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Abstract. Hierarchical image segmentation provides a set of image seg-
mentations at different detail levels in which coaser details levels can be
produced by simple merges of regions from segmentations at finer de-
tail levels. Most image segmentation algorithms, such as region merging
algorithms, rely on a criterion for merging that does not lead to a hier-
archy. In addition, for image segmentation, the tuning of the parameters
can be difficult. In this work, we propose a hierarchical graph-based im-
age segmentation relying on a statistical region merging. Furthermore,
we study how the inclusion of hierarchical property have influenced the
computation of quality measures in the original method. Quantitative
and qualitative assessments of the method on two image databases show
efficiency and ease of use of our method.

Keywords: hierarchical segmentation, vertex-edge-weighted graph,
statistical region merging predicate.

1 Introduction

Image segmentation is the process of grouping perceptually similar pixels into
regions. A hierarchical image segmentation is a set of image segmentations at
different detail levels in which the segmentations at coarser detail levels can
be produced from simple merges of regions from segmentations at finer detail
levels. Therefore, the segmentations at finer levels are nested with respect to
those at coarser levels. Hierarchical methods have the interesting property of
preserving spatial and neighboring information among segmented regions. Here,
we propose a hierarchical image segmentation in the framework of vertex-edge-
weighted graphs, where the image is equipped with an adjacency graph, the cost
of an edge is given by a dissimilarity between two points of the image and the
cost of a vertex is the color information of the associated point. Therefore, the
adjacency graph is represented by data structures in order to efficiently compute
this hierarchy.
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Fig. 1. A real example illustrating the violation of the causality principle by ﬂﬂ ]: the
number of regions (in parentheses) is not monotonic, when the so-called “segmentation
scale” increases

Any hierarchy can be represented with a minimum spanning tree. The first
appearance of this tree in pattern recognition dates back to the seminal work
of Zahn [13]. Lately, its use for image segmentation was introduced by Morris
et al. | in 1986 and popularized in 2004 by Felzenszwalb and Huttenlocher
E], Noch and Nielsen ﬂﬁ] proposed a statistical method in which the merging
order is similar to the creation of a MST. However the region-merging method
E, } does not provide a hierarchy. In @, ], it was studied some optimality
properties of hierarchical segmentations. Considering that, for a given image, one
can tune the parameters of the well-known method [B] for obtaining a reasonable
segmentation of this image. In B], we presented a framework to transform the
non-hierarchical method proposed by [5] into its hierarchical version, the scale is
computed by a maximum between two independent scales. Unfortunately, this
methodology can not be directly applied to other methods. For example, the
scales computed by the method proposed in lﬁ], here-after called SRG, are
dependent on a relation between two regions. Here, we provide a hierarchical
version of this method that removes the need for parameter tuning.

Even if the image segmentation results obtained by the method proposed in
ﬂﬁ] are interesting, the user faces two major issues:

— first, the number of regions is not monotonic when the parameter k increases.
This should not be possible if k& was a true scale: indeed, it violates the
causality principle of multi-scale analysis, that states in our case ﬂa] that a
contour present at a scale k; should be present at any scale ks < ky. Such
unexpected behavior of missing causality principle is demonstrated on Fig. [Tl

— Second, even when the number of regions decreases, contours are not stable:
they can move when the parameter k varies, violating a location principle.
Such a situation is illustrated on Fig.

Given these two issues, the tuning of the parameters of ﬂa E ] is a difficult task.

Following ﬂa we believe that, in order for k£ to be a true scale-parameter, we
have to satisfy both the causahty principle and the location principle, which leads
to work with a hierarchy of segmentations. Reference ﬂQ is the first to propose
an algorithm producing a hierarchy of segmentations based on B However, this
method is an iterative version of [5] that uses a threshold function, and requires
a tuning of the threshold parameter, therefore this methodology can easily be
extended to other methods. Reference B] is the first to propose a method which
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Fig. 2. A real example illustrating the violation of the location principle by ﬂﬂ} the
contour location is not stable for two different “segmentation scales”

computing all hierarchy using the same dissimilarity measure of ﬂa] However,
the extension of this methodology for other methods is not a trivial task.

The main result of this paper is an efficient hierarchical image segmentation
algorithm based on the dissimilarity measure of ﬂﬁ] Our algorithm has a com-
putational cost similar to ﬂﬁ], but provides all statistical scales instead of only
one segmentation level. As it is a hierarchy, the result of our algorithm satisfies
both the locality principle and the causality principle. Namely, and in contrast
with ﬂﬁ], the number of regions is decreasing when the scale parameter in-
creases, and the contours do not move from one scale to another. Therefore, ﬂﬁ]
produces under-segmented regions and our approach produces over-segmented
regions since small regions may have high hierarchical values.

