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Abstract. The accuracy and reproducibility of semiautomatic interac-
tive segmentation algorithms are typically evaluated using only a small
number of human observers which only considers a very small number of
the possible correct interactions that an observer might provide. A cor-
rect interaction is one that provides contextual information that would
be expected to result in a correct segmentation. In this paper, we demon-
strate new evaluation methods for semiautomatic interactive segmenta-
tion algorithms that employ simulated observer models constructed from
a large number of segmentations computed by uniformly sampling the
entire set of possible correct interactions. The advantages of this method
are that it is free of observer biases and the large number of segmen-
tations produced for each object of interest to be segmented allow a
range of statistical methods to be brought to bear on the analysis of seg-
mentation algorithm performance. The methods are demonstrated using
a semi-automated segmentation algorithm for ovarian follicles in ultra-
sonographic images.

Keywords: interactive segmentation, semiautomatic, correct interac-
tion, reproducibility, performance, evaluation.

1 Introduction

Algorithms for segmentation of semantic objects from images are, ideally, desired
to be fully automatic due to the tedious and time-consuming nature of manual
segmentation. Some segmentation problems, however, are still very difficult to
solve with fully automatic methods such as problems where an arbitrary num-
ber of objects of interest need to be both detected and segmented or where the
imaging modality results in poorly resolved boundaries between neighbouring
objects. This motivates the use of semiautomated segmentation algorithms in
which a human operator provides high-level contextual information in an inter-
active phase, which is followed by an automatic phase where the segmentation
is performed under the constraints of the operator-provided guidance.

Evaluation of accuracy and/or reproducibility of semiautomatic segmentation
algorithms is typically performed by having a small number of experts in the
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problem domain who are well-trained in the use of the semiautomatic segmen-
tation system segment a number of cases. Indeed, this has been the case with
numerous recent studies that analyze intra- and/or inter-observer variability [5–
8, 10, 13, 14]. Of these, only the studies of Stammberger et al. [14] and Claudia et
al. [8] used more than 5 observers. Even in the simplest of situations, where the
interaction is selecting a seed point somewhere within an object, it is not possible
to robustly characterize the inherent variability in segmentation accuracy due to
variations in seed point placement using only a small number of example inter-
actions. Recently, some authors [11, 12] have turned to constructing simulated
observer models to take into account more interactions per case, and to avoid
observer bias but the number of seeds and brush strokes used were not sufficient
to represent a very diverse set of examples of possible correct interactions.

The main deficiency, therefore, of existing evaluation methods is that an in-
sufficiently diverse sampling of the set of correct interactions for each case are
used to draw conclusions about overall segmentation accuracy and reproducibil-
ity. One must consider a diverse set of correct interactions in order to compare
algorithms fairly and take into account the consequences of poor choices result-
ing from fatigue or lapses in judgement on the part of the operator. To this end
we propose the use of observer models where the user interaction is generated
programmatically in a similar way as in [11] and [12]. However, in contrast to
these previous methods, our observer models are unbiased in the sense that we
systematically and uniformly sample all possible correct interactions for each
case to be segmented. Herein we consider a simple interaction mode where a
user click is made to supply a seed point for each object to be segmented. For
each object, all the segmentations generated from the uniformly sampled set of
possible seed points are analyzed statistically to assess the impact of the seed
point location on the quality of the resulting segmentation using four models.
One of these four models is an overall unbiased one as it includes all the sam-
pled seed points and the other three models are biased as each of these models
includes only a specific subset of the sampled seed points based on the locations
of these seed points. Using this synthetic interaction model, we have enough
data to use statistical methods to test for significant differences in segmentation
accuracy between observer models (subsets of correct interactions) and to quan-
tify any differences found. As a vehicle for the demonstration of our methods,
we consider an ovarian follicle segmentation algorithm based on binary graph
cuts with a shape prior and evaluate the reproducibility of the results, and look
for statistically significant differences between the aforementioned four observer
models.

2 Methods

2.1 Interactions

We define a correct interaction to be the contextual information provided by the
operator that would be expected to produce a correct segmentation, e.g. a seed
point that is inside the object to be segmented, or a set of brush strokes that
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correctly indicate areas of foreground and background. Herein we demonstrate
some new methods of analyzing the variability of segmentation accuracy over
a wide range of uniformly sampled correct interactions using interactive graph
cuts.

