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Abstract. This study clarifies the accuracy performance of a deformable
handwritten recognition approach (DHRA) for digit characters. The de-
formable approach consists of regularization-based displacement com-
putation, coarse-to-fine strategy, distance measurement and k-nearest
neighborhood method. We focus on several conditions for investigating
the accuracy and the sensitivity, that is, the definition of averaging area
in regularization process, regularization parameters and the number of k
for k-nearest neighborhood method. According to the simulation results,
it was shown that the proposed method has the error rate of 0.42% for
MNIST handwritten digit database, resulting in the top-group of the
performances reported until now.

Keywords: deformable handwritten recognition, MNIST digit database,
regularization.

1 Introduction

Handwritten character recognition is one of the interesting topics in the field
of computer vision and machine intelligence, since it does not only relate with
the applications of optical character recognition but also the functionality of
the human brain for reading many kinds of characters [1]. In order to compare
the accuracy performances of different recognition approaches, several evalua-
tion databases have been provided, and modified-NIST (MNIST) database is
frequently employed [2].

Neural network approaches have been successfully applied to MNIST database.
LeCun et al. proposed convolutional neural networks (CNN) [2–4], which are
specifically designed to deal with the variability of 2D shapes. LeNet-5, a con-
volutional network, comprises 8 layers and has feature mapping planes where a
set of the units shares identical weight values for an efficient learning. Under the
hypothesis that more training data would improve the accuracy, they artificially
generated more samples by randomly distorting the original training samples. For
the distortion operation, planar affine transformation or elastic transformation
was utilized. These ideas of deep convolutional neural network (DNN), earlier
introduced by [5] and sophisticated by [2–4], were more developed by Ciresan
et al. [6, 7]. They takes advantage of the recent parallel computation devices
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Fig. 1. Rubber mask technique for pattern recognition

(graphics processing units; GPUs) for their powerful learning process, and em-
ployed several effective strategies, that is, only winner-neurons are trained and
several DNN columns were combined to form a multi-column DNN (MCDNN).
The error rate of MCDNN was reported as 0.23%.

The support vector machine (SVM) is an extremely economical way of repre-
senting complex surfaces in high-dimensional spaces [8], which has been applied
to various problems in pattern recognition. LeCun et al. investigated the appli-
cation of SVM to MNIST [2], and then DeCoste and Scholkopf reported the error
rate of their SVM as 0.56% [9]. Lin et al. reported their performance of 0.42%
by using 8-direction gradient features and RBF kernel [10]. Recently, Niu and
Suen presented a hybrid CNN-SVM classifier [11] and clarified the error rate of
0.19%, which is the top performance for MNIST database right now.

Deformable approach with k-nearest neighborhood method seems to be an
alternative possibility. Compared with the above-mentioned approaches, de-
formable approach does not need the training process in advance, and the vari-
ability of 2D shapes is dealt with by deforming one of an input and prototype
pattern into the other. The idea of the deformable approach can go back to
Widrow’s ”rubber mask” technique [12], which was inspired by Gregory’s in-
sights [13],

· · · perception is not determined simply by the stimulus patterns; rather
it is a dynamic searching for the best interpretation of the available data
· · ·

Figure 1 illustrates a recognition process of the rubber mask technique. An
input is captured on the sensor array and the prototypes, which might be image
features, are deformed in the ”rubberizer” under the controller. Finally, both of
them are compared in the comparator. The obtained error is referred by the con-
troller to update the deformation. Many deformable approaches were proposed
until now, and Belongie et al. applied their deformable approach to MNIST
database earlier [14]. They defined shape context (image feature) at the con-
tour pixels so as to represent the distribution of the surrounding contour pixels
and utilized the shape context as image feature for elastically corresponding two
character shapes with sub-pixel displacement. The error rate was reported as
0.63%. Keysers et al. proposed a novel approach [15], where the horizontal and
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vertical gradients with 3 x 3 pixel size are extracted as local context (image fea-
ture) and warping algorithm [16] is employed for the minimization in pixel-wise
correspondence. They reported the error rate of 0.52%.