This work is organized as follows. In Section Bl we present the statistical
predicate for merging two regions. In Section [B, we present our hierarchical
method for color image segmentation. Some experimental results performed on
a image database are given in Section [l Finally, in Section [ some conclusions
are drawn and further works are discussed.

2 A Statistical Region Merging Predicate

Noch and Nielsen [@] proposed an efficient method for image segmentation based
on a statistical predicate. Even if the statistical theory is not easy, the method is
simple coping with noise corruption and handle occlusion. To follow, we describe
this method.

Let I be an image, |I| be its number of pixels, @ and g be the new and old
number of expected different color values. Let R; be the set of regions with [
pixels and b(R) = g+/(1/(Q|R|))In(|Rx|/d) in which § = (6|}|2). Thus,

b(R,R') < /b2(R) 4+ b2(R') < b(R) + b(R') (1)

According to ﬂﬁ], a region is an unordered bag of pixels, thus we may fix
IRl < (14 1)™{b9} For merging two adjacent regions R and R’ with color
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average |R| and |R’|, respectively, it is necessary to verify the following the
statistical region merging predicate

true if |[R — R'| < \/b2(R) + b2(R')
false otherwise

P(R, ) = { (2)

The algorithm proposed by |12] for image segmentation considers the statisti-
cal region merging predicate defined by Eq. Bl for merging two adjacent regions.
To follow, their method is summarized. In 4-connexity, there are N < 2|I| cou-
ples of adjacent pixels. Let S; be the set of these couples. Let f(p,p’) be a
real-valued function, with p and p’ pixels of f. First, the couples of Sy are sorted
in increasing order of f(.,.), and then traverse this order only once. For any cur-
rent couple of pixels p and p’ that does not in the same region, the test P(R, R’),
and merge R and R’ iff it returns true.

Considering that the parameter @) controls the coarseness (or “scale”) of a
segmentation, it is important to understand the influence of this parameter in
the process. Thus, we re-write the Eq. 2 in order to explicit the parameter Q:

(R-RY <P(R)+VE)  ©)

T SR L S
s (Q||J§I||Rf) " <Q1§||R)l” o (5)
2= o L (i 5 i 5 ) O

Thanks to upperbound of |R|, the Eq. [ can be re-written by

92

<
= (R YRR

(|R'|m (I+d)+|R| m' (I'+4d)) (7)
in which m = min{g, |R|}, m' = min{g, |R'|}, | = In(1 + |R|), I’ = In(1 + |R’|)
and d =2 x In(6|I]).

We can see in Fig. Bl and Fig. [l the segmentation results for fixed values
of parameter @ (which controls the so-called segmentation scale), however the
location and causality principle are missing, and this shows the absence of hier-
archical properties of this method. In fact, we will look for to adapt the values
of @ according to the regions analyzed for guaranteeing that two regions are
correctly merged. First, since ) could easily be limited by the number of pixels
in the image, i.e., @ < |I|, we consider in our analysis Q' = |I| — @ because
minimizing @’ will correspond to maximizing ) (we search for the smallest scale

value for which two regions can be merged).
Then, the scale Q(R, R’) is defined as:

2
QRN =Wl = o (R m Q)+ [RE! (¢ +). - (8)
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Thanks to this notion of a scale, Eq. () can be written as:

Q' = QR,R). (9)

3 A Hierarchical Graph Based Image Segmentation

In this section, we describe our method to compute a hierarchy of partitions
based on scales, so-called here statistical scale, as defined by Eq. [l This method
is based on our previous work |7, 18], however here it is necessary to compute all
candidate values to represent a scale once, differently of 8], the merging depends
on both, the information of the regions and the distance between these regions.
Let us first recall some important notions for handling hierarchies |4, 10, [11]].

To every tree T spanning the set V' of the image pixels, to every map w : £ —
N that weights the edges of T and to every threshold A € N, one may associate
the partition Py of V' induced by the connected components of the graph made
from V and the edges of weight below A. It is well known [4, [L0] that for any
two values A1 and g such that Ay > Ao, the partitions P)'fl and Pf\‘; are nested
and Py’ is coarser than Py . Hence, the set H" = {P} | A € N} is a hierarchy
of partitions induced by the weight map w.

Our algorithm does not explicitly produce a hierarchy of partitions, but in-
stead produces a weight map L (scales of statistical values) from which the
desired hierarchy H” can be inferred on a given T. It starts from a minimum
spanning tree T of the vertex-edge-weighted graph built from the image. In order
to compute the scale L(e) associated with each edge of T, our method iteratively
considers the edges of T in a non-decreasing order of their original weights w.
For every edge e, the new weight map L(e) is initialized to |I|; then for each
edge e linking two vertices p and p’ the following steps are performed:

(i) Find the region R of P}, that contains p.
(ii) Find the region R of P, that contains p'.
(iii) Compute the hierarchical statistical scale L(e) = Q(R, R’).