2.2 Binary Graph Cuts for Follicle Segmentation

Graph cut segmentation [3, 4] utilizes a max-flow/min-cut energy minimization
algorithm which eventually generates the optimal segmentation with respect to
the weights assigned on the edges of the graph. The minimum cut can be found
using efficient solutions to the maximum flow problem since the set of saturated
edges in a maximum flow solution coincide with the edges in the minimum cut.
For details on binary graph cuts, the reader is referred to [4]. Instead of using
general graph cut segmentation, a generic shape prior called “star shape” [15]
was incorporated to enhance the segmentation accuracy. This shape prior is
appropriate due to the roughly elliptical but low-eccentricity shape of ovarian
follicles in normal ovaries. Within the Voronoi region of each seed point we added
new edges to the graph radiating from each user supplied follicle seed point to
encode the shape prior in the graph; see [15] for details.

For our follicle segmentation, asymmetric weights between non-terminal nodes
were defined similarly to as in [4]. Terminal weights were derived from intensity
distribution models (histograms) built from neighbourhoods defined by user-
supplied clicks on example foreground and background regions.

Constraints were added based on the seed points given for each follicle. In
our experimental methodology, seed points are selected from a set of correct
interactions for each follicle (see Section 2.3).

2.3 Experimental Setup

A set of 32 ultrasound in vivo human ovarian images, obtained from a previous
study [1], were used in this experiment. Size of each image is 640 × 480 pixels
and the maximum number of follicles in an image was fourteen. The total num-
ber of follicles in all images was 132 among which 53 were very small, having
a cross-sectional diameter in the image of less than 2.5mm; this is a significant
size threshold because even human observers have difficulty correctly identifying
follicles of this size or smaller. These follicles were not considered in our experi-
ment, leaving 79 follicles of diameter greater than 2.5mm. Manually delineated
ground truth segmentations of these follicles were provided by a single, highly
experienced human operator. For each follicle to be analyzed we constructed a
set of correct interactions (seed points). Seed points were sampled on a grid with
a spacing of between 2 and 14 pixels depending on follicle size. Seed point loca-
tions were sampled more sparsely for larger follicles to maintain computational
feasibility. Grid spacing was determined using the following procedure:

1. Determine number of seed points N to be used for the follicle as a function
of its area using the piecewise cubic polynomial function in Figure 1(a).
Interpolation points were selected empirically based on the data set.
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2. Determine the grid spacing as �√A/N� where A is the area (in pixels) of
the follicle (determined from the ground truth).

This resulted in sets of correct interactions consisting of between 50 and 375
seed points for each follicle.

(a) (b)

Fig. 1. (a) Piecewise cubic polynomial function used for determining the number of
seed points for each follicle. (b)Segmenting a follicle with its set of correct interactions.
The large follicle is segmented once with each of the seed points shown while the
remaining follicles seed points (at the centroids of their regions) are held constant.
This process is repeated for each other follicle in the image.

Each follicle was segmented using each seed point from its set of correct in-
teractions exactly once while the seed points for any other follicles in the image
were held constant (Figure 1(b)). These constant seed points were the centroid
of the follicle region, determined from the ground truth. Thus each follicle was
segmented with each of its correct interactions and the Dice coefficient, HD, and
RMSD were determined for each interaction.

For each follicle, sampled seed points were categorized into three groups: cen-
tral, intermediate and peripheral depending on their locations within the follicle
relative to the follicle region’s centroid. To determine the category of a seed
point, a binary ground truth image was negated and then distance transform
of that image was computed. From this transform, distance a of the seed point
from the nearest boundary point was determined and distance from the seed
point to the centroid b was calculated using the Euclidean distance metric. The
seed point category c was then determined by a double threshold of the quantity
a

a+b :

c =

⎧
⎪⎨

⎪⎩

peripheral, a
a+b ≤ 1/3

intermediate, 1/3 < a
a+b ≥ 2/3

central, 2/3 < a
a+b

(1)

Mean and standard deviation of Dice coefficient, RMSD and HD were com-
puted over each follicle’s set of correct interactions and over the central, inter-
mediate and peripheral subsets of interactions for each follicle. Larger values
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of the Dice coefficient and lower values of RMSD and HD indicate a more ac-
curate segmentation. Coefficients of variation of these segmentation accuracy
measures were computed for each follicle and analyzed to evaluate segmentation
reproducibility.

3 Analysis of Results

All of the 79 follicles with diameter > 2.5mm, were analyzed. Segmentation
accuracy was measured in terms of Dice coefficient [9], root mean squared dis-
tance (RMSD) and Hausdorff Distance (HD) [2] of the segmented follicle contour
from the manual contour. These measures were determined individually for each
follicle.

