Skip to main content

A simple analysis of the influence of the solvent-induced electronic polarization on the 15N magnetic shielding of pyridine in water

  • Regular Article
  • Chapter
  • First Online:
Marco Antonio Chaer Nascimento

Part of the book series: Highlights in Theoretical Chemistry ((HITC,volume 4))

Abstract

Electronic polarization induced by the interaction of a reference molecule with a liquid environment is expected to affect the magnetic shielding constants. Understanding this effect using realistic theoretical models is important for proper use of nuclear magnetic resonance in molecular characterization. In this work, we consider the pyridine molecule in water as a model system to briefly investigate this aspect. Thus, Monte Carlo simulations and quantum mechanics calculations based on the B3LYP/ 6-311++G (d,p) are used to analyze different aspects of the solvent effects on the 15N magnetic shielding constant of pyridine in water. This includes in special the geometry relaxation and the electronic polarization of the solute by the solvent. The polarization effect is found to be very important, but, as expected for pyridine, the geometry relaxation contribution is essentially negligible. Using an average electrostatic model of the solvent, the magnetic shielding constant is calculated as -58.7 ppm, in good agreement with the experimental value of -56.3 ppm. The explicit inclusion of hydrogen-bonded water molecules embedded in the electrostatic field of the remaining solvent molecules gives the value of -61.8 ppm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hore PJ (1995) Nuclear magnetic resonance. Oxford University Press, New York

    Google Scholar 

  2. Canuto S (ed) (2008) Solvation effects on molecules and biomolecules. Computational methods and applications. Springer, New York

    Google Scholar 

  3. Mennucci B, Cammi R (eds) (2007) Continuum solvation models in chemical physics. Wiley, New York

    Google Scholar 

  4. Buckingham AD, Schafer T, Schneider WG (1960) J Chem Phys 32:1227

    Article  CAS  Google Scholar 

  5. Mennucci B, Martinez JM, Tomasi J (2001) J Phys Chem A 105:7287

    Article  CAS  Google Scholar 

  6. Mennucci B (2002) J Am Chem Soc 124:1506

    Article  CAS  Google Scholar 

  7. Kongsted J, Mennucci B (2007) J Phys Chem A 111:9890

    Article  CAS  Google Scholar 

  8. Malkin VG, Malkina OL, Steinebrunner G, Huber H (1996) Chem Eur J 2:452

    Article  CAS  Google Scholar 

  9. Chesnut DB, Rusiloski BE (1994) J Mol Struct 314:19

    Article  Google Scholar 

  10. Cheeseman JR, Trucks GW, Keith TA, Frisch MJ (1996) J Chem Phys 104:5497

    Article  CAS  Google Scholar 

  11. Fileti EE, Georg HC, Coutinho K, Canuto S (2007) J Braz Chem Soc 18:74

    Article  CAS  Google Scholar 

  12. Kongsted J, Aidas K, Mikkelsen KV, Sauer SPA (2008) J Chem Theory Comput 4:267

    Article  CAS  Google Scholar 

  13. Møgelhøj A, Aidas K, Mikkelsen KV, Sauer SPA, Kongsted J (2009) J Chem Phys 130:134508

    Article  Google Scholar 

  14. Ligabue A, Sauer SPA, Lazzeretti P (2007) J Chem Phys 126:154111

    Article  Google Scholar 

  15. Keal TW, Helgaker T, Salek P, Tozer DJ (2006) Chem Phys Lett 425:163

    Article  CAS  Google Scholar 

  16. Coutinho K, Canuto S (2000) J Chem Phys 113:9132

    Article  CAS  Google Scholar 

  17. Coutinho K, Canuto S, Zerner MC (2000) J Chem Phys 112:9874

    Article  CAS  Google Scholar 

  18. Canuto S, Coutinho K, Trzresniak D (2003) Adv Quantum Chem 41:161

    Article  Google Scholar 

  19. Fonseca TL, Coutinho K, Canuto S (2008) J Chem Phys 129:034502

    Article  Google Scholar 

  20. Manzoni V, Lyra ML, Gester RM, Coutinho K, Canuto S (2010) Phys Chem Chem Phys 12:14023

    Article  CAS  Google Scholar 

  21. Aidas K, Møgelhøj A, Kjaer H, Nielsen CB, Milkkelsen KV, Ruud K, Christiansen O, Kongsted J (2007) J Phys Chem A 111:4199