At step (iii), the hierarchical statistical scale L(e) is computed based on a mini-
mization of the function which relates some sub-region of R to some sub-region
of R’. More precisely, using an internal parameter v, this scale is computed as
follows:

(1) Initialize the value of v to |I|.

(2) Decrement the value of v by 1.

(3) Find the region R, of Pl that contains p.

(4) Find the region R’ of PL that contains p'.
(5) Repeat steps 2, 3 and 4 while Q(R.,R,) < v
(6) Set Q(R,R') =wv.

As the image is represented by a vertex-edge-weighted graph and the dissimi-
larity measures is based on color information of the regions, the computation of
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color average for each region can be done by computation of average cost of the
region vertices.

To efficiently implement our method, we use some data structures similar to
the ones proposed in [4, 18]; in particular, the management of the collection of
partitions is due to Tarjan’s union find and Fredman and Tarjan’s Fibonnacci
heaps. Furthermore, we made some algorithmic optimizations to speed up the
computations of the statistical scales.

4 Experiments

To provide a basis of comparison for our hierarchical method with respect to its
non-hierarchical version, we consider the dataset used in |1, 2] which contains
clearly one or two objects. This dataset is divided into two groups containing
100 images each one: single and two objects, this dataset is so-called Object
data set. According to [I, 2] the database was designed to contain a variety
of images with objects that differ from their surroundings by either intensity,
texture, or other low level cues. To avoid potential ambiguities it was selected
images that clearly depict one object or two objects in the foreground. Some
experiments are also given using Berkeley Segmentation DataSet [3], so-called
BSDS500. In this database, a semantic segmentation is done, and sometimes,
some images are under-segmented. With respect to the quality measures, we
assess our method using measures presented in [3] (Ground-Truth Segmentation,
Probabilistic Rand Index and Variation Information) and measures used in |1, 2]
(F1l-measure). The aim here is to show how the inclusion of hierarchical property
will influence on the results obtained by the method without this property.

In Tableland[2 we present some results, represented by F-measures, obtained
when we apply the method to Object Data set. As we can observe, the F-
measure calculated for the results obtained by hSRG are much better than the

Table 1. Performances of our methods, called hSRG and hFH, when compared to their
non-hierarchical method, SRG and FH, respectively. The performances showed in [2]
are also presented. The performances are measures by F-measure for the Single-Object
Data Set: (i) single segment coverage; and (ii) fragmented Coverage. See |2] for more
details on the evaluation method.

. Single Multi
Algorithm F-mefsure F-measure Fragmentation
Proba 0.86 0.87 2.66
SWA V1 0.83 0.89 3.92
SWA V2 0.76 0.86 3.71
Gpb 0.54 0.88 8.20
Mean Shift 0.57 0.88 12.08
NCut 0.72 0.84 3.12
SRG 0.58 0.56 8.53
hSRG 0.64 0.88 7.83
FH 0.73 0.85 5.96

hFH 0.63 0.85 5.12
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one obtained by SRG. For hFH and FH, the measures are quite similar. Thus,
these results illustrate that the inclusion of hierarchical property has no prejudice
with respect to the computed measures.

Table 2. Performances of our methods, called hSRG and hFH, when compared to
their non-hierarchical method, SRG and FH, respectively. The performances showed
in |2] are also presented. The performances are measures by F-measure for fragmented
coverage for the Two-Object Data Set: (i) fragmented coverage for smaller object; and
(ii) fragmented coverage for larger object. See [2] for more details on the evaluation
method.

(a) Fragmented coverage

2 Objects Larger object Smaller object
Algorithm Aver.  Aver. Aver.  Aver. Aver.  Aver.
F-measure Frag. F-measure Frag. F-measure Frag.

