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Abstract. A new watershed-based technique is proposed for the seg-
mentation of multiresolution remote-sensing images. These images are
composed by a high-resolution panchromatic band and a low-resolution
multispectral set. To achieve a segmentation with the high resolution of
the panchromatic image and the high accuracy granted by the spectral
information, the two components are processed jointly, using both spec-
tral and morphological properties. In addition, a fully automatic marker
generation procedure is introduced to reduce the oversegmentation typi-
cal of watershed methods. Experiments on WorldView-2 multiresolution
images demonstrate the potential of the technique.

1 Introduction

Image segmentation is a low-level processing task of critical importance in sev-
eral applicative domains, like remote sensing [1–5] or medicine [6, 7], to mention
just a few. In remote sensing, in particular, segmentation of multiresolution
(MR) images is becoming a very relevant topic. In fact, because of technological
limitations, satellite sensors cannot reach both high spatial and spectral (large
number of bands) resolution. MR sensors, such as Ikonos, GeoEye, or World-
View, overcome this problem by providing a single high-resolution (typically,
below 50 cm) panchromatic (PAN) image complemented by a low-resolution
multispectral (MS) image composed of 4-8 bands, relying then on signal pro-
cessing, like pansharpening techniques [8], to recover a full multispectral data
cube. Pansharpening, however, cannot really preserve all desired information,
and high accuracy can be only guaranteed by direct processing of the original
data. Here we propose a new segmentation technique specifically designed for
multiresolution images and based on the watershed transform [9], a widespread
technique particularly suited for the preservation of fine details.

To obtain a watershed segmentation, a topographic surface is first associated
with the image. Then it is progressively filled with “water”, and each time two
basins meet a dam is built between them in order to avoid their merging. Once
the surface is completely flooded the process stops and each water basin is re-
garded as an image segment. In the context of edge-based segmentation, one
can apply watershed by using the distance transform to define the topographic

A. Petrosino (Ed.): ICIAP 2013, Part I, LNCS 8156, pp. 241–250, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



242 G. Masi et al.

surface. Watershed will therefore provide a full segmentation where all original
edges are guaranteed to be part of the final region boundaries, thus completing
the original edge map.

Unfortunately, watershed produces many more segments than desired, be-
cause of noise and intrinsic image textures, calling for the adoption of some
suitable merging strategy to reduce them, a computation-intensive step, and a
possible source of errors. Several approaches have been proposed in the literature
to limit over-segmentation. One can identify shallow basins, likely due to noise,
and merge them with some suitably chosen neighbor [5]. Inconsistent region sep-
arations can be singled out and removed by analyzing the image at a larger scale
of interaction [10]. Better yet, one can intervene before running the watershed
by introducing some “markers” in the topographic surface, which force separate
basins to be treated as a single entity. Markers can be put manually from an op-
erator, a tedious and low-precision task or, more interestingly, through a specific
automatic procedure, e.g. [1, 11]. This latter approach was followed in [11], lead-
ing to the Edge, Mark and Fill (EMF) algorithm, suited for single-band images.
In this work we generalize the EMF strategy to the case of color/multispectral,
and in particular multiresolution images, providing new tools to further reduce
oversegmentation.

After briefly recalling EMF in next Section, the proposed segmentation al-
gorithm is described in Section 3, while Section 4 shows experimental results.
Concluding remarks are given in Section 5.

2 Edge, Mark and Fill Segmentation

The Edge, Mark and Fill technique is a marker-controlled watershed applied
to the distance transform, which embeds a suitable morphological process for a
fully-automatic generation of markers.

To gain insight into the EMF algorithm consider the example of Fig.1. In
(a) the image to be segmented is shown together with the contours, in red,
produced by a suitable edge detector. The distance transform, D, is shown in
(b): its opposite −D is used as topographic surface (DEM) for the watershed. In
order to produce effective markers, EMF computes the crest lines of D, shown
in (c) together with the edge map, which represent a support for the skeletons
of the closed regions singled out by the watershed. The local maxima of D on
the crest lines are then extracted, the red points in (d), and used as marker
seeds. These seeds, say sk, are dilated with a circular morphological profile of
radius D(sk) − ε, where the margin ε prevents crossing the edges. Overlapping
dilated seeds are merged together as shown in (d). The segmentation provided
by watershed with the DEM −D and the above markers is shown in (e), while
(f) shows the difference between the initial edge map (a) and the final (closed)
contour map (e). Removed edges are represented in red, while additional edges
needed to close open segments are shown in green. For further details about
EMF the reader is referred to [11].
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Intermediate results of the EMF Algorithm

Experimental evidence shows that EMF reduces oversegmentationwith no loss
of valuable information, and preserving the high local accuracy of edge-based
approaches. However, it keeps generating too many segments in textured and
noisy areas, also because it works on a single-band image on the basis of purely
morphological information. On one hand, this is a strength of EMF, which can
deal with gray-level images or, more in general, with any given edge map, with
no need for further information. On the other hand, when further information is
available, as with MR images, it must be taken into account. Therefore, in next
Section, we describe an enhanced version of EMF for MR images.

