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Abstract. In this paper we present a fast subgraph kernel based on Jensen-Shan-
non divergence and depth-based representations. For graphs with n vertices and
m edges, the worst-case time complexity for our kernel is O(n3 +mn), in con-
trast to O(n6) for the classic graph kernel. Key to this efficiency is that we man-
age to compute the Jensen-Shannon divergence involved in our kernel withO(n2)
operations. This computational strategy enables our subgraph kernel to easily
scale up to graphs of reasonably large sizes and thus overcome the size limits
arising in state of the art graph kernels. Experiments on standard bioinformatics
graph datasets together with graph datasets extracted from images demonstrate
the effectiveness and efficiency of our subgraph kernel.

1 Introduction

There has recently been an increased interest in learning graph structures using graph
kernels[1,12]. In the research literature, most graph kernels are formulated as instances
of the R-convolution kernel family defined by Haussler [8]. Here R-convolution is a
generic way for defining graph kernels based on the similarities of decomposed sub-
graphs. In the light of this formulation, any new type of graph decompositions or new
type of subgraph similarity measures could result in a new graph kernel. Accordingly,
existing graph kernels can be generally categorized into three classes [15], i.e. graph
kernels based on comparing all pairs of a) walks, b) paths and c) restricted subgraph
and subtree structures. One major limitation of these existing graph kernels is that in
practical computation they do not easily scale up to substructures of large sizes (e.g.
(sub)graphs with hundreds or even thousands vertices). The resulting graph kernels are
limited by the size of the substructures used, which only roughly capture the overall
topological structure of a graph. Furthermore, even for relatively small subgraphs, most
graph kernels require significant computational overheads. In this paper we propose a
new graph kernel, which overcomes this problem and builds upon previous work by Bai
and Hancock [2] to develop an information theoretic kernel using the Jensen-Shannon
divergence and a novel depth-based graph representation of graph substructure. This
results in a computationally efficient kernel.

The Jensen-Shannon divergence is a non-extensive mutual information theoretic mea-
sure based on non-extensive entropies. An extensive entropy is defined as the sum of
the individual entropies of two probability distributions. The definition of non-extensive
entropy generalizes the sum operation into composite actions. The classical Jensen-
Shannon divergence is a function of probability distributions, and is related to the Shan-
non entropy [11]. The problem of establishing Jensen-Shannon divergence measures for
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graphs can thus be posed as that of computing the required entropies for individual and
composite graphs. Depth-based representations of undirected graphs have proved pow-
erful for characterizing topological structures in terms of intrinsic complexities [4]. One
approach for graph characterization is to gauge information content flow on K-layer
subgraphs (e.g. subgraphs around a vertex having a maximum topological distance or
minimal path length K) of increasing size and to use the flow as a structural signature.
Unfortunately, existing methods for constructing such a depth-based representation of
a graph always require a burdensome computational measure of the intrinsic structural
complexity. Moreover, straightforward construction of the depth-based representation
possessing global characteristics of a graph tends to be elusive, since it is difficult to
determine a stable root vertex for graphs with potentially intricate vertex distributions.

The aim of this paper is to develop a novel subgraph kernel for efficient computa-
tion, even when a pair of fully sized subgraphs are compared. To this end, we investigate
how to kernelize depth-based graph representations by measuring the information con-
tent for K-layer subgraphs using the Jensen-Shannon divergence. The contributions of
this paper are threefold. First, we describe how to compute the Jensen-Shannon diver-
gence for a pair of (sub)graphs based on the entropy difference between the original
and composite (sub)graphs. The required entropies for the individual (sub)graphs are
computed using the von Neumann and the Shannon entropy associated with the steady
state random walk. Second, we develop a novel depth-based graph representation. We
identify the centroid vertex of a graph by selecting the vertex with the minimum vari-
ance of shortest path lengths. From the centroid vertex, we derive a family of centroid
expansion subgraphs with increasing layer size K . To avoid the burdensome subgraph
enumeration of intrinsic complexity, we establish a depth-based representation for a
graph by measuring the entropies of its centroid expansion subgraphs. Third, based on
the first two contributions, we develop a fast Jensen-Shannon subgraph kernel. We em-
pirically demonstrate the effectiveness and efficiency of our subgraph kernel on several
challenging standard datasets furnished by bioinformatics and object recognition.

