
Identifiability of Model Properties

in Over-Parameterized Model Classes

Manfred Jaeger

Aalborg University, Denmark
jaeger@cs.aau.dk

Abstract. Classical learning theory is based on a tight linkage be-
tween hypothesis space (a class of function on a domain X), data space
(function-value examples (x, f(x))), and the space of queries for the
learned model (predicting function values for new examples x). However,
in many learning scenarios the 3-way association between hypotheses,
data, and queries can really be much looser. Model classes can be over-
parameterized, i.e., different hypotheses may be equivalent with respect
to the data observations. Queries may relate to model properties that do
not directly correspond to the observations in the data. In this paper we
make some initial steps to extend and adapt basic concepts of computa-
tional learnability and statistical identifiability to provide a foundation
for investigating learnability in such broader contexts. We exemplify the
use of the framework in three different applications: the identification
of temporal logic properties of probabilistic automata learned from se-
quence data, the identification of causal dependencies in probabilistic
graphical models, and the transfer of probabilistic relational models to
new domains.

1 Introduction

This paper is originally motivated by ongoing research in learning probabilistic
automata models for applications in model-based design in verification [16,10].
In model-based design, various forms of finite probabilistic automata models are
used to model hard- or software systems. Relevant properties of the system are
expressed using a formal, logical representation language, such as probabilistic
linear time logic (PLTL), or probabilistic computation tree logic (PCTL) [2].
Efficient algorithms exist to check whether such a property is satisfied by a
given automaton model, i.e., whether the design or actual system represented
by the model satisfies a certain specification. Traditionally, the formal models
used in this process are constructed manually. This, however, can be a very
time-consuming and error-prone process. We are therefore interested in the pos-
sibility of automatically learning finite automata models from data consisting of
observations of visible system behaviors. Adapting standard automata learning
algorithms [3,4] we obtain learning methods for our application that come with
certain convergence guarantees for the large-sample limit. However, these con-
vergence guarantees do not directly imply what is of ultimate interest, namely,

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part III, LNAI 8190, pp. 112–127, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Identifiability of Model Properties in Over-Parameterized Model Classes 113

that in the large-sample limit the learned model will agree with the actual ob-
served system on properties representable in the formal representation language
we use in model-checking. Concretely, building on the given convergence guaran-
tees, one can show that the learned model will in the limit agree with the actual
system on PLTL properties [10]. However, the same does not appear to be true
for PCTL properties.

Abstracting from this specific learning problem, we are faced with the more
general question: what classes of properties that we will want to query our learned
model for, can, in principle, be learned from the observations that are represented
by our data? This question is closely connected to learnability in the sense of
computational learning theory, as well as to identifiability in the sense of statis-
tics. However, it seems that neither these two existing theoretical frameworks
are quite sufficient to analyze the scenario we are here considering.

Computational learning theory uses at its conceptual foundation a very close
linkage between hypothesis space, data space, and what one may call query space:
the hypothesis space is taken to consist of a set F of functions, data consists of
a set of observed pairs (x, f(x)) of arguments and function values, and a learned
function f ∈ F will be queried for its function values f(x). This setup does not
incorporate the possibility of an over-parameterized hypothesis space, i.e., the
existence of two distinct hypotheses h, h′ that define the same function, and that
therefore would lead to equivalent data observations. Under the assumption that
a learned hypothesis will be queried for its function values, this possibility may
also be safely neglected, since it would make no difference whether hypothesis
h or h′ is learned. This radically changes, however, when also the close linkage
between data space and query space is lost, and the learned hypothesis will be
queried for properties that may not exactly match the type of observations found
in the data. This is precisely the situation we find ourselves in when learning
probabilistic automata for model-checking purposes: two distinct automata can
induce the same data-distribution of observable behaviors, but differ with respect
to some properties in our formal query languages. On the other hand, some
relaxation of the three-way linkage between data, hypotheses and queries does
not necessarily preclude learnability: in our positive results about learning PLTL
properties we have data consisting of finite strings, hypotheses consisting of finite
automata, and queries consisting of logical formulas.

The issue of over-parameterized model spaces containing distinct hypothe-
ses that generate indistinguishable data is exactly the subject of the statistical
notion of identifiability. However, statistical identifiability theory does not re-
late hypothesis and data space to classes of queries over the learned model. It
is implicitly assumed that the purpose of learning, which here comes down to
parameter estimation, is to identify the true parameter. In contrast, we may be
satisfied with learning a hypothesis that is distinct from the “true” one, as long
as it is equivalent with regard to a certain class of query properties.

The problemof learnability of certain query properties in an over-parameterized
model class is a quite common one, and certainly not limited to, or first encountered
in, our problem of identifying logical properties of a finite automaton. Another

114 M. Jaeger

motivating example of the same problem which we shall consider in this paper is
causal discovery from observational data: a directed graphical model (Bayesian
network) is sometimes regarded as a causal model, where directed connections be-
tween random variables represent causal dependencies. However, it is well known
that a Bayesian network learned from statistical data only allows a limited inter-
pretation as a causal model, since networks with different directed edge structures
can induce the same data distribution, and hence be indistinguishable based on
observational data. The possibilities and inherent limitations of using Bayesian
network learning for causal discovery are now well understood [9]. However, the
sometimes controversial debate into this issue has not been fully phrased within
a formal theory of learnability or identifiability, which, one could imagine, some-
times might have helped to elucidate matters more clearly [15,6].