3 Multiresolution EMF

The oversegmentation typical of watershed is mostly due to edge map imperfec-
tions, with meaningless edges originated by minor texture variations, or edges
which, because of noise, depart from their correct position. In both cases, the
effect is a proliferation of small regions, with very similar spectral content, which
should be merged together. Our primary goal, here, is to take into account the
available spectral information to reduce oversegmentation from the beginning.
In addition, with reference to MR images, we want to exploit effectively the
different cues coming from the two image components, the single-band but high-
resolution PAN, and the low-resolution spectrally rich MS.

In Fig.2 a high-level flowchart of the MR-EMF algorithm is shown. Unlike in
basic EMF, the work-flow is split in two channels, in order to process the two
image components. Edge detection is carried out in both channels, by means of
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Fig. 2. Flowchart of MR-EMF. E: Edge Detection, EF: Edge Fusion, D: Distance
transform, Pan-M: PAN Marker generation, MS-M: MS Marker generation, Mo-M:
Morphological Marker generation, MF: Marker Fusion, W: Watershed.

a standard Canny detector [12], with the results combined to produce a single
high-resolution edge map (here and in the following, for the sake of simplicity,
we neglect all up/down-sampling and registration operations needed to combine
data of the two channels). Two new sets of spectral markers are generated, one for
each channel, besides the morphological markers used in EMF, and all markers
are eventually combined at high resolution to guide the watershed transform.

Let us now analyze the algorithm structure in more detail. Intuitively one
could choose to consider only the PAN data to generate geometrical markers,
and only MS data for spectral markers, given the superior geometric resolution
of the former and spectral resolution of the latter, thus renouncing to the full-
symmetric approach depicted in Fig.2. However, there are good reasons to keep
a balanced approach.

First of all, it can happen that edges visible in the MS component are not
visible at all in the single-band PAN. Therefore, both edge maps must be taken
into account. Of course, when contours are detected in both channels, preference
must be given to the more accurate PAN data, neglecting the others. Experi-
ments confirm that MS-edges help improving results. This is all the more true
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 3. Marker erosion and application: ground-truth (a); edge map (blue) with related
distance transform (b); unmarked watershed (c); external spectral clustering (d) and
its erosion, pre-markers, (e) by edge subtraction; (pre-)marker-controlled watershed
(f); final markers (g) and related watershed (h)

for spectral marker generation, where both PAN and MS data are essential for
a correct use of spectral information.

3.1 Generation of Spectral Markers

The generation of spectral markers is, in principle, very simple. Since our goal
is to recognize and merge together homogeneous segments that share the same
spectral properties, we only have to cluster data in the spectral domain and
use the resulting connected components as markers. When a marker crosses
the border between two segments, because pixels on both sides are spectrally
homogeneous, the segments will be eventually merged. This vision, however, is
overly simplistic as it relies on perfect segment homogeneity. In the actual cases,
instead, within each segment, it can happen to find pixels assigned to different
clusters, which risk to produce undesired results. This is basically due to the
obvious inconsistency between the edge detection, which is a local process, and
the clustering, which is a global one. Hence it is necessary to reshape the detected
clusters before using them as markers.

Marker Erosion Process. In order to explain the proposed solution, we con-
sider the toy example of Fig.3. Let (a) be the ideal segmentation (ground-truth),
and (b) the detected edge map (blue) with corresponding distance function (gray
scale). The given morphology gives rise to the wrong (over-) segmentation (c), if
a simple unmarked watershed is applied. Now, assume to have a spectral-based
clustering like that shown in (d), where three connected components can be
distinguished. Edge map subtraction gives the markers in (e) which lead to an
unsatisfactory marker-controlled segmentation (f) with both over- (additional
region) and under-segmentation (lost edges). We therefore apply an additional
erosion process to obtain more reliable markers. For each pixel p of a pre-marker
M in (e) the attracting minimum in the DEM, say pm, is localized. If pm ∈ M
than p is kept, otherwise it is removed from M . As result, pre-markers which do
not cover any minimum of the DEM will simply disappear because unreliable.
Those who cover one or more minima will be constrained to the their attraction
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basins. The final markers obtained after the erosion, shown in (g), lead to the
desired segmentation shown in (h).

In particular, the algorithm used in our method to single out the clustering
(d) is a simple mean shift procedure [13].