This study focuses on the accuracy performance of deformable approaches
motivated by above-mentioned insights of Gregory [13] and Widrow [12]. A
regularization-based deformable approach, which was originally proposed by
Mizukami et al. [17–19], is employed for investigating the accuracy performance.
Although they reported the error rate of 0.57% in 2010 [19], their study fo-
cused on reducing the computation time and did not succeed in investigating
the fundamental accuracy performance. This study reviews their proposed de-
formable approach, conducts several simulations for clarifying the fundamental
performance including the accuracy and the sensitivity to the parameters, and
demonstrates how the approach deals with the variability of 2D shapes.

Section 2 describes the algorithm of the deformable recognition approach,
Section 3 describes the simulation and Section 4 gives the conclusion.

2 Algorithm

The framework of regularization theory has been successfully applied to many
early vision problems including optical flow, shape from shading and so on [20].
Inspired by a very simple but powerful regularization-based stereo correspon-
dence method [21], Mizukami et al. proposed a deformable handwritten charac-
ter recognition approach [17–19]. This section overviews the procedures in the
proposed approach.

2.1 Regularization-Based Displacement Computation

The two-dimensional correspondence problem between pixels of an input pattern
f and a prototype pattern g is ill-posed, and then it is necessary to introduce
some adequate constraints to solve it. Figure 2 illustrates the input pattern f and
the prototype g, where u(x, y) and v(x, y) indicates the horizontal and vertical
displacements at the coordinate of (x, y) on the prototype g. In order to obtain
the optimal displacement function for corresponding these two patterns, a cost
function to be minimized is introduced,

E(u, v) = P (u, v) + λS(u, v), (1)

P (u, v) =

∫ ∫
(f(x+ u, y + v)− g(x, y))2dxdy, (2)

S(u, v) =

∫ ∫
(u2

x + u2
y + v2x + v2y)dxdy, (3)

where P is the Euclidean distance with considering the computed displacement,
S is a stabilizing functional which imposes a smoothness constraint on (u, v),
and λ is a so-called regularization parameter controlling the effect of S. The
subscripts, x and y, are the derivative operation of horizontal and vertical direc-
tions, respectively.
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Fig. 2. Displacement function (u, v)

By applying calculus of variations to Eq. (1), the following iterative equations
are obtained,

u[t+1](x, y) = ū[t] − 1

4λ
fx(x+ ū[t], y + v̄[t])(f(x+ ū[t], y + v̄[t])− g(x, y)), (4)

v[t+1](x, y) = v̄[t] − 1

4λ
fy(x+ ū[t], y + v̄[t])(f(x+ ū[t], y + v̄[t])− g(x, y)), (5)

where the superscript t is the number of iteration (1 ≤ t ≤ T ), and ū and v̄ are
the average of u and v over the predefined neighborhoods of (x,y), respectively.
In order to make the computation more stable, ū and v̄ are employed not only
in the first term of the right hand but also in the second term instead of u and
v [17]. The first term smooths the displacement and the second term gives the
deforming force so as to overlap two images based on the derivatives of f and
the difference between the corresponding pixels on f and g.

2.2 Coarse-to-Fine Strategy with Distance Maps

For the fast convergence and preventing from being trapped in local minima, a
coarse-to-fine strategy with multi-resolution images is utilized. In this study, the
number of stage was set to 3. The original size of the pattern images is assumed
as 32 × 32 pixels and then the n-th stage deals with the size of 2n+2 × 2n+2

(1 ≤ n ≤ 3). The displacement function obtained at the n-th stage will be used
for preparing the initial displacement at the n+ 1-th stage.

Since the derivatives of the pattern images are zero in the background area,
most of the pixel area on the image will not have the deforming force, resulting in
an inefficient displacement computation. To overcome this problem, the binary
images are generated by a threshold processing and then they are translated
to the distance maps whose pixel value indicates the distance to the nearest
foreground pixel as shown in Fig. 3. Instead of the original pattern images, these
distance maps are used for computing the displacement [19].