With an increasing ambition of learning models in more and more expressive
model classes, for example probabilistic programming languages [12,7,5], one
also encounters more and more complex relationships between the wide range
of model properties that could be queried, and the empirical content of the
original data. Broadening existing theories of learnability to enable a systematic
and principled analysis of these relationships and dependencies, thus, could be
useful in a variety of contexts.

In this paper we are going to propose a formal framework combining elements
of computational learnability and statistical identifiability that enables a system-
atic study of what model properties can, or can not, be identified in a certain
model class, given a particular type of training data. To this end we first intro-
duce a very general setup of learning as maximization of a score function (Sec-
tion 2). We then propose a definition of identifiability that makes no assumptions
on structural correspondences between data-, model-, and query space. Based on
these definitions, we obtain a first theorem about non-identifiability. We demon-
strate the applicability of our framework by deriving non-identifiability results
for PCTL properties of probabilistic automata, directed edge relationships in
Bayesian networks, and probabilistic queries on varying domains in statistical
relational models. Finally, in Section 4 we adapt the initial very general frame-
work for the special case of statistical learning, and discuss its relationship with
PAC learnability [18].

2 Learning as Score Maximization

We characterize learning as the maximization of a score function σ that defines
for each M in a model (or hypothesis) space M, and each dataset D in a datas-
pace D a score σ(M,D). This, on the one hand, is the most natural description
of a wide range of learning methods that in fact operate by using heuristic or
stochastic search to maximize a given score function. On the other hand, it also
accommodates in a trivial way any other algorithmic learning procedure not
based on an explicit score function by representing an algorithm l that on input
D outputs a hypothesis l(D) ∈ M via a score function σl with σl(M,D) = 1 iff
M = l(D), and σ(M,D) = 0 otherwise.

Identifiability of Model Properties in Over-Parameterized Model Classes 115

B

C

D

A B

C

D

A B

C

D

A

(a) (b) (c)

Fig. 1. Two Bayesian Networks and their Essential Graph

One restriction we impose on the scoring function σ is that for all D ∈ D the
supremum of σ(·, D) is attained for some M ∈ M. We write

M(σ,D) := {M ∈ M | σ(M,D) = max
M̃∈M

σ(M̃,D)}

for the set of all M maximizing σ(·, D). Thus, M(σ,D) is the set of models
learned from D using σ. M(σ,D) may contain more than one element, but is
assumed to be nonempty.

In the following we give two examples of learning algorithms not usually seen
from the perspective of score-based learning. We here develop a more meaningful
characterization of these learning methods in terms of score maximization than
simply by the trivial σl representation mentioned above.

Example 1. Bayesian Networks are probabilistic models for the joint distribution
of a set of random variables [13]. They consist of a directed acyclic graph over
the random variables, and, for each variable, the specification of the conditional
probability distribution of that variable given its parents in the graph. Figure 1
(a),(b) shows two different Bayesian Networks for random variables A,B,C,D.
The graph structure of a Bayesian network encodes conditional independence
relations among the variables.

Probabilistic automata represent probability distributions over infinite se-
quences of symbols from a given alphabet Σ. Figure 2 shows three different
probabilistic automata defining probability distributions on {a, b}∞. In the fig-
ure, states marked with * are the initial states of the automaton. Solid edges
denote state transitions taken with probability 1, and dashed edges transitions
with probability 1/2. All automata in Figure 2 define the same probability dis-
tribution PM , which is the uniform distribution on aa{a, b}∞.

Ma and Mb are deterministic automata: for every state in the automaton, and
every s ∈ Σ there exists at most one possible successor state labeled with s. Mc,
on the other hand, is non-deterministic, since the initial state has two different
a-successors.

116 M. Jaeger

A classic algorithm for learning Bayesian networks is the PC-algorithm [17],
and a standard algorithm for learning deterministic probabilistic automata is
the Alergia algorithm and its variants [3,4,8,10].

Even though quite different with respect to the learning tasks they solve,
and the algorithmic details, the PC algorithm and Alergia share some common
features which can be expressed in a common structure of a high-level score
function representation of these approaches. Both PC and Alergia identify the
graphical structure of the model based on statistical tests performed on the
data. In the PC algorithm, these are conditional independence tests for subsets
of the random variables. In Alergia, one performs tests for the identity of the
conditional distributions on (infinite) suffixes s ∈ Σ∞ given different (finite)
prefixes from Σ∗.

In Alergia, the outcome of the statistical tests determines the structure of the
model uniquely. In the PC-algorithm, the tests determine the structure only up
to membership in a class of network structures encoding the same conditional
independence constraints. This equivalence class can be represented by an essen-
tial graph, which is a mixed graph with directed and undirected edges. Figure 1
(c) shows the essential graph representing the equivalence class consisting of the
networks (a) and (b). In order to obtain a final directed graph, one may employ
any method to select a representative directed graph from the equivalence class.