2 Jensen-Shannon Divergence on Graphs

In this section, we exploit the Jensen-Shannon divergence to develop a fast valid kernel
measure for (sub)graphs. To commence, consider the graph G(V,E) with vertex set V
and edge set E ⊆ V × V , the adjacency matrix A for G(V,E) has elements

A(i, j) =

{
1 if(vi, vj) ∈ E;
0 otherwise.

(1)

The vertex degree matrix of G(V,E) is a diagonal matrix D with diagonal elements
given by D(i, i) = d(i) =

∑
j∈V A(i, j). The Laplacian matrix L is defined as L =

D − A. The normalized Laplacian matrix is given by L̂ = D−1/2LD−1/2. The spec-
tral decomposition of the normalized Laplacian matrix is L̂ = Φ̂Λ̂Φ̂T where Λ̂ =
diag(λ̂1, λ̂2, ..., λ̂|V |) is a diagonal matrix with the ordered eigenvalues as elements

(0 = λ̂1 < λ̂2 < ... < λ̂|V |) and Φ̂ = (φ̂1|φ̂2|...|φ̂|V |) is a matrix with the correspond-
ing ordered orthonormal eigenvectors as columns. The normalized Laplacian matrix
is positive semi-definite and so has all eigenvalues non-negative. The number of zero
eigenvalues is the number of connected components in G(V,E).
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2.1 A Jensen-Shannon Divergence on Graphs

The classical Jensen-Shannon divergence is a non-extensive mutual information sim-
ilarity measure defined on probability distributions. Assume M1

+(χ) is a set of prob-
ability distributions where χ is a set provided with some σ − algebra of measurable
subsets, the Jensen-Shannon divergence DJS : M1

+(χ) × M1
+(χ) → R between the

(discrete) probability distributions P = (p1, p2, . . . , pM ) and Q = (q1, q2, . . . , qM ), is
negative definite (nd) with the following function

DJS(P,Q) = HS(
P +Q

2
)− HS(P ) +HS(Q)

2
. (2)

where HS(P ) =
∑M

m=1 pm log pm is the entropy of the probability distribution P . In
our work, we develop a Jensen-Shannon divergence for a pair of graphs. Given a pair
of graphs Gp(Vp, Eq) and Gq(Vq, Eq), the Jensen-Shannon divergence is

DJS(Gp, Gq) = H(Gp ⊕Gq)− H(Gp) +H(Gq)

2
. (3)

where Gp ⊕ Gq is a composite structure obtained from the two graphs Gp(Vp, Eq)
and Gq(Vq, Eq). Here we use the disjoint union defined in Sec.2.3 as the composite
structure, and explore the use of both the von Neumann entropy and Shannon entropy
over the graphs. The Jensen-Shannon divergence DJS for graphs defined in Eq.(3) is
symmetric. With the Jensen-Shannon divergence for graphs defined in Eq.(2) to hand,
we define a Jensen-Shannon diffusion graph kernel kJS : Gp×Gq → R with the kernel
value

kJS(Gp, Gq) = exp(−λDJS(Gp, Gq)). (4)

where λ is a decay factor and satisfies 0 < λ < 1. The resulting diffusion kernel is
positive definite.

2.2 Graph Entropies

To compute the Jensen-Shannon diffusion kernel, we require a means of evaluating
the entropy of a graph. There are several alternative routes, but here we consider two
computationally efficient strategies.

Von Neumann Entropy. The classical von Neumann entropy of G(V,E) associated

with the normalized Laplacian eigenspectrum is defined as HN = −∑|V |
i=1

λ̂i

|V | log
λ̂i

|V | .
The computation of the von Neumann entropy requires cubic number of vertices oper-
ations. Han et al. [7] have shown how the computation can be rendered quadratic in the
number of the vertices. By approximating the von Neumann entropy by its quadratic
counterpart, the simplfied von Neumann entropy is

HN (G) = 1− 1

|V | −
1

|V |2
∑

(vi,vj)∈E

1

d(i)d(j)
. (5)
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Shannon Entropy. An alternative entropy for G(V,E) is to exploit steady state random
walks onG(V,E). The probability of the steady state random walks onG(V,E) visiting
vertex vi is PG(i) = d(i)/

∑
vj∈V d(j). And the Shannon entropy for G(V,E) is

HS(G) = −
|V |∑
i=1

PG(i) logPG(i). (6)

