3. Descriptors matching;
4. Camera orientation (or pose estimation) from 2D-3D correspondences.
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First, keypoint features are detected and descriptors are extracted from the
current frame (query image), in the specific case Fast-Hessian features and SURF
descriptors [14] have been chosen, then each feature is assigned to a visual word
of the codebook using a kd-tree structure, and the BoW histogram (Hq) of the
query image is computed. Then, we run the retrieval step where the similarity
between Hq and the BoW histograms related to the nodes of the dendrogram

is computed by using the cosine similarity function: sim(Hq, Hi) =
Hq ·Hi

‖Hq‖‖Hi‖ for

each node i belonging to a specific level of the dendrogram D.
Suppose having a balanced dendrogram, the similarity check can be applied

only to a particular subset of inner nodesD, reducing the number of comparisons.
Nodes of the dendrogram with small depth (i.e. near the root of the tree ) are
associated to a large portion of the reconstruction and therefore their BoW
histograms can be not so discriminative. For this reason we compare the BoW
histogram of the query image only with the inner nodes whose subtrees contain
a limited number of leaves (dataset images) (e.g. 6−10). The most similar inner
node D̃ is now determined, the leaves of the subtree with root D̃ are the subset
of most similar images, defined M̃ ⊂ M .

The second step consists in selecting the points of the 3D model visible from
the cluster related to D̃ and M̃ . Finally, a set of tentative correspondences be-
tween 2D query points and 3D model points is obtained with nearest-neighbor
matching between the descriptors extracted from the query image and the de-
scriptors of the 3D points just selected.

Given a number of 2D-3D point correspondences mj ↔ Mj and the intrinsic
camera parameters K, the exterior image orientation problem requires to find a
rotation matrix R and a translation vector t (which specify attitude and position
of the camera) such that:

ζjm̃j = K[R|t]M̃j for all j (1)

where ζj denotes the depth of Mj, and the˜denotes homogeneous coordinates
(with a trailing “1”).

In literature there are many algorithms that solve this problem [17–19]; we
adopted the PPnP approach [20], a simple and efficient solution that formulates
it in terms of an instance of the anisotropic orthogonal Procrustes problem. In
the remaining of this section we will briefly summarize this approach. After some
rewriting, (1) becomes:

⎡
⎢⎣
MT

1
...

MT
n

⎤
⎥⎦
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S
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...
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︸ ︷︷ ︸
1cT

. (2)

where p̃j = K−1m̃j , c = −RT t, and 1 is the unit vector. Therefore, the previous
equation can be written more compactly in matrix form:

S = ZPR+ 1cT (3)
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Fig. 2. Sample images of dataset Piazza del Santo(top) and Piazza Brà (bottom)

This is an instance of an anisotropic orthogonal Procrustes problem with
data scaling [21]. The solution of this problem finds Z,R and c in such a way to
minimize the sum of squares of the residual matrix Δ = S − ZPR− 1cT .
This can be written as

min‖Δ‖2F subject to RTR = I, (4)

which can be solved with Lagrangian multipliers, yielding (the derivation of the
formulae is reported in [20]):

R = Udiag
(
1,1,det(UV T )

)
V T with UDV T = PTZ

(
I − 1 1T /n

)
S (5)

c = (S − ZPR)
T
1/n (6)

Z = diag (PR(ST−c1T )) diag (PPT )
−1

. (7)

It turns out that – as opposed to the isotropic case – here the unknowns
are entangled in such a way that one must resort to a block relaxation scheme,
where each variable is alternatively estimated while keeping the others fixed.
Empirically, the procedure always converges to the correct solution starting from
a random initialization. In order to cope with outliers we use PPnP as minimal
solver (n = 3) and MSAC [22], as customary. A further processing of camera
pose can be done applying a non-linear refinement on inliers that minimizes the
reprojection error. This is however discretionary, subject to the time budget.

3 Experiments

In this section we describe the two different experiments performed to evaluate
the proposed method. The first experiments has been run testing two outdoor
scenarios, Piazza del Santo and Piazza Brà. The first archive is composed by
105 images (2592 × 1944) of a big city square outside an historical church, the
second archive represents a bigger and more articulated square with much more
repetitive structures, with 320 images (1504× 1000).

Fig. 2 shows some image examples. A quantitative evaluation of camera pose
estimation accuracy is based on leave-one-out tests.
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Each camera provided by the SfM pipeline has been first removed from the
image archive and consequently the related set of feature descriptors; then the
proposed algorithm has been run on the updated archive. In this way we can
consider the registered camera obtained with the SfM pipeline as our ground-
truth data.

In order to test the performance of our retrieval method involving the den-
drogram of the Structure from Motion reconstruction we compare it with the
classic approach that measures the cosine distance between the BOW vector of
the query image and the BOW vectors of each dataset image.