Once the model structure is fixed, maximum likelihood parameters are fitted.
The overall learning process can thus be described as maximizing a score function
of the form

σ(M,D) = R(M) · Tests(M,D) · Lhood(M,D) (1)

where Tests(M,D) is a 0/1-valued function that evaluates to 1 iff the structure
of M is consistent with the outcome of all relevant statistical tests performed on
D, and Lhood(M,D) = PM (D) is the likelihood function (also depending on the
parameters of M). R(M) is a factor only needed for capturing the PC algorithm.
It is a another 0/1-valued function that evaluates to 1 iff the structure of M is
the representative directed graph for its underlying essential graph. For Alergia,
we may just assume that R(M) is constant equal to 1.

a a a

a a

a a

a

b

a bb

* * *

Ma Mb Mc

Fig. 2. Probabilistic Automata

Identifiability of Model Properties in Over-Parameterized Model Classes 117

A second example looks at a more standard form of score-based learning.

Example 2. (Penalized likelihood score (PLS)) Standard model scores like Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), or Mini-
mum Description Length (MDL) are used for a wide range of probabilistic model
classes. They are penalized likelihood scores of the form

σPLS(M,D) := c · log(Lhood(M,D))− g(|D |)h(|M |), (2)

where c is a constant, g(|D |) is a function of the size of the data D, and h(|M |)
is a function of the size ofM , where g and h are non-negative, and h is monotone
in |M |. For Bayesian networks, as well as for many other probabilistic types of
models, the size |M | typically is defined as the number of free parameters in M .

Assuming that the two network structures (a) and (b) in Figure 1 are equipped
with their maximum likelihood parameters, they will both define the same dis-
tribution PM , and, thus, obtain the same log-likelihood score log(PM (D)).

3 Identifiability

We are interested in learnability in the limit of large datasets. Apart from
datasets consisting of independent samples, we also want to consider datasets
that may consist, e.g., of a single long sequential observation of a temporal pro-
cess, or a (large) graph. We therefore only assume that the space of all datasets
is structured as follows.

Definition 1. A stratified dataspace is a set

D = ∪nD(n)

which is equipped with a partial order relation ≺, so that D ≺ D′ implies that
D ∈ D(j), D′ ∈ D(k) with j < k. Furthermore, it is required that for every n and
D ∈ D(n) there exists D′ ∈ D(n+1) with D ≺ D′.

The intention is that D ≺ D′ means that D′ is an extension of the dataset D.

Example 3. (a) Suppose the data consists of independent samples s = s1, . . . , sn
from a sample space S. Then D(n) = Sn, and s ≺ s′ iff s′ extends s, i.e., s ∈ Sn,
s′ ∈ Sn′

with n′ > n, and s′i = si for i = 1, . . . , n.
(b) In learning from a single sequence of symbols from an alphabet Σ, we

have D(n) = Σn, and D ≺ D′ iff D is a prefix of D′.
(c) When learning from graphs (or, more generally, colored graphs, or rela-

tional data), we can have that D(n) is the set Gn of all graphs with n nodes, and
G ≺ G′ iff G is embedded as a sub-graph in G′.

Learning in the limit of large datasets now is analyzed in terms of increasing
sequences D1 ≺ D2 ≺ · · · . We write ↑Dn for such a sequence.

As in (1) and (2), most score functions will be composed from a number of
simpler scores or measurements:

118 M. Jaeger

Definition 2. A score feature is any function

F : M×D → F

with F ⊆ R. When F = {0, 1} then F is called a Boolean feature. A score
feature F : M → F that only depends on M also is called a model feature, and
a feature F : D → F that is only a function of D is called a data feature. A
query space is a set Φ of Boolean model features.

The score function σ(·, ·) itself is a score feature. For probabilistic models, a
key score feature is the likelihood Lhood : (M,D) �→ PM (D).

For a query space Φ we write M ≡Φ M ′ if φ(M) = φ(M ′) for all φ ∈ Φ. [M]≡Φ

denotes the equivalence class of M in M with regard to the equivalence relation
≡Φ. We are now ready to introduce our central definition.

Definition 3. Let M be a model space, D a stratified dataspace, and Φ a query
space for M. Let σ be a score function on M × D. We say that Φ is (D, σ)-
identifiable in M, if for all M ∈ M there exists ↑Dn so that for all φ ∈ Φ there
exists nφ ∈ N, so that for all n ≥ nφ:

M(σ,Dn) ⊆ [M]≡φ
(3)

Definition 3, thus, demands that for every possible M there exists some ideal
data sequence ↑Dn which enables us to obtain from the learned models in the
large sample limit the same answers for all queries φ that we would obtain from
the “true” model M .

Definition 3 only refers to Boolean queries. In many cases, however, we will
also be interested in querying other kinds of model features. For probabilistic
models M , for instance, a typical query can be the probability PM (E) assigned
by the model to some event E, or the most probable configuration of a set
of unobserved random variables. Identifiability of queries of this kind can be
approximated by identifiability of suitable Boolean query spaces. For probability
queries PM (E), for instance, one should only require that the answers obtained
from the learned models converge to the true value in the large sample limit.
Such a convergence is exactly captured by Definition 3 as identifiability of the
Boolean features PM (E) ∈ I, for all open intervals I.