304 Y. Mizukami, S. Nakanishi, and K. Tadamura

Fig. 3. Gray pattern images and distance maps

2.3 Prototype-Parallel Displacement Computation

Although the iterative equations seem to be efficiently implemented on GPUs due
to its locally-parallel computation style, the sizes of the pattern images are too
small to bring out the most latent strength of GPUs. To overcome this problem,
prototype-parallel displacement computation (PPDC) is employed [18]. Figure 4

describes the diagram of PPDC. Three types of large plates, (U
[0]
n , V

[0]
n ), Fn, and

Gn, are generated by arranging displacement functions (u
[0]
n,l ,v

[0]
n,l), input images

fn and prototypes gn,l at regular intervals respectively on the host memory,
and then these plates are transferred collectively to the device memory, where
l is the index of the prototype (1 ≤ l ≤ L). GPU computes the displacement
for multiple pairs of input and prototype images, and updates the displacement

function plate. Finally the plates of the computed displacement function (U
[T ]
n ,

V
[T ]
n ) are transferred back from the device memory to the host memory.

2.4 Distance Measurement and Classification

Since the shape of a pattern will be deformed so as to be fitted to the other
pattern shape by considering the computed displacement, there is a risk that
the shapes of two patterns in different classes also become similar, resulting
in very small distance. To avoid this problem, the local shape information of
the original contours such as straight line or curvature is utilized in measuring
the distance. Therefore, the distance between two pattern images is measured
by applying the computed displacement function to eight-directional derivative
images of two patterns, fd and gd (1 ≤ d ≤ 8; see Fig.5),

D(u, v) =
∑
x,y

8∑
d=1

(fd(x+ u, y + v)− gd(x, y))2. (6)

After the distances of the input pattern to L prototypes {fd
l } are measured,

the input pattern is classified to one of the classes by the terms of k-nearest
neighborhood method. The previous studies [18, 19] employed gradual proto-
type elimination (GPE) for reducing the computation time, where the candidate
prototypes are gradually eliminated through the coarse-to-fine strategy. On the
other hands, this study did not employ GPE for the purpose of investigating
the fundamental accuracy performance, since GPE might eliminate several pro-
totypes which are helpful for classifying the given input pattern.
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Fig. 4. Prototype-parallel displacement computation

2
Fig. 5. Eight-directional derivatives

3 Simulation

This section investigates the effect of the regularization parameters, and the ef-
fect of k on the accuracy performance, and discusses how patterns are deformed.
The deformable approach was implemented on a computer with Intel CoreTM

i7 CPU-2600 (3.40GHz) and Nvidia Geforce GTX590. The programming envi-
ronments were Microsoft Visual C++ 2010 and CUDA Toolkit 4.0 on Microsoft
Windows 7. MNIST handwritten digit database consists of 10,000 input patterns
and 60,000 prototypes. The regularization parameter λ1 was set to 6.0, while λ2

and λ3 were set to [0.8:1.2]. The computation time for recognizing an input pat-
tern was about 40 sec, where the displacement functions are computed for all of
60,000 prototypes.
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Table 1. Error rates using 4-pixel average

λ3
λ2

0.8 0.9 1.0 1.1 1.2

0.8 0.45 0.43 0.43 0.43 0.44
0.9 0.45 0.44 0.42 0.42 0.43

1.0 0.44 0.44 0.45 0.43 0.44
1.1 0.45 0.47 0.47 0.45 0.44
1.2 0.48 0.50 0.49 0.46 0.46

Table 2. Error rates using 5-pixel average

λ3
λ2

0.8 0.9 1.0 1.1 1.2

0.8 0.49 0.49 0.49 0.48 0.48
0.9 0.46 0.45 0.45 0.45 0.45
1.0 0.43 0.42 0.42 0.43 0.43

1.1 0.46 0.46 0.45 0.44 0.44
1.2 0.46 0.45 0.44 0.44 0.44

Table 1 and 2 show the error rates of the deformable approach by using
4-pixel and 5-pixel averages, where 4-pixel average means that the four-pixel
displacements surrounding the coordinate of (x,y) were used for obtaining ū and
v̄, while 5-pixel average means that the surrounding four-pixel displacements and
the displacement at (x, y) were used. The value of k was set to 3. In both case
of 4 and 5-pixel averages, the minimum error rate was 0.42% as underlined by
double line. The error rates, which are equal to 0.45% or less, are underlined by
single line. It can be noticed that the accuracy is not so sensitive for averaging
ways and the value of both λ2 and λ3.