3.1 Coefficient of Variation within Seed Point Categories

Coefficient of variation (CV) is the ratio of standard deviation of a sample to the
mean of the sample and indicates the extent of variability in relation to mean of
the population. CV of the Dice coefficient, RMSD, and HD were computed over
all seed points of each follicle. Histograms of the resulting CV values for the 58
follicles are shown in Figure 2(a). The range of CV values have been divided into
ten unequal intervals and have been represented along the horizontal axis; since
most of the values are in the range of 0 to 0.2, this interval has been divided into
9 bins illustrate the distribution of CVs within this range. CV values greater than
0.2 have been included in a single bin. The vertical axis represents the number
of follicles for which the CV fell into the specified interval. For Dice, RMSD
and HD, 58% of the coefficients of variation are less than 5%. Figure 2(b) shows
histograms of the Dice coefficient CV values from the 79 follicles calculated for
the central, intermediate, and peripheral groups of seed points. The distribution
of the these CVs follow the same general trends as the overall distributions;
overall 86% of the Dice CV values over all three seed point groupings were
less than 5%. The mean Dice CV for the central, intermediate, and peripheral
seed point groups, computed over all follicles, were 2.11%, 3.04% and 6.90%
respectively, while the overall mean Dice CV across all seed points and follicles
was 5.48%. The central and intermediate seed point group’s mean Dice CVs were
found to be significantly different from the overall mean Dice CV (two-tailed
Student’s paired two-sample t-test, p = .00024 and p = 0.005, respectively).

The mean Dice CV for the peripheral region was not significantly differ-
ent from the overall Mean Dice CV. The mean Dice CV for the central seed
point group was significantly less than both the intermediate and the peripheral
groups. The mean Dice CV for the intermediate seed point group was signifi-
cantly less than the mean Dice CV for the peripheral seed point group. This is
strong evidence that reproducibility is, on average, higher when the seed points
are placed in either the central or intermediate regions of a follicle.

Figures 2(c) and 2(d) show the distributions of CV for the central, interme-
diate and peripheral seed point groups for RMSD and HD respectively, again
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showing similar trends. For RMSD, 68% follicles had a CV of less than 5% for
all three seed point groups, while for HD, this number was 66%.

The overall mean RMSD CV was 13.5%, and the mean RMSD CV’s for the
central, intermediate, and peripheral seed point groups were 3.46%, 6.63% and
15.9%; all of these were significantly different from the overall RMSD CV. The
mean RMSD CV for the central seed point group was significantly less than
both the intermediate and the peripheral groups. The mean RMSD CV for the
intermediate seed point group was significantly less than the mean Dice CV for
the peripheral seed point group.

(a) (b)

(c) (d)

Fig. 2. (a)Coefficient of variation of overall Dice Coefficients, RMSD and HD. (b)
Coefficient of variation of Dice Coefficients for three groups of seed points (c)Coefficient
of variation of RMSD for three groups of seed points (d)Coefficient of variation of HD
for three groups of seed points.

The overall mean HD CV was 14.3%, and the mean HD CV’s for the central,
intermediate, and peripheral seed point groups were 3.33%, 6.83% and 15.9%;
the central and intermediate means were significantly different from the overall
HD CV. The mean HD CV for the central seed point group was significantly
less than both the intermediate and the peripheral groups. The mean HD CV
for the intermediate seed point group was significantly less than the mean Dice
CV for the peripheral seed point group.

Again we have very strong evidence that reproducibility is considerably greater,
on average, when seed points are confined to the central and intermediate regions.
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3.2 Mean Segmentation Accuracy within Seed Point Categories

Figure 3(top row) presents the mean and standard deviations (as error bars)
of Dice, RMSD, and HD for each follicle. The follicles are positioned on the
horizontal axis in decreasing order of their cross-sectional diameter. A linear
regression line fit to this data shows that Dice coefficients generally decrease for
smaller follicles; R2 was significant (p < 0.05). There was no evidence of a linear
trend for RMSD and HD with decreasing follicle size; the R2 values for both of
these regressions were not significant.