Definition 3 only provides a basis for analyzing identifiability questions. Nei-
ther positive nor negative identifiability results purely in the sense of this defi-
nition are very interesting per se. A positive identifiability result in the sense of
Definition 3 is not particularly useful in itself, since it would only say that based
on some ideal data sequence ↑Dn we would be able to identify Φ. To be prac-
tically relevant, we would need the sharper result that this will be true for all
data sequences that in some sense are sufficiently informative, or representative
of the true model, and that are the datasets we are likely to have for learning in
practice. We will extend Definition 3 in this direction in Section 4.

The main focus of this paper, however, is to establish negative identifiability
results, i.e., impossibility results for learning. A negative result just in the sense

Identifiability of Model Properties in Over-Parameterized Model Classes 119

of Definition 3 would not be very strong either, since it would only tell us that
learning with a particular score function σ does not enable us to identify Φ. For
non-identifiability results, however, we are interested in whether it is impossible
to identify Φ using any member in a certain class of score functions, which rep-
resents all in some sense applicable learning algorithms. In fact, one may wonder
why Definition 3 refers to a score function at all. Based on our original motiva-
tion described in Section 1, one may rather want to describe identifiability as an
inherent relationship between the model, query, and data spaces, so that identi-
fiability just means that the data contains a sufficient amount of query-relevant
information about the model – which should be independent of any learning
procedures. However, as the following example illustrates, it would likely be fu-
tile to try to address the identifiability problem without explicit consideration of
admissible score functions, since otherwise one can always obtain trivial identifi-
ability results via artificial score functions that do not capture realistic learning
methods, but rather describe querying a perfect oracle:

Example 4. Assume that the cardinality of D is at least as big as the cardinality
of M, so that there is a one-to-one function f : M → D. Then we can define

σ(M,D) :=

{
1 if D = f(M)
0 otherwise

(4)

For every M ∈ M then M(σ, f(M)) = {M}, and (3) is satisfied by the constant
sequence Dn = f(M).

In the following, thus, we will derive non-identifiability results in the sense of
Definition 3 for all σ in certain classes of score functions. We specify classes of
score functions that correspond to realistic classes of learning algorithms in terms
of the score features that they are based on. We write σ(F0(M,D), . . . , Fk(M,D))
for a score function σ that depends on M,D only through the features Fi(M,D)
(which may also include pure model or data features).

Definition 4. A score function σ(F0(M,D), . . . , Fk(M,D)) is monotone in the
score feature F0, if for all fi ∈ Fi (i = 1, . . . , k), and r, s ∈ F0: r ≤ s ⇒
σ(r, f1, . . . , fk) ≤ σ(s, f1, . . . , fk).

Example 5. The PC/Alergia-learning score function (1) is monotone in all its
features R(M),Tests(M,D), and Lhood(M,D). The PLS score function (2) is
monotone in Lhood(M,D), as well as −h(|D |) and −h(|M |).

Both (1) and (2) are monotone in a specific model feature (R(M), respectively
−h(|M |)) that represents a preference or bias function on M. Such a feature can
express a bias towards small or canonical models, or, in a Bayesian framework,
a prior probability of M .

In the following we pay particular attention to such bias features expressing
prior knowledge or preferences, and we write σ(B,F) for a score function that
is monotone in a designated numerical bias model feature B, and that further
depends in an arbitrary manner on other score features F = F1, . . . , Fk.

120 M. Jaeger

For any subsets M ⊆ M, D ⊆ D and feature vector (F0, . . . , Fk) we write
(F0, . . . , Fk)(M ,D) for the set {(F0(M,D), . . . , Fk(M,D)) | M ∈ M , D ∈ D}.
In the following we will be concerned with sets M that are equivalence classes
[]Φ for some set Φ of query properties.

Definition 5. Let M ⊆ M, D ⊆ D. We say that B and F are orthogonal on
M ×D, denoted B⊥F (M ,D), if (B,F)(M ,D) = B(M)× F (M ,D).

In other words, B⊥F (M ,D) means that on the set M ×D a given value of
F () does not constrain the possible values of B(), and vice-versa.

Proposition 1. Let σ(B,F) be a score function that is monotone in B. Let Φ be
a query space. If there exist distinct, nonempty equivalence classes [M]Φ, [M

′]Φ,
such that for all sufficiently large n, and all D ∈ D(n):

(i) F ([M]Φ, D) = F ([M ′]Φ, D)
(ii) B⊥F ([M]Φ, D) and B⊥F ([M ′]Φ, D),

then Φ is not (D, σ)-identifiable.

Proof. Without loss of generality assume that

supB([M]Φ) ≥ supB([M ′]Φ). (5)

Then, for all sufficiently large n, all D ∈ D(n), and all M̃ ′ ∈ [M ′]Φ there exists
M̃ ∈ [M]Φ with σ(M̃ ,D) ≥ σ(M̃ ′, D), and (3) does not hold for [M ′]Φ.

Example 6. (Non-identifiability of BN structure) Let M be the set of Bayesian
networks over the variables A,B,C,D, and D(n) = Sn, where S is the sam-
ple space of joint observations of the variables. Let Φ = {φX→Y | X,Y ∈
A,B,C,D}, where φX→Y (M) is true iff the edge X → Y is included in M .
Φ here is finite. The score functions (1) and (2) are based on the score features
Test(), Lhood(), the data feature g(), as well as the bias features R() (for PC)
and −h() (for PLS). We use Proposition 1 to show that Φ is not identifiable from
data consisting of joint observations of A,B,C,D by any score function that is
based on the score features Test and Lhood, together with any data features
F (D), and bias features such as R() or −h().