For the graph G(V,E) with n = |V | vertices, both the von Neumann entropy HN (G)
and the Shannon entropy HS(G) require time complexity O(n2). This comes from the
fact that the degree matrix D of G(V,E) can be computed by visiting every entries
A(i, j) in the adjacency matrix A. Thus both entropies HN (G) and HS(G) can be
directly computed by visiting all the n2 pairs of vertices. �

2.3 A Composite Entropy of a Pair of Graphs

We now turn our attention to computing the composite entropy H(Gp ⊕ Gq) for the
pair of graphsGp(Vp, Ep) and Gq(Vq , Eq). Since we aim to develop an efficient kernel,
we seek a computationally inexpensive route and use the disjoint union GDU = Gp ∪
Gq = {Vp ∪ Vq, Ep ∪Eq} for constructing our composition of graphs Gp(Vp, Ep) and
Gq(Vq, Eq). Let graphs Gp and Gq be the connected components of the disjoint union
graph GDU , then the composite entropy is H(GDU ) = ρpH(Gp) + ρqH(Gq)., where
ρp = |V (Gp)|/|V (GDU )| and ρq = |V (Gq)|/|V (GDU )|. Here the entropy function
H(·) could be either the von Neumann entropy HN (·) defined in Eq.(5) or the Shannon
entropy HS(·) defined in Eq.(6).

3 Fast Jensen-Shannon Subgraph Kernel

The idea of using Jensen-Shannon divergence to develop graph kernels has previously
been explored by Lu and Hancock [2]. However, the kernel is slow since it requires a
global computation of the divergence. In this section we overcome this problem and aim
to develop a novel and fast subgraph kernel based on the Jensen-Shannon divergence
(JSD). Our idea is to decompose a graph into substructures (i.e. subgraphs) spanned
from a root vertex to the remaining vertices with respect to the minimal path length
K , and measure the entropies on these subgraphs as a depth-based signature of the
graph. To obtain a family of subgraphs capturing fine structures of a graph, we identify
a centroid vertex as the root vertex. In the literature of graph theory, the centroid of a
graph has been defined as a structure composed of vertices closest to all others [17].
Here we present a novel method to identify the centroid vertex of a graph by evalu-
ating the shortest path length distribution around a vertex. We select the vertex with
the minimum variance of shortest path lengths to the remaining vertices as the centroid
vertex. The vertices surrounding the centroid vertex in a graph lie along the different
shortest paths from the vertex, and the centroid vertex has a global view of the vertex
path length distribution surrounding it. Finally, we establish an information theoretic
subgraph kernel by applying the Jensen-Shannon diffusion kernel to subgraphs derived
from the centroid vertices.
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3.1 Subgraphs from the Centroid Vertex

We commence by identifying the centroid vertex of a graph. For an undirected graph
G(V,E), the shortest path SG(i, j) for a pair of vertices vi and vj can be computed by
using Johnson’s algorithm [9]. The matrix SG whose element SG(i, j) represents the
shortest path length between vertices vi and vj is referred to as the shortest path matrix
for graph G(V,E). The average-shortest-path vector SV for G(V,E) is a vector with
the same vertex order as SG and with element SV (i) =

∑|V |
j=1 SG(i, j)/|V | represent-

ing the average shortest path length from vertex vi to the remaining vertices. We then
locate the centroid vertex v̂i for G(V,E) as follows

v̂i = argmin
i

|V |∑
j=1

[SG(i, j)− SV (i)]
2. (7)

The centroid vertex v̂i ofG(V,E) is identified by selecting the vertex with the minimum
variance of shortest path lengths over all vertices in G(V,E). Therefore, the shortest
paths starting from the centroid vertex v̂i form a steady path set that exhibits the least
length variability compared with those path sets originating from the other vertices.
Thus the centroid vertex has a global view of the path length distribution. Let NK

v̂C
be

a subset of V satisfying NK
v̂C

= {u ∈ V | SG(v̂C , u) ≤ K}. For G(V,E) with the
centroid vertex v̂C , the K-layer centroid expansion subgraph GK(VK ; EK) is

{VK = {u ∈ NK
v̂C

};
EK = {(u, v) ⊂ NK

v̂C
| (u, v) ∈ E}. (8)

The number of centroid expansion subgraphs is equal to the greatest length L of the
shortest paths from the centroid vertex to the remaining vertices of the graph G(V,E).
The L-layer expansion subgraph is the graph G(V,E) itself.