PAN vs MS Image Domain Partition. To apply this tool to MR images,
a preliminary key observation is necessary, that the reliability of the spectral
information provided by the MS component depends on the size of the segments
to characterize. In fact, since MS pixels are much larger than PAN pixels (typ-
ically 4 × 4 times) they can happen to average together high-resolution pixels
with different spectral characteristics, typically near segment boundaries. As a
consequence, “pure” MS pixels can be found only in the segment interior, pro-
vided this is large enough. Therefore, for small or elongated segments, the MS
spectral characterization is highly unreliable and, below a given segment size, it
is more appropriate to use the PAN data.

Based on this consideration, we perform a preliminary partition of the image
in two regions where “thick” and “thin” segments are found, using MS-based
spectral markers in the former region and PAN-based in the latter. To this end,
a simple thresholding on the distance function may seem to work well. Given a
suitable threshold d, objects less than d pixel wide (along the shortest dimen-
sion) are better characterized in the PAN domain, while the others are reliably

featured by MS data. The region ˜M = D < d, which is nothing but a dilation of
radius d of the edge map, will certainly cover entirely the thin objects. However,
it will also overlap with the contours of thick elements, partially covering them.
To avoid this inconvenient, we apply to ˜M the same region erosion mechanism
described above to reshape the spectral markers. In other words, elements of ˜M
whose attracting minimum does not belong to ˜M are discarded. Once singled
out the mask for thin object, the PAN domain, its complement is used as MS
domain.

An example of this process for a real-world MR image is shown in Fig.4. In
(a) is the PAN component of the image to segment, and in (b) the composite
MS-PAN edge map. (c) shows the thin-thick mask obtained on the basis of the
distance transform of (b). The final PAN and MS markers are shown in (d) in
green and red, respectively.

4 Experimental Results

The segmentation and classification accuracy assessment in remote sensing is a
challenging problem as testified by recently developed benchmarking systems,
like [14], specifically thought for segmentation of remote sensing data. Unfortu-
nately no one such solutions deals with multiresolution data.

The lack of multiresolution data with suitable ground-truth (not just the in-
terior of large segments) prevents a reliable quantitative assessment of segmen-
tation accuracy, as well as a meaningful comparison with competing algorithms,
like the TFR [15, 16] or the technique proposed in [17]. Therefore, we confine
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(a) (b)

(c) (d)

Fig. 4. Spectral markers generation: PAN component (a); edge map (b); PAN (light)
and MS (dark) domains (c); PAN (green) and MS (red) markers (d)

EMF MR-EMF

Fig. 5. Segmentation maps obtained with EMF (left) and with MR-EMF (right)

our analysis, for the time being, to the visual inspection of results obtained on
a large dataset of c©WorldView-2 images, comprising a 8-band MS component
with 2-meter resolution and a PAN component with 50-cm resolution. We found
experimentally that the best value for d, the threshold used to generate the
PAN-MS domain partition, is in the range 6-8 (high-resolution) pixels, not far
from the size of a MS pixel. In particular we selected d = 6 for the experiments.

The first experiment presented concerns the image used in the running exam-
ple of Fig.4. In Fig.5 we show the marker-controlled watershed segmentation with
morphological markers alone (EMF), and with superposition of spectral markers
(proposed MR-EMF). Although a significant simplification of the map is evident,
the achieved gain can be better appreciated by looking at the few enlarged details
shown in Fig.6. Segmentation contours (in red) are superimposed to the RGB
subset of the MS component. On the left column are the results of the unmarked
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unmarked EMF MR-EMF

Fig. 6. Segmentation details for the running experiment of Fig.4: unmarked watershed
(left), EMF (center), and MR-EMF (right)

EMF MR-EMF

Fig. 7. Segmentation resultrs provided by EMF (left) and MR-EMF (right)
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watershed. In the middle and right columns the results of EMF and MR-EMF,
respectively. As can be easily appreciated by visual inspection the accuracy im-
proves considerably moving toward the proposed solution. Over-segmentation is
largely reduced, with no apparent loss in discriminating capabilities.

Similar considerations hold for the second experiments shown in Fig.7 which
confirms a general improvement with respect to the basic EMF.

5 Conclusions

The proposed watershed-based segmentation algorithm for multiresolution im-
ages guarantees the high local accuracy of all edge-oriented techniques and a
limited over-segmentation. A key step is the automatic generation of morpho-
logical and spectral markers, obtained by properly combining cues coming from
both PAN and MS components and weighting their relative reliability.

Preliminary experiments have shown very promising results, with a large re-
duction of the over-segmentation and no apparent loss of details. In future work
we will consider replacing the edge map fusion with a high resolution edge detec-
tor that works jointly on PAN and MS data, and designing an ad hoc clustering
algorithm to improve upon the basic mean-shift.
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