Figure 6 illustrates the effect of k on the accuracy performance, where both
λ2 and λ3 were set to 1.0 and 5-pixel average was used. The minimum error
0.42% was obtained by using k = 3. It was also confirmed that the use of k = 3
was adequate for other values of λ2 and λ3.

Figure 7 shows several input patterns and prototypes deformed to each input
pattern. Fig.7(a) illustrates 10 prototypes, while Fig.7(b,c,d) show input pat-
terns of ’7’, ’2’ and ’1’ and the 10 deformed prototypes. The numbers under
the deformed prototypes mean the distance to the corresponding input pattern.

Fig. 6. Value of k versus accuracy
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(a) prototypes of classes from 0 to 9 (before deformation)

(b) input pattern ’7’ and deformed prototypes with the measured distance

(c) input pattern ’1’ and deformed prototypes with the measured distance

(d) input pattern ’2’ and deformed prototypes with the measured distance

Fig. 7. Input patterns and deformed prototypes

Fig. 8. Misclassified patterns with the index, the label and the misclassified label

It can be noticed that, in Fig.7(b), the deformation procedure also made the
shapes of different-class prototypes of ’1’, ’2’, ’3’, ’8’ and ’9’ very similar to the
shape of the input pattern ’7’, but the prototype ’7’ gave very smaller distance
0.345 than other prototypes. The same observation can be applied to the input
pattern ’1’ in Fig.7(c). On the other hand, Fig.7(d) shows an interesting situa-
tion where the prototype ’7’ gave the smallest distance to the input pattern ’2’
due to the topological shape difference between the input pattern ’2’ and the
prototype ’2’. These results indicate that the quality or variation of the prepared
prototypes should be important for the accurate recognition.
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Figure 8 shows all the misclassified input patterns with their indices, labels
and misclassified labels. These patterns seem to be very challenging since they
were written in rough ways and some of them lack a part of the shape due to
the pale pixel value.

4 Conclusion

This study clarified the accuracy performance of a deformable handwritten
recognition approach for digit characters. The deformable approach consists of
regularization-based displacement computation, coarse-to-fine strategy, distance
measurement and k-nearest neighborhood method. We focused on several con-
ditions for investigating the recognition accuracy and the sensitivity, that is, the
definition of averaging area in regularization process, regularization parameters
and the number of k for k-nearest neighborhood method. According to the simu-
lation results, it was shown that the proposed method has the error rate of 0.42%
for MNIST handwritten digit database, resulting in the top-group of the per-
formances reported until now. It was also shown that the accuracy performance
is not so sensitive to the condition including the parameter settings. The simu-
lation results illustrated how the prototypes are deformed to the input pattern
and explained that even though the prototype becomes deformed very similar
to the input pattern, the proposed approach gives adequate distances, and that
the topologically-different prototype will not help the accurate recognition.

Although the obtained error rate of 0.42% is still inferior to the previous
record of 0.23% obtained by multi-column deep convolutional neural network
(MCDNN) [6, 7] or the best record of 0.19% by a hybrid CNN-SVM classifier [11],
it should be noticed that deformable approaches are totally different from both of
them. They deal with the variability of 2D shapes by generating a lot of artificial
training patterns and employing very sophisticated concepts of network learning
or SVM, while the deformable approaches deal with the variability by flexibly
fitting the prototypes in the memory to the input pattern. As pointed out by
Gregory [13] and Widrow [12], deformable approaches have some aspects which
resemble to the recognition model of human brain and then there seems to be
still a possibility that the deformable approaches will give further performance
in the future studies.
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