For graph G(V,E) (n = |V | and m = |E|), computing entropies for its centroid
expansion subgraphs requires time complexity O(n2L+mn).

3.2 Depth-Based Representation

In this subsection, we develop a fast Jensen-Shannon subgraph kernel (kJS) as an in-
formation theoretic decomposition kernel. The proposed kernel kJS is defined by ker-
nelizing depth-based graph representations in terms of measuring information content
similarities for K-layer subgraphs using the Jensen-Shannon divergence. For a sam-
ple graph G(V,E), we commence by identifying the centroid vertex v̂C using Eq.(7).
Based on v̂C we construct the K-layer centroid expansion subgraph GK of G(V,E)
using Eq.(8). As we increase K from 1 to the greatest shortest path length L with re-
spect to the centroid vertex v̂C , we obtain a family of centroid expansion subgraphs
{G1, · · · ,GK , · · · ,GL}. We then measure the entropies of the subgraphs and establish
the depth-based representationD(G) of G(V,E) as D(G) = {H(G1), · · · , H(GK), · · · ,,
where H(GK) is the entropy for the K-layer subgraph GK of G(V,E). For a pair of
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graphs Gp(Vp, Ep) and Gq(Vq, Eq), we develop a similarity measure between their
depth-based representations D(Gp) and D(Gq) as follows

s(D(Gp), D(Gq)) =
L∑

K=1

sH(H(Gp;K), H(Gq;K)). (9)

where sH (H(Gp;K), H(Gq;K)) is an entropy-based similarity measure for the K-layer
subgraphsGp;K and Gq;K of Gp(Vp, Ep) and Gq(Vq, Eq). By using the Jensen-Shannon
diffusion kernel kJS(·, ·) in Eq.(4) as the entropy-based similarity measure sH(·, ·) in
Eq.(9), the similarity between the depth-based representations D(Gp) and D(Gq) is
formulated as the sum of the diffusion kernel measures for all the pairs of K-layer
subgraphs of Gp(Vp, Ep) and Gq(Vq, Eq).

For the graphs Gp(Vp, Ep) and Gq(Vq, Eq) the Jensen-Shannon subgraph kernel
kJS(Gp, Gq) is defined as

kJS(Gp, Gq) = s(D(Gp), D(Gq)) =
L∑

K=1

kJS(Gp;K ,Gq;K). (10)

where Gp;K(Vp;K , Ep;K) and Gq;K(Vq;K , Eq;K) are the K-layer centroid expansion sub-
graphs of Gp(Vp, Ep) and Gq(Vq , Eq) rooted from their centroid vertices v̂p;C and
v̂q;C , respectively, and kJS(Gp;K ,Gq;K) is the Jensen-Shannon diffusion kernel be-
tween Gp;K(Vp;K , Ep;K) and Gq;K(Vq;K , Eq;K). According to Eq.(2.3), Eq.(3) and
Eq.(4), kJS(Gp;K ,Gq;K) is

kJS(Gp;K ,Gq;K)=exp

[
−λ

{
2|Vp;K |−|Vq;K |
2|Vp;K |+2|Vq;K |H(Gp;K)+

2|Vq;K |−|Vp;K |
2|Vp;K |+2|Vq;K |H(Gq;K)

}]
.

(11)

The resulting Jensen-Shannon subgraph kernel kJS is positive semidefinite. The
computation of the proposed subgraph kernel between a pair of graphs, each of which
has n vertices and m edges, requires time complexity O(n2L+mn).

One extreme case for the time complexityO(n2L+mn) is the chain structure, where
the centroid vertex is the intermediate vertex along the chain and L is 	n/2
. Hence, the
worst-case time complexity of our subgraph kernel is O(n3 +mn). But for most real-
world graphs, the vertices surrounding the centroid vertex tend to be well distributed,
and then our subgraph kernel usually only requires time complexity O(n2 + mn) for
the practical kernel computation.