    Article  CAS  Google Scholar 

  22. Pranata J, Wierschke SG, Jorgensen WL (1991) J Am Chem Soc 113:2810

    Article  CAS  Google Scholar 

  23. Gao J, Xia X (1992) Science 258:631

    Article  CAS  Google Scholar 

  24. Jorgensen WL (ed) (2007) J Chem Theor Comput special issue 3:1877–2145

    Google Scholar 

  25. Dahlke EE, Truhlar DG (2007) J Chem Theor Comput 3:46

    Article  CAS  Google Scholar 

  26. Elguero J (2007) Magn Reson Chem 46:356

    Google Scholar 

  27. Georg HC, Coutinho K, Canuto S (2006) Chem Phys Lett 429:119

    Article  CAS  Google Scholar 

  28. Coutinho K, Georg HC, Fonseca TL, Ludwig V, Canuto S (2007) Chem Phys Lett 437:148

    Article  CAS  Google Scholar 

  29. Ribeiro RF, Marenich AV, Cramer CJ, Truhlar DG (2009) J Chem Theor Comput 5:2284

    Article  CAS  Google Scholar 

  30. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926

    Article  CAS  Google Scholar 

  31. Jorgensen WL, McDonald NA (1998) J Mol Struc 424:145

    Article  CAS  Google Scholar 

  32. Breneman CM, Wiberg KB (1990) J Comput Chem 11:361

    Article  CAS  Google Scholar 

  33. Okuyama-Yoshida N, Nagaoka M, Yamabe T (1998) Int J Quantum Chem 70:95

    Article  CAS  Google Scholar 

  34. Okuyama-Yoshida N, Kataoka K, Nagaoka M, Yamabe T (2000) J Chem Phys 113:3519

    Article  CAS  Google Scholar 

  35. Hirao H, Nagae Y, Nagaoka M (2001) Chem Phys Lett 348:350

    Article  CAS  Google Scholar 

  36. Broyden CG (1970) IMA J Appl Math 6:76

    Article  Google Scholar 

  37. Fletcher R (1970) Comput J 13:317

    Article  Google Scholar 

  38. Goldfarb D (1970) Math Comput 24:23

    Article  Google Scholar 

  39. Shanno DF (1970) Math Comput 24:647

    Article  Google Scholar 

  40. Shanno DF, Kettler PC (1970) Math Comput 24:657

    Article  Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2004) Gaussian 03, Revision D 02. Wallingford, Gaussian

    Google Scholar 

  42. Georg HC, Canuto S (2009) Diceplayer. University of São Paulo, São Paulo

    Google Scholar 

  43. Coutinho K, Canuto S (2009) DICE (version 2.9): a general monte carlo program for liquid simulation. University of São Paulo, São Paulo