We consider the Φ-equivalence classes of M and M ′ given by Figure 1 (a) and
(b). We first verify that (i) and (ii) hold for [M]Φ, [M

′]Φ, and F = (Test,Lhood).
We need not consider any pure data features F (D) here: since D is fixed in (i)
and (ii), any addition of pure data features F (D) to F has no impact on the
validity of (i) and (ii).

[M]Φ and [M ′]Φ contain exactly the Bayesian networks with the same struc-
ture as M and M ′, respectively. Since both structures represent the same condi-
tional independencies, we have for all D that Test([M]Φ, D) = Test([M ′]Φ, D) =
{0} (the outcome of the independence tests on D are not compatible with the
structures of M and M ′), or Test([M]Φ, D) = Test([M ′]Φ, D) = {1} (otherwise).
Also, since exactly the same class of distributions can be represented by models

Identifiability of Model Properties in Over-Parameterized Model Classes 121

in [M]Φ and in [M ′]Φ, one has Lhood([M]Φ, D) = Lhood([M ′]Φ, D). This together
shows (i) (note that in general it is not enough to show these identities separately
for the value sets of each feature F ∈ F ; here it is sufficient because for the Test
feature the value sets turned out to be just singletons).

Both the bias features R() and −h() have a unique value on the equivalence
classes [M]Φ and [M ′]Φ. This makes condition (ii) trivially satisfied for these and
similar bias features.

Example 7. (Non-identifiability of PCTL) Let Mnd be the class of non-determi-
nistic probabilistic finite automata, and let D(n) = (Σ∗)n. Thus, even though the
automata define a distribution over Σ∞, we assume that data D = (s1, . . . , sn)
consists of finite strings si ∈ Σ∗ only, where the si are obtained by sampling
traces of the automaton up to some random length li =|si |. As mentioned in Sec-
tion 1 we are interested in queries from the formal languages PLTL and PCTL.
Full syntax and semantics definitions for these languages can be found in [2].
In the following we will only somewhat informally introduce specific properties
they can represent. For this we will be needing formulas built using only the
temporal operator “next (time point)”, written ©. With PLTL one can specify
probability bounds on the distribution over sequences defined by the automaton.
For example, a PLTL-expressible property would be that the probability that the
sequence starts with aaa is > 0.49, formally expressed by P>0.49(a∧©a∧©©a).
This property is satisfied by all three automata in Figure 2.

PCTL syntactically allows formulas in which probability quantifiers P>... and
temporal operators are nested. Semantically they represent model properties
that refer to internal states of the automaton. One such property that we can
formulate reads in formal PCTL syntax

φ1 ≡ P>0.4 © P>0.9 © a. (6)

The meaning of this is that (from the initial state) there is a probability > 0.4
of reaching a state from which the probability then is > 0.9 of reaching by the
next transition a state labeled with a. For the automata of Figure 2, φ1 is false
for Ma and Mb, and true for Mc. All automata of Figure 2 satisfy the following
two formulas:

φ2 ≡ P=1(a ∧©a) (7)

φ3 ≡ P=0.5 ©©a (8)

Given that an automaton M satisfies φ2 and φ3, one has that PM (aaaΣ∞) =
PM (aabΣ∞) = 1/2, and the distribution PM then is fully specified by the two
conditional distributions PM (· | aaa) and PM (· | aab). For the automata of
Figure 2, both these conditionals are the uniform distribution on Σ∞. One can
show that also any other pair of conditional distributions that can be defined
by a finite probabilistic automaton can be implemented both by automata for
which φ1 is true, and by automata for which φ1 is false. For the first case, one
can follow the basic structure of Mc, where one branches from the initial state
in the first step, followed by a deterministic transition in the second. For the

122 M. Jaeger

second case, one builds on the structure of Ma, and constructs a model in which
from every state reachable by the first transition there is a probability of 0.5
each for reaching an a, respectively b, state by the second transition.

Letting Φ = {φ1, φ2, φ3}, the above considerations mean that the models in
the two equivalence classes [Ma]Φ and [Mc]Φ can represent exactly the same dis-
tributions. This implies that for any vector of score features F that only contain
features such as Tests and Lhood, which depend on M only through the distri-
bution PM , one has F ([Ma]Φ, D) = F ([Mc]Φ, D) for all D. Thus Proposition 1
(i) is satisfied for F of this form, which includes Alergia-style learning (cf. (1)).

We here do not consider condition (ii) for a bias feature B. Alergia-style
algorithms do not use a bias feature, and so there are no immediate canonical
candidates. However, Alergia-style algorithms also learn deterministic automata
only, whereas here we considered non-deterministic ones. Within the class Mnd

a measure of the complexity of the model may be a reasonable bias to include
in a learning process.