Proba 0.85 1.67 0.87 2.00 0.84 1.33
SWA V1 0.88 3.13 0.91 3.88 0.84 2.37
SWA V2 0.85 2.27 0.88 2.76 0.82 1.77

Gpb 0.84 2.95 0.87 3.60 0.81 2.30
Mean Shift 0.78 3.65 0.85 4.49 0.71 2.81

NCut 0.84 2.64 0.88 3.34 0.80 1.93

SRG 0.60 1.90 0.60 1.68 0.60 2.12

hSRG 0.87 4.96 0.88 4.77 0.87 5.15

FH 0.88 5.86 0.89 6.91 0.87 3.81
hFH 0.86 4.20 0.89 5.60 0.84 2.81

(b) Single coverage
Algorithm 2 Objects Larger object Smaller object

Proba 0.68 0.70 0.65
SWA V1 0.66 0.74 0.57
SWA V2 0.61 0.71 0.50

Gpb 0.72 0.70 0.75
Mean Shift 0.61 0.65 0.58

NCut 0.58 0.66 0.49

SRG 0.58 0.62 0.55

hSRG 0.75 0.74 0.76

FH 0.79 0.78 0.80
hFH 0.75 0.76 0.75

In Table[3 we present the quality measures when we apply four segmentation
methods to the object dataset: two non-hierarchical methods (SRG and FH)
and their hierarchical versions, called hSRG and hFH). In this experiment, we
compute all measures for the datasets containing one object and two objects, we
also compute the quality measures considering that we search only the smaller
or larger objects into the two-object dataset. As we can see, these results are
quite similar.
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Table 3. Performances of hierarchical methods, called hSRG and hFH B], and the
non-hierarchical methods SRG [2] and FH [5] using three different measures applied to
Object Data Set: (a) Ground-truth Covering (GT Covering), (b) Probabilistic Rand
Index and (c) Variation Information. The presented scores are optimal considering a
constant scale parameter for the whole dataset (ODS) and a scale parameter varying
for each image (OIS), and a scale parameter varying for each region of the ground-truth
(Best). See é] for more details on the evaluation method.

(a) Ground-truth Covering (GT Covering)

Smaller Large 2 obj 1 obj
ODS OIS Best ODS OIS Best ODS OIS Best ODS OIS Best
SRG 0.82 0.83 0.85 0.80 0.83 0.85 0.78 0.85 0.87 0.67 0.73 0.75
hSRG 0.81 0.84 0.88 0.80 0.84 0.88 0.73 0.80 0.84 0.65 0.73 0.76
FH 0.81 0.84 0.88 0.80 0.83 0.87 0.73 0.83 0.87 0.66 0.73 0.77
hFH 0.82 0.84 0.89 0.82 0.85 0.88 0.75 0.83 0.86 0.63 0.67 0.70

(b) Probabilistic Rand Index (c) Variation Information
Smaller  Large 2 obj 1 obj Smaller  Large 2 obj 1 obj
ODS OIS ODS OIS ODS OIS ODS OIS ODS OIS ODS OIS ODS OIS ODS OIS

SRG 0.80 0.81 0.79 0.83 0.80 0.86 0.70 0.77 SRG 0.60 0.57 0.63 0.60 0.69 0.57 0.98 0.91
hSRG 0.80 0.83 0.80 0.83 0.74 0.83 0.68 0.78 hSRG 0.57 0.54 0.58 0.55 0.84 0.72 0.85 0.80
FH 0.80 0.83 0.78 0.82 0.73 0.84 0.68 0.77 FH 0.55 0.52 0.59 0.55 0.77 0.60 0.96 0.87
hFH 0.81 0.84 0.81 0.84 0.76 0.86 0.65 0.75 hFH 0.56 0.56 0.54 0.52 0.77 0.64 0.92 0.89

Fig. 3. Examples of application of SRG and hSRG methods to Object Dataset contain-
ing one object and two objects. In left column of (a) and (b), we present the original
images, in middle column, we illustrate the results obtained from SRG method. In right
column, we illustrate the results obtained from hSRG.
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Fig. 4. Examples of application of SRG and hSRG methods to BSDS. In left column,
we present the original images, in middle column, we illustrate the results obtained
from SRG method. In right column, we illustrate the results obtained from hSRG.

In Fig. Bl and [ we present some results of applications of SRG method and
our hierarchical version. The two formers were extracted from Object Data Set,
and the last one, is obtained from BSDS500. As we can see, the results are quite
similar, however there are some differences, mainly, in second and third rows of
Fig. [ in second and third rows in Fig[Bl(b) and in first row of Fig. Bl(a).

5 Conclusion and Further Works

In this work, we propose a method for transforming a non-hierarchical method
into a hierarchical method preserving the merging criterium, i.e., all regions are
merged according to the same statistical criterium. Differently of the method
that iteratively computes the hierarchies, our method produces a weight map
L (scales of statistical values) from which the desired hierarchy can be easily
inferred. According to our results, the inclusion of the hierarchical property on
this region merging approach solves the causality and location problems which
are missing in SRG method, and does not prejudice the quality of results, in
fact, our method present higher f-measure values than SRG method. However,
due to inclusion of hierarchical property, some small regions are present in high
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scale. To solve this problem, it is necessary to filter out this regions using an
area opening. For future works, we will study the robustness to noise and how
to automatically choice a good hierarchical scale.
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