Table 1. Leave-one-out validation results on the two datasets. Values within the paren-
thesis indicate the errors after the non-linear refinement.

#
Images

#
Features

# 3D
points

Success
Rate

Translation
Error [m]

Rotation
Error [deg]

Reprojection
Error [px]

Piazza del Santo 105 45k 30k 95% 0.114 0.103 1.016

classic retrieval (0.080) (0.074) (0.812)

Piazza del Santo 105 45k 30k 96% 0.050 0.091 0.951

dendrogram approach (0.037) (0.051) (0.791)

Piazza Brà 320 233k 50k 92% 0.192 0.378 0.586

classic retrieval (0.176) (0.338) (0.481)

Piazza Brà 320 233k 50k 92% 0.077 0.154 0.602
dendrogram approach (0.058) (0.114) (0.486)

Table 1 shows the results for the leave-one-out tests, where the success rate is
the percentage of images localized having a set of correspondences inliers larger
than 20 after the camera pose estimation using MSAC. The accuracy of our
algorithm is shown in terms of mean euclidean distance of the camera center
with respect to the ground-truth, the mean reprojection error of the 3D points
visible from the specific camera and the mean residual rotation angle given by
the geodesic distance in SO(3):

dg(RgtRl) =
∥∥logRT

gtRl

∥∥
F

(8)

where Rgt is the rotation component of the camera matrix of the ground-truth
data Pgt = Kgt [Rgt|Tgt] and Rl is the rotation component of the camera matrix
Pl = Kl [Rl|Tl] computed by our algorithm. In both experiments our approach
clearly outperforms the classic retrieval in terms of accuracy with comparable
registration rate results.

Furthermore, for the Piazza del Santo dataset three different video sequences
of a person walking on the area have been acquired with a simple consumer
camera, each video sequence is formed by 900 frames out of which only 38 have
not been successfully localized. A qualitative evaluation of the localization is
reported in Fig 3.

The second test has been run on a challenging outdoor environment consisting
of a parking space located in between several buildings with repetitive structures.
The image archive is composed by 543 images (2048×1536), the 3D model of the
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Fig. 3. The colored blobs represent the estimated camera pose for each frame of three
different video sequences, perspective (left) and top (right) views

scene is described by a set of 32k 3D points and 203k SURF descriptors. Further-
more the experiment involved four static cameras slightly overlapped, installed
on the parking area corners. These cameras were connected with a server that
stored the 30 fps images from the cameras, synchronizing them and giving a
common time stamp. The four cameras have been calibrated with respect to the
reference system of the 3D model, achieving a coherent system. A sample of the
four camera views can be seen in Fig. 4. The test consisted of an agent equipped
with a proprietary device2 fixed on the shoulder, walking in the area in a wide
closed loop while recording the scene. Analyzing the video sequences recorded
by the static cameras we computed the ground-truth for each frame, estimating
the 3D position of the agent on the ground floor using a suitable homography
transformation.

Fig. 4. Snapshots taken at the same time by the four static cameras

Due to the hardware setup the chain delays induced a variable frame rate
transmission of the mobile device data, therefore it was not possible to couple
frame by frame the agent and the static cameras views. In order to overcome
this synchronization problem over the all frames we decided to evaluate the
trajectory of the agent instead of comparing each single position. Each ground-
truth path extracted by the four cameras has been approximated by fitting a
polynomial curve to the data, generating a set of four segments representing

2 This device have been specifically designed for mobile surveillance and provides high
quality recording of time-stamped audio-video sequences. It has a ARM Cortex A8
core processor running at 720 MHz and an integrated Microsoft LifeCam Studio
webcam with a resolution of 1280 × 720.
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the path. The trajectory directions, the original ground-truth positions and the
fitted segments are shown in Fig. 5. The average distance error is 2.82 m and
the success rate is 45% We run our tests on a Intel QuadCore with 2.4Ghz,
the C++ implementation of the algorithm takes less than 2 seconds. More in
details, the feature and descriptor extraction requires 0.55 seconds, the retrieval
0.30 seconds, for the feature matching step the time is 0.65 seconds and finally
the camera pose estimation with PPnP and MSAC takes 0.17 seconds.

Fig. 5. Sequence trajectory. The ground-truth positions are marked in cyan, the four
segments are indicated in alternated colors, green and red. Dashed lines indicate the
absence of ground-truth data, as the path falls out of the field of view of the cameras.

4 Conclusions and Future Works

We described a mobile camera localization system in a known urban environ-
ment. Localization occurs via 2D keypoint matching against a 3D points cloud
obtained by a hierarchical SfM pipeline, leveraging in the image retrieval step
on the additional hierarchical structure given by the SfM. Future work will aim
at achieving real-time processing of the video frames by GPU implementation
and exploitation of motion constraints (presently, each frame is localized inde-
pendently from the previous ones).

Acknowledgments. This work has been funded by the EU SAMURAI Project.
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