Fig. 3. Mean and Standard Deviation of Dice, RMSD and HD with error bar, 1st row:
for overall, 2nd row: for central points, 3rd row: for intermediate points, 4th row: for
peripheral points

On the whole, values of RMSD and HD generally remain stable as follicle size
decreases, while Dice coefficient worsens. This can be explained by noting that
Dice coefficient is a proportional error based on areas where as RMSD and HD
are absolute errors based on distances. Consider two follicles region segmentation
results with the same Dice coefficient, but where the follicles have vastly different
area. Absolute deviations from the true boundary will be smaller for the small
follicle than for the larger follicle simply because of the size difference. Thus, it is
possible for RMSD and HD to remain stable as Dice coefficient and follicle size
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decrease. Figures 3 (2nd - 4th row) show the same information but subdivided
into subgroups of central, intermediate, and peripheral seed points, respectively.
It can be seen that the standard deviations (error bars) are generally smaller
for the groups of central seed points and larger for the groups of peripheral seed
points. Again, the linear regression line shows, in all cases, a trend of worsening
Dice coefficient (R2 significant, p < 0.00001), and no trend in RMSD and HD
values (R2 not significant) as follicle size decreases.

3.3 Results Summary

From our statistical study of groups of correct interactions for the follicle seg-
mentation algorithm we have the following main results.

1. For many, but not all follicles, the overall CV of segmentation accuracy is
low to moderate. Overall Dice CV was less than 5% for 76% of follicles;
overall CV of RMSD and HD was less than 5% for 48% and 49% of follicles,
respectively.

2. The mean Dice CV (respectively HD CV and RMSD CV) for the central
seed point groups was significantly smaller than for the intermediate and
peripheral groups. The mean Dice CV (respectively HD CV and RMSD
CV) of the central and intermediate seed point groups were significantly
smaller than the peripheral group, and the magnitude of the difference in
means from the peripheral group were quite large.

3. There was a statistically significant trend of decreasing (worsening) mean
Dice coefficient with decreasing follicle diameter. However, there was no evi-
dence of a statistically significant trend in the values of mean HD and RMSD
with respect to the diameter of the follicles.

3.4 Discussion

In this section we discuss the interpretation and implications of the results in
the previous section.

Result #1 tells us, in the broadest of strokes, that the studied segmentation
algorithm is not able to generate easily reproducible results on perhaps as many
as half of all follicles. is a type of result that could have been obtained from the
standard method of examining results from a small number of human observers.
However, our methods result in many more samples from which to estimate the
mean and variance of the segmentation accuracy measures, possibly resulting in
better estimates of the true mean and variance over all correct interactions, and
therefore more accurate estimates of coefficient of variation.

Result #2 is very strong evidence that reproducibility is, on average over all
follicles, much higher for the central and intermediate seed point groupings than
for the peripheral seed point group. This result could not have been obtained
using standard evaluation with human observers. Even if there were controls to
ensure an equal number of samples in each seed point group, with 10 or fewer
observers there would be insufficiently many samples per grouping to obtain
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any reasonable level of statistical power for our methods. Traditional evaluation
would only have provided an estimate of the overall reproducibility and would
not have elucidated the magnitude of the degradation of reproducibility with
increasing seed point distance from the centroid of the follicle region.

Result #3 indicates that, while the segmentation error with respect to the de-
viation of the segmented follicle boundary from the ground truth boundary was
not related to follicle size, the mismatch between the segmented follicle region and
the ground truth follicle region was larger for smaller follicles because said devi-
ations from the true boundary result in a greater proportion of region mismatch
for smaller follicles. This result might be obtained using standard evaluation with
human observers if reproducibility of the algorithm is already very high, but oth-
erwise, a larger number of samples are needed to get more accurate estimates of
mean segmentation accuracy measures on a per-follicle basis.

By judiciously choosing subsets of correct interactions to analyze using our
methods, one can potentially obtain evidence that can be used to make rec-
ommendations on how operators can best use the system to produce the most
accurate and consistent results. In the case of our analysis of the follicle segmen-
tation algorithm, one would likely recommend that observers avoid placing seed
points within the follicle’s periphery to reduce inter-observer variability.

As our methods sample the set of correct interactions uniformly, our method-
ology is free from observer bias, observer training effects, and other biases that
might result from the instructions/protocols that human observers are instructed
to use during data collection. Uniform sampling of correct interactions incorpo-
rates into the evaluation those correct interactions that might, under normal
circumstances, never be used by human observers because they contradict es-
tablished usage protocols, but which might nevertheless occur in cases of observer
fatigue or a lapse in judgment, and allows us to study the effect and risk of such
lapses by studying the appropriate subsets of correct interactions.