Proposition 1 may appear rather specific, and possibly narrow, due to the as-
sumption that we are dealing with score functions that can be written as σ(B,F).
Furthermore, the structural conditions (i) and (ii) appear quite strong, and es-
pecially (ii) will probably not always hold, even in the case of non-identifiability.
Thus, (i) and (ii) are simple sufficient, but certainly not necessary conditions
for non-identifiability. On the other hand, Examples 6 and 7 show that Propo-
sition 1 already does cover a certain range of different identifiability problems.
The following example further indicates that the structural form of σ that we
here assumed is in some sense natural and most general: already allowing a slight
generalization in the form of σ, where one can have two different bias features
B1, B2, again leads to trivial identifiability results similar to Example 4:

Example 8. Assume that both M and D are countably infinite. Let f : M → N

and g : D → 2N, where 2N stands for the set of even natural numbers, such that
both f and g are one-to-one and onto. Define the two model features B1(M) :=
f(M), B2(M) := −f(M), and consider g(D) as a data feature. We can then
define the score function

σ(M,D) :=

{
B1(M) if B1(M) ≤ B2(M) + g(D)
B2(M) + g(D) otherwise

(9)

It is straightforward to verify that σ is monotone in both B1 and B2. Also,
Proposition 1 (i) and (ii) are trivially satisfied for F = g and B = Bi (i = 1, 2).
For any given D, σ(M,D) is maximized when B1(M) = B2(M) + g(D), i.e.,
f(M) = −f(M) + g(D), or f(M) = g(D)/2. By the assumptions on f and g
there is a unique M that satisfies this condition. Thus, similarly as in Example 4
we can choose for a given M the constant sequence Dn = D, for the D with
g(D) = 2f(M).

We end this section by considering an example in relational learning. Prob-
abilistic relational (or probabilistic logical) models define probability distribu-
tions over relational structures, i.e., over the interpretations I over finite domains

Identifiability of Model Properties in Over-Parameterized Model Classes 123

C = {c1, . . . , cm} of the relation symbols in a signature Σ. Most types of prob-
abilistic relational models only define the conditional distributions P (I | C) of
interpretations for given domains. Only in some expressive representation lan-
guages such as BLOG [12] one can also specify distributions P (C) over domains.
For relational learning one can distinguish several types of stratified dataspaces:

D1: D(n) consists of n independent samples I1, . . . , In of interpretations over a
fixed domain C.

D2: D(n) consists of n independent samples (I1, D1), . . . , (In, Dn) of interpre-
tations over different domains Ci. Example: molecular data, where each Ii
represents a molecule described by attributes and bond-relations over a do-
main Di of atoms.

D3: (cf. Example 3 (c)) D(n) consists of one observation of an interpretation
I over the domain Cn = {c1, . . . , cn}, and I ≺ I ′ iff I is an interpretation
over Cn, I

′ an interpretation over Cn′ , n < n′, and I is the substructure
induced by I ′ on Cn. Example: learning from a single database, such as the
IMDB movie database, or DBLP bibliographic database. Increasing data
here means that the database grows by adding more objects (movies, bibli-
ographic entries. . .).

Probabilistic relational models learned from data for domains Ci may be used
to perform inference for new domains C not represented in the data. This can be
seen as the weakest form of model transfer, which in a much more ambitious form
(also including a transformation of the relational signatures) becomes transfer
learning in the sense of [11]. We now derive within our framework an impossibility
result for relational model transfer. Again, the interest of the analysis does not so
much lie in the concrete impossibility result we obtain, but in the demonstration
that our general framework allows us to express in a rigorous manner what
appears to be intuitively rather obvious.

Example 9. For concreteness’ sake, let M be the class of Markov Logic Networks
(MLNs) [14] for a signature of just a single attribute (unary relation) symbol
a(X). We assume that we learn from data of type D3, i.e., a dataset of size n
consists of the domain Cn, and for each ci the information whether a(ci) is true
or false. We consider the query φ = P (a(c1) | C = {c1}) > 0.5, i.e. we ask
whether P (a(c1)) > 0.5, for the single object c1 in a domain of size one.

We now apply Proposition 1 to show that Φ = {φ} is not (D3, σ)-identifiable
by likelihood-based learning, i.e., for any σ that only uses the likelihood feature
Lhood(M, (I, Cn)) = PM (I | Cn). Thus, we have to show (i) for F = Lhood.
Since Φ consists of a single Boolean query, there are only two equivalence classes
[]Φ. Let n ≥ 2, and D = (I, Cn) a dataset of size n. Assume that in I a(ci) is
true for i = 1, . . . , k, and false for i = k + 1, . . . , n. Consider the two formulas

p(X1) ∧ . . . ∧ p(Xk) ∧ ¬p(Xk+1) ∧ . . . ∧ ¬p(Xn) ∧
∧
i	=j

Xi �= Xj (10)

p(X) (11)

124 M. Jaeger

Consider an MLN M consisting of formula (10) with a weight w. As w → ∞, the
MLN defines over the interpretations on Cn a distribution that is concentrated on
the structures where a() is true for exactly k objects, and false for n−k objects.
Since there are

(
n
k

)
such structures, one obtains for these models likelihood values

PM (I | Cn) converging to 1/
(
n
k

)
. Since all possible MLNs for the given signature

must assign equal probabilities to isomorphic structures, no higher likelihoods
are obtainable by any other model. On the other hand, if w → −∞, then PM (I |
Cn) → 0. For all settings of w one has PM (a(c1) | C = {c1}) = 0.5, i.e., the
query φ evaluates to false.