For a pair of graphs Gp(Vp, Ep) and Gq(Vq, Eq) with different sizes, the greatest
sizes of the expansion subgraphs for the two graphs could be different. Suppose that
v̂C;p and v̂C;q are the centroid vertices of Gp(Vp, Ep) and Gq(Vq, Eq), and the lengths
of the greatest shortest paths from the centroid vertices v̂C;p and v̂C;q are Lp and Lq,
respectively, where Lp > Lq. In practical computations, to balance the size differ-
ence between largest centroid expansion subgraphs of the two graphs, we use the graph
Gq(Vq, Eq) as the (Lq + 1)-layer to Lp-layer expansion subgraphs of Gq(Vq , Eq).
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Table 1. Information of the Graph-based Datasets

Datasets MUTAG D&D ENZYMES PPIs

Max # vertices 28 5748 126 232

Min # vertices 10 30 2 3

Mean # vertices 17.9 284.3 32.6 109.6

# graphs 188 1178 600 86

# disjoint graphs 0 21 31 0

# classes 2 2 6 2

4 Experimental Results

4.1 Standard Graph Datasets

We commence by demonstrating the performance of our Jensen-Shannon subgraph ker-
nel and compare it to several state of the art graph kernels on four standard graph based
datasets abstracted from bioinformatics databases. These datasets include: MUTAG,
D&D, ENZYMES and PPIs. The MUTAG dataset contains graphs representing 188
chemical compounds to predict mutagenicity. The D&D dataset contains 1178 pro-
tein structures. Each protein is represented by a graph. The ENZYMES dataset con-
tains graphs representing protein tertiary structures consisting of 600 enzymes from the
BRENDA enzyme database. The PPIs dataset consists of protein-protein interaction
networks (PPIs). Here we select Proteobacteria40 PPIs and Acidobacteria46 PPIs as
the testing graphs. Details about the datasets are shown in Table.1.

We evaluate the performance of our proposed Jensen-Shannon subgraph kernel us-
ing the von Neumann entropy (JSSV) or Shannon entropy (JSSS) separately on the
graph datasets abstracted from the bioinformatics databases, and then compare it with
several alternative state of the art graph kernels. These graph kernels for comparison
include 1) the Weisfeiler-Lehman subtree kernel (WL) [15], 2) the shortest path graph
kernel (SPGK) [3], 3) the graphlet count graph kernel (GCGK) [16], 4) the random
walk graph kernel (RWGK) [6], 5) the p-random walk graph kernel (PWGK) [10], and
6) the Ramon & Ganter graph kernel (RGGK) [5]. We compute the kernel matrix on
each dataset by using our proposed method. We also compute the kernel matrices of the
Weisfeiler-Lehman subtree kernel and shortest path graph kernel on the PPIs dataset.
For each kernel matrix we perform Principle Component Analysis (PCA) to embed the
graphs into feature space as vectors. We then perform 10-fold cross-validation using
the Support Vector Machine (SVM) Classification associated with the Sequential Min-
imal Optimization (SMO) and the PUK kernel[13] to evaluate the performance of our
method and those of the alternative methods. We use nine samples for training and one
for testing. All the SMO-SVMs were performed along with their parameters optimized
on each dataset. We report the average classification accuracies and runtime of estab-
lishing the kernel matrices of each method in Table.2, with the runtime measured under
Matlab R2011a running on a 2.2GHz Intel 2-Core processor. Shervashidze et al. [15]
have reported the accuracies of state of the alternative art graph kernels on each dataset
excluding the PPIs dataset, by performing 10-fold cross-validation associated with the
C-Support Vector Machine Classification (C-SVM). The runtime for establishing the
kernel matrices using these methods was measured under Matlab R2008a running on
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Table 2. Accuracy and CPU Runtime Comparisons on Graph Datasets

Datasets MUTAG D&D ENZYMES PPIs

JSSV 84.04 76.40 33.16 74.41

JSSS 85.10 78.50 38.00 80.01

WL 82.05 79.78 46.42 75.90

SPGK 87.28 78.45 41.68 70.93

GCGK 75.61 78.59 32.70 −
RWGK 80.72 71.70 21.68 −
PWGK 79.19 66.64 27.67 −
RGGK 85.72 57.27 13.35 −

Datasets MUTAG D&D ENZYMES PPIs

JSSV 1” 2′50” 4” 1”

JSSS 1” 2′49” 4” 1”

WL 1” 11′ 20” 27”

SPGK 2” 23h17′2” 5” 47”

GCGK 3” 30′21” 25” −
RWGK 12” 48days 12′19” −
PWGK 4′42” 4days 10′ −
RGGK 40′60” 103days 38days −

a 3.0GHz Intel 8-Core processor with 16GB RAM. We report these accuracies and
runtime in Table.2.