4 Conclusion

Instead of characterizing segmentation performance through the actions of a
small number of observers, we constructed synthetic observers and characterized
their behaviour using a much larger number of segmentations over the set of all
correct interactions. Our methods allow for a much richer, statistically backed
characterization of interactive segmentation algorithm performance, resulting in
new kinds of information that elucidate the best practices for how an interactive
algorithm should be used to avoid any inherent sources of error in the algorithm
while better understanding those sources of error.

References

1. Baerwald, A.R., Adams, G.P., Pierson, R.A.: Characterization of ovarian follicular
wave dynamics in women. Biology of Reproduction 69(3), 1023–1031 (2003)

2. Bowyer, K.W.: Validation of medical image analysis techniques. In: Sonka, M.,
Fitzpatrick, J.M. (eds.) Handbook of Medical Imaging: Medical Image Processing
and Analysis, vol. 2, SPIE press (2000)



200 S.M.R. Haque, M.G. Eramian, and K.A. Schneider

3. Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region
segmentation of objects in N-D images. In: Proceedings of the International Con-
ference on Computer Vision (ICCV 2001), pp. 105–112 (2001)

4. Boykov, Y., Lea, G.F.: Graph cuts and efficient n-d image segmentation. Interna-
tional Journal of Computer Vision 70(2), 109–131 (2006)

5. Byrum, C.E., MacFall, J.R., Charles, H.C., Chitilla, V.R., Boyko, O.B., Upchurch,
L., Smith, J.S., Rajagopalan, P., Passe, T., Kim, D., Xanthakos, S., Ranga, K.,
Krishnan, R.: Accuracy and reproducability of brain and tissue volumes using a
magnetic resonance segmentation method. Psychiatry Research: Neuroimaging 67,
215–234 (1996)

6. Cates, J.E., Lefohn, A.E., Whitaker, R.T.: Gist: an interactive gpu-based level
set segmentation tool for 3d medical images. Medical Image Analysis 8, 217–231
(2004)

7. Coehn, B.A., Barash, I., Kim, D.C., Sanger, M.D., Babb, J.S., Chandarana, H.:
Intraobserve and interobserver variability in renal volume measurements in poly-
cystic kidney disease using a semiautomated mr segmentation algorithm. American
Journal of Roentgenology 199, 387–393 (2012)

8. Dach, C., Held, C., Wenzel, J., Gerlach, S., Lang, R., Palmisano, R., Wittenberg,
T.: Evaluation of an interactive cell segmentation for flourescence microscopy based
on the graph cut algorithm. In: Microscopic Image Analysis with Applications in
Biology, Heidelberg, Germany (September 2, 2011)

9. Dice, L.R.: Measures of the amount of ecologic association between species. Ecol-
ogy 26(3), 297–302 (1945)

10. McGuinness, K., O’Connor, N.E.: A comparative evaluation of interactive segmen-
tation algorithms. Pattern Recognition 43(2), 434–444 (2010)

11. Moschidis, E., Graham, J.: A systematic performance evaluation of interactive
image segmentation methods based on simulated user interaction. In: IEEE Inter-
national Symposium on Biomedical Imaging: From Nano to Macro, pp. 928–931
(2010)

12. Nickisch, H., Rother, C., Kohli, P., Rhemann, C.: Learning an interactive seg-
mentation system. In: Proceedings of the Seventh Indian Conference on Computer
Vision, Graphics and Image Processing (ICVGIP 2010), pp. 274–281 (2010)

13. Schenk, A., Prause, G.P.M., Peitgen, H.-O.: Efficient semiautomatic segmentation
of 3D objects in medical images. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.)
MICCAI 2000. LNCS, vol. 1935, pp. 186–195. Springer, Heidelberg (2000)

14. Stammberger, T., Eckstein, F., Michaelis, M., Englmeier, K.-H., Reiser, M.: In-
terobserver reproducibility of quantitative cartilage measurements: Comparison
of b-spline snakes and manual segmentation. Magnetic Resonance Imaging 17(7),
1033–1042 (1999)

15. Veksler, O.: Star shape prior for graph-cut image segmentation. In: Forsyth, D.,
Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 454–467.
Springer, Heidelberg (2008)


	Evaluation of Interactive Segmentation Algorithms Using Denselt Sampled Correct Interactions

	1 Introduction
	2 Methods
	2.1 Interactions
	2.2 Binary Graph Cuts for Follicle Segmentation
	2.3 Experimental Setup

	3 Analysis of Results
	3.1 Coefficient of Variation within Seed Point Categories
	3.2 Mean Segmentation Accuracy within Seed Point Categories
	3.3 Results Summary
	3.4 Discussion

	4 Conclusion
	References