Now consider an MLN M ′ consisting of (10) with a weight w, and (11) with
a weight u = 1. As w ranges in] − ∞,∞[one again has that the likelihood
PM ′(I | Cn) ranges in]0, 1/

(
n
k

)
[. Now, however, for all such M ′ PM ′ (a(c1) | C =

{c1}) > 0.5. Thus, one has that M and M ′ define two different Φ-equivalence
classes, and F ([M]Φ, D) = F ([M]Φ, D) =]0, 1/

(
n
k

)
[.

For pure likelihood-based learning, i.e., in the absence of a bias feature B(M),
we thus obtain that φ is not identifiable. What happens if we were to add a bias
feature that expresses a preference for syntactically simpler MLNs, as measured,
for example, in terms of the number and length of formulas? MLNs containing
formulas such as (10) would then obtain a low bias value B(M). Simple MLNs
with high B(M) values, on the other hand, would most likely be unable to
express the distribution that leads to the maximal likelihood value of 1/

(
n
k

)
for

the data. Thus, condition (ii) would not be satisfied, and Proposition 1 does not
establish non-identifiability for these scenarios.

Our examples show that Proposition 1 can be used to establish non-identifi-
ability in some relevant cases, but it is far from being applicable in all cases.
However, it appears that Proposition 1 is about as far as one can go without
imposing some further restrictions on admissible score functions σ, or on the
available data sequences ↑Dn.

4 Consistent Identifiability and PAC Learning

We now take a closer look at how Definition 3 can be strengthened by replacing
the mere existence condition for a data sequence ↑Dn with a condition only for
the data-sequences that we are likely to see in practice. For this we now only
consider spaces of probabilistic models that induce a distribution on the sample
data.

Definition 6. A model class M is probabilistic with associated stratified data
space D, if each M ∈ M defines

– a probability distribution P
(1)
M on D(1), and

– for each n > 1 a conditional distribution P
(n|n−1)
M on D(n) given D(n−1), so

that for D ∈ D(n−1)

P
(n|n−1)
M ({D′ | D ≺ D′} | D) = 1.

Identifiability of Model Properties in Over-Parameterized Model Classes 125

The distributions P
(1)
M , P

(n|n−1)
M jointly define probability distributions P

(n)
M on

D(n) for all n.

We note that for continuous spaces D the above definition implicitly assumes
some measurability conditions that we have not spelled out.

For probabilistic models we can now introduce consistent identifiability, which
is an adaptation of the statistical concept of consistency for our type of learning
scenario.

Definition 7. Let M be a probabilistic model space with associated data space
D, σ a score function. Φ is consistently σ-identifiable, if for all M ∈ M, all
ε > 0, and for all φ ∈ Φ there exists n0 ≥ 1, such that for all n ≥ n0:

P
(n)
M {Dn | M(σ,Dn) ⊆ [M]≡φ

} ≥ 1− ε (12)

We can now formulate a positive identifiability result reported in [10]: for
Md the set of deterministic probabilistic finite automata, and Φ the class of
PLTL queries: Φ is consistently σ-identifiable, where σ is an Alergia-style score
function based on the model features Tests and Lhood. Comparing this result
with Example 7 we find that PCTL is not identifiable in Mnd (under certain
assumptions on the data and model features available for learning), whereas
PLTL is identifiable in Md. This leaves as two open and important questions
whether PCTL is identifiable in Md, or PLTL in Mnd.

We close this section with some remarks on the relationship between condition
(12) and PAC -learnability. For this assume that each M ∈ M defines a Boolean
function fM defined on a countable domain X , that D(n) consists of sets of size
n of pairs (x, fM (x)) (x ∈ X), and that Φ = X . In addition, let M also define a
probability distribution PM over X , which then induces a distribution on D(n)

for each n. Finally, assume that here M(σ,D) is a singleton, which we denote
M(D). From consistent identifiability in the sense of Definition 7 we then obtain
that for all ε, δ > 0 there exists n0, so that for all n > n0

P
(n)
M {Dn | PM{x | fM(D)(x) �= fM (x)} ≤ δ} ≥ 1− ε (13)

To obtain (13) from (12) we first observe that there exists a finite subset X ′ ⊆ X
with PM (X ′) > 1 − δ. Assume |X ′| = N , and set ε to ε/N in (12). Then, for
sufficiently large n0, (12) holds simultaneously for all φ = x ∈ X ′, i.e., for all
n ≥ n0

P
(n)
M {Dn | M(D) ∈ [M]X′} ≥ 1− ε

Since M(D) ∈ [M]X′ implies PM{x | fM(D)(x) �= fM (x)} ≤ δ, we obtain (13).
Property (13) is structurally similar to PAC-learnability [18,1]. One superficial

difference between (13) and PAC-learnability is that the latter does not assume
that there is an association between the (true) model (or hypothesis) and the
distribution over X . Thus, where our definition says “for all M . . . ”, PAC is
expressed in terms of “. . . for all h (hypotheses) and all μ (distributions on X)
. . . ”. This, however, is no real difference, since if our model space contains models
for all possible combinations of functions fM and distributions PM , then the

126 M. Jaeger

quantification over all M is the same as a quantification over all functions and
all distributions. A second difference is much more significant: PAC is a uniform
condition where the ε, δ-bounds are independent of h and μ, i.e., it is defined
by the quantifier string ∀ε, δ∃n0∀h, μ∀n > n0 . . ., whereas our condition (13)
is ∀M, ε, δ∃n0∀n > n0 Requiring in our Definition 7 a threshold n0 that is
uniform for M and φ would be too strong for most intended applications, since
models M and queries φ may differ widely with respect to their complexity, and
so it will be unrealistic to ask for uniform bounds on the necessary sample size
for their identification.