There are a number of conclusions that can be drawn from Table 2. First, on the
MUTAG, D&D, PPIs datasets, our subgraph kernel outperforms or is competitive with
the alternatives. Secondly, on the ENZYMES dataset, the performance of our subgraph
kernel is lower than that of the Weisfeiler-Lehman subtree kernel, is competitive with
the shortest path graph kernel, and outperform the remaining methods. Thirdly, the
runtime of our subgraph kernel is better than that of each of the alternatives on all
datasets studied. This includes the challenging D&D dataset which contains graphs
with thousands of vertices. Finally, the average greatest layer sizes of the subgraphs
for the MUTAG, D&D, ENZYMES and PPIs datasets are 8.53, 24.14, 6.45 and 8.79,
respectively.

The runtimes of our subgraph kernel using the von Neumann and Shannon entropies
are similar. However the classification accuracies are quite dissimilar. The reason for
this is that according to Eq.(5) the von Neumann entropy is more sensitive to variable
graph size than the Shannon entropy. This implies that the Shannon entropy is better
suited to graph datasets containing graphs of variable size. On the ENZYMES data-set,
all methods perform relatively poorly. The reason for this is that there are six classes of
graph in the ENZYMES dataset, and only two classes in the remaining datasets.

4.2 View-Based Object Recognition

In this subsection, we focus on graphs extracted from images and access the effective-
ness of the proposed subgraph kernel in detecting object clusters. The first dataset (i.e.
ALOI) consists of graphs extracted from images of three similar boxes in the ALOI
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database. The second dataset (i.e. MOVI-CMU) consists of graphs extracted from im-
ages of three similar toy houses in the MOVI and CMU databases. The third dataset
(i.e. COIL) consists of graphs extracted from images of three similar cups in the COIL
database. For each object there are 18 images captured from different viewpoints. The
graphs are the Delaunay triangulations of feature points extracted from the different
images. The minimum and maximum vertices of the three datasets are 295 (min) and
1288 (max) for ALOI, 249 (min) and 734 (max) for MOVI-CMU, and 13 (min) and 80
(max) for COIL.

For our subgraph kernel with the von Neumann entropy (JSSV) or the Shannon en-
tropy (JSSS), we compute the kernel matrix on each dataset. We embed the testing
graphs into feature space as vectors by performing the Principle Component Analy-
sis (PCA) on each kernel matrix. Furthermore, we also compare our methods against
a number of alternative graph characterisations, including a) the Ihara zeta function of
graphs (CIZF) [14], and b) the pattern vectors from algebraic graph theory (PVAG) [18].
For these alternative methods we compute the feature vectors of graphs on each dataset.
To evaluate the performance of all the methods, we perform the K-means clustering
method to compute the classification accuracies for the three datasets. The experimen-
tal results are shown in Table 3

For the graphs in the COIL dataset of which the average number of vertices is less
than 60, all the methods give good performance and can achieve 100% recognition ac-
curacy. For the graphs in the ALOI and MOVI-CMU datasets of which the average
number of vertices is between 200 to 700, the proposed methods outperform all the
alternatives, only CIZF is competitive to our methods on the MOVI-CMU dataset. The
CIZF and PVAG can not finish the computation on the ALOI dataset, since they gen-
erate infinite feature values for a graph of large size. The evaluation reveals that our
subgraph kernel can easily scale to large graphs.

Table 3. Experimental Comparisons on Image Based Graph Dataset

Datasets JSSV JSSS CIZF PVAG

ALOI 87.03 90.73 − −
MOVI-CMU 96.29 100 96.29 81.49

COIL 100 100 100 100

5 Conclusion

In this paper, we have shown how to construct a fast Jensen-Shannon subgraph kernel
using depth-based representations of graphs. The proposed method is based on a fast
Jensen-Shannon diffusion kernel measure defined in terms of the Jensen-Shannon di-
vergence on (sub)graphs and an elegant graph decomposition through the depth-based
representation. The proposed subgraph kernel overcomes the subgraph size restrictions
arising in state of the art graph kernels, and also renders an efficient computation. The
experimental results have demonstrated the effectiveness and efficiency of the proposed
subgraph kernel.
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