    Google Scholar 

  44. Gester RM, Georg HC, Canuto S, Caputo MC, Provasi PF (2009) J Phys Chem A 113:14936

    Article  CAS  Google Scholar 

  45. Galván IF, Sánchez ML, Martin ME, Olivares del Valle FJ, Aguilar MA (2003) J Chem Phys 118:255

    Google Scholar 

  46. Facelli JC (2000) Chem Phys Lett 322:91

    Article  CAS  Google Scholar 

  47. Duthaler RO, Roberts JD (1978) J Am Chem Soc 100:4969

    Article  CAS  Google Scholar 

  48. Jensen F (2008) J Chem Theory Comput 4:2008

    Article  Google Scholar 

  49. Christiansen O, Bak KL, Koch H, Sauer SPA (1998) Chem Phys Lett 284:47

    Article  CAS  Google Scholar 

  50. Provasi PF, Aucar GA, Sauer SPA (2001) J Chem Phys 115:1324

    Article  CAS  Google Scholar 

  51. DALTON, a molecular electronic structure program, Release Dalton2011 (2011)

    Google Scholar 

  52. Bak KL, Koch H, Oddershede J, Christiansen O, Sauer SPA (2000) J Chem Phys 112:4173

    Article  CAS  Google Scholar 

  53. Nielsen ES, Jørgensen P, Oddershede J (1980) J Chem Phys 73:6238

    Article  CAS  Google Scholar 

  54. Packer MJ, Dalskov EK, Enevoldsen T, Jensen HJA, Oddershede J (1996) J Chem Phys 105(14):5886

    Article  CAS  Google Scholar 

  55. Sauer SPA (1996) Chem Phys Lett 260:271

    Article  CAS  Google Scholar 

  56. Enevoldsen T, Oddershede J, Sauer SPA (1998) Theor Chem Acc 100:275

    Article  CAS  Google Scholar 

  57. Keal TW, Tozer DJ (2004) J Chem Phys 121:5654

    Article  CAS  Google Scholar 

  58. Auer AA (2009) Chem Phys Lett 467:230

    Article  CAS  Google Scholar 

  59. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  60. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  61. Adamo C, Barone V (1999) J Chem Phys A 110:6158

    Article  CAS  Google Scholar 

  62. Alkorta I, Elguero J (2004) Magn Reson Chem 42:955

    Article  CAS  Google Scholar 

  63. Gauss J (1993) J Chem Phys 99:3629

    Article  CAS  Google Scholar 

  64. Wolinski K, Hinton JF, Pulay P (1990) J Am Chem Soc 112:8251

    Article  CAS  Google Scholar 

  65. DeMore BB, Wilcox WS, Goldstein JH (1954) J Chem Phys 22:876

    Article  CAS  Google Scholar 

  66. Lide DR (1992) Handbook of chemistry and physics, 73rd edn. CRC Press, Boca Raton

    Google Scholar 

  67. Fileti EE, Coutinho K, Malaspina T, Canuto S (2003) Phys Rev E 67:061504

    Article  Google Scholar 

  68. Malaspina T, Coutinho K, Canuto S (2002) J Chem Phys 117:1692

    Article  CAS  Google Scholar 

  69. Miertuš S, Scrocco E, Tomasi J (1981) Chem Phys 55:117

    Article  Google Scholar 

  70. Stilinger FH, Rahman A (1974) J Chem Phys 60:3336

    Article  Google Scholar 

  71. Mezei M, Beveridge DL (1981) J Chem Phys 74:622

    Article  CAS  Google Scholar 

  72. Contreras RH, Peralta JE (2000) Prog Nucl Magn Reson Spectrosc 37:321

    Article  CAS  Google Scholar 

  73. Zhan C-G, Chipman DM (1999) J Chem Phys 110:1611

    Article  CAS  Google Scholar 

  74. Curutchet C, Cramer CJ, Truhlar DG, Ruiz-Lopez MF, Rinaldi D, Orozco M, Luque FJ (2003) J Comput Chem 24:284

    Article  CAS  Google Scholar 

  75. Marenich AV, Olson RM, Chamberlin AC, Cramer CJ, Truhlat DG (2007) J Chem Theory Comput 3:2055

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rodrigo M. Gester or Sylvio Canuto .

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor Marco Antonio Chaer Nascimento and published as part of the special collection of articles celebrating his 65th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gester, R.M., Georg, H.C., Fonseca, T.L., Provasi, P.F., Canuto, S. (2014). A simple analysis of the influence of the solvent-induced electronic polarization on the 15N magnetic shielding of pyridine in water. In: Ornellas, F., João Ramos, M. (eds) Marco Antonio Chaer Nascimento. Highlights in Theoretical Chemistry, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41163-2_11

Download citation

Publish with us

Policies and ethics