5 Conclusion

We have developed a formal framework for analyzing learnability, or identifiabil-
ity questions in learning scenarios where there may only be a loose association
between model, data, and query space. The main contribution of this paper is
to provide the conceptual tools for a rigorous and uniform analysis of a wide
spectrum of such identifiability problems.

A key element of the proposed approach is to conceptualize learning as max-
imization of a score function with a dependence on a single distinguished model
bias feature. Based on such score functions, we can formulate a first general suffi-
cient condition for non-identifiability. This result is still somewhat limited in two
ways: first, while easy to prove, the result is not necessarily easy to apply, since
verifying conditions (i) and (ii) may require some non-trivial analysis in different
applications. Second, Proposition 1 is a rather strong sufficient condition that
may not actually be satisfied in many cases of non-identifiability. However, as
Examples 4 and 8 indicate, it may prove difficult to obtain stronger results at
the same high level of generality, and without restrictions to specific types of
model spaces or learning approaches. A particularly relevant more specialized
setting is that of consistent identifiability for probabilistic models. Future work
will be focussed on obtaining more powerful analysis tools than Proposition 1
for this setting.

References

1. Angluin, D.: Queries and concept learning. Machine Learning 2, 319–342 (1988)
2. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
3. Carrasco, R., Oncina, J.: Learning stochastic regular grammars by means of a state

merging method. In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994. LNCS, vol. 862,
pp. 139–152. Springer, Heidelberg (1994)

4. Carrasco, R.C., Oncina, J.: Learning deterministic regular grammars from stochas-
tic samples in polynomial time. In: ITA, pp. 1–20 (1999)

5. De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S.H. (eds.): Probabilistic In-
ductive Logic Programming. LNCS (LNAI), vol. 4911. Springer, Heidelberg (2008)

6. Glymour, C., Spirtes, P., Richardson, T.: On the possibility of inferring causation
from association without background knowledge. In: Glymour, C., Cooper, G.F.
(eds.) Computation, Causation & Discovery, ch. 9, pp. 323–331. AAAI Press, MIT
Press (1999)

Identifiability of Model Properties in Over-Parameterized Model Classes 127

7. Goodman, N.D., Mansinghka, V.K., Roy, D., Bonawitz, K., Tenenbaum, J.B.:
Church: a language for generative models. In: Proceedings of the 24th Conference
on Uncertainty in Artificial Intelligence, UAI 2008 (2008)

8. de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars.
Cambridge University Press (2010)

9. Korb, K., Nicholson, A.: The causal interpretation of Bayesian networks. In:
Holmes, D., Jain, L. (eds.) Innovations in Bayesian Networks. SCI, vol. 156, pp.
83–116. Springer, Berlin (2008)

10. Mao, H., Chen, Y., Jaeger, M., Nielsen, T.D., Larsen, K.G., Nielsen, B.: Learning
probabilistic automata for model checking. In: Proceedings of the 8th International
Conference on Quantitative Evaluation of SysTems, QEST (2011)

11. Mihalkova, L., Huynh, T., Mooney, R.J.: Mapping and revising markov logic net-
works for transfer learning. In: Proc. of AAAI 2007 (2007)

12. Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D., Kolobov, A.: Blog: Proba-
bilistic logic with unknown objects. In: Proceedings of the 19th International Joint
Conference on Artificial Intelligence (IJCAI 2005), pp. 1352–1359 (2005)

13. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible In-
ference, 2nd pr. edn. The Morgan Kaufmann series in representation and reasoning.
Morgan Kaufmann, San Mateo (1988)

14. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1-2),
107–136 (2006)

15. Robins, J.M., Wasserman, L.: On the impossibility of inferring causation from
association without background knowledge. In: Glymour, C., Cooper, G.F. (eds.)
Computation, Causation & Discovery, ch. 8, pp. 305–321. AAAI Press, MIT Press
(1999)

16. Sen, K., Viswanathan, M., Agha, G.: Learning continuous time Markov chains
from sample executions. In: Proceedings of the 1st International Conference on
Quantitative Evaluation of SysTems (QEST), pp. 146–155 (2004)

17. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction and Search. Springer
(1993)

18. Valiant, L.G.: A theory of the learnable. Communications of the ACM 27(11),
1134–1142 (1984)

	Identifiability of Model Properties in Over-Parameterized Model Classes
	1 Introduction
	2 Learning as Score Maximization
	3 Identifiability
	4 Consistent Identifiability and PAC Learning
	5 Conclusion
	References

