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Abstract. Ensemble Methods represent an important research area
within machine learning. Here, we argue that the use of such methods
can be generalized and applied in many more situations than they have
been previously. Instead of using them only to combine the output of
an algorithm, we can apply them to the decisions made inside the learn-
ing algorithm, itself. We call this approach Inner Ensembles. The main
contribution of this work is to demonstrate how broadly this idea can
applied. Specifically, we show that the idea can be applied to different
classes of learner such as Bayesian networks and K-means clustering.

Keywords: Inner Ensembles, Bayesian Network, K-means, Comprehen-
sibility.

1 Introduction

The idea of the wisdom of crowds is that decisions made by groups of people
are often more accurate, and more robust, than those made by individuals. An
important sub-field in machine learning, ensemble methods, has exploited this
idea very effectively, particularly in producing substantial performance gains.
However, we argue that there is considerable room to extend it further. We
believe our work is just the beginning of a much wider use of ensemble methods.
Here, instead of combining the output of models, we apply ensemble methods
to the decisions used to generate the models. We call this idea Inner Ensembles
as the wisdom of crowds is applied inside the learning algorithm. Although this
idea has been applied to decision trees [1,2], it is in fact much more general
and has broader benefits than previously thought. Here we argue that like more
traditional ensemble methods, Inner Ensembles define a broad framework that
has the potential to impact all kinds of algorithms other than just decision trees.
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Using this framework, we can realize many of the advantages of traditional
ensemble methods while restoring the more intuitive models produced by the
base algorithms. Many of us have worked extensively with such models and we
have a clear sense of what has been learned. This is particularly important when
the task is knowledge discovery rather than prediction. On a more practical level,
Inner Ensembles produce models with a number of clear advantages: compre-
hensibility, stability, simplicity, fast classification and small memory footprint.
Certainly, many of these are problematical for traditional ensemble methods [3].
However, we recognize that these advantages must often be traded off against
absolute performance. The work reported here shows that much of the improved
performance can be maintained. Continued refinement of the approach should
lead to further improvement.

Comprehensibility, how understandable a model is to users, is essential in
many real-world problems: medicine, fraud detection in insurance companies,
loan concession in financial environments [2]. Comprehensibility acts as a vali-
dation tool in some domains such as medical diagnosis; users are confident in a
system only when they understand how it arrives at decisions [4]. A comprehen-
sible model helps in identifying important hidden feature relationships. It may
suggest better representations, improving an algorithm’s generalization power
[5]. Finally, comprehensibility may help to refine ”approximately-correct”’ do-
main theories [6]. Comprehensibility is an important feature of inner-ensembles,
but not the only one. Stability is the property of being robust to small changes
in the underlying data [7]. Robust models are important because they evoke
more confidence that the underlying concept has been truly captured and their
accuracy is less susceptible to noise. Simplicity is an important property in its
own right, typically motivated by Occam’s razor [8]. The closely related concept
of over-fitting avoidance has been an important issue within machine learning
for some years. It is not without controversy though and the exact reasons for
the desirability are open to question [9]. Simplicity in terms of the actual fea-
tures used also leads to another two desirable properties: fast classification and
small memory footprint. In many on-line applications, the speed of determin-
ing membership, either in classification or clustering, is an important practical
consideration [10].

There has been quite a bit of work addressing the shortcomings of the standard
ensemble method, particularly the lack of comprehensibility. There are generally
two directions that have been followed. The first uses an ensemble as part of the
predictive model gaining the comprehensibility through the simplified high-level
structure [11,12]. The second uses a standard ensemble as a guide to growing a
new and simpler model that is comprehensible [13,14,15]. However, our approach,
Inner Ensembles, is quite different, using the ensemble to chose the parts of the
model. To illustrate the point, standard ensemble learning is analogous to a
management meeting in a company where decisions are made by voting; Inner
Ensembles learning is analogous to one manager being selected by voting to make
the decision on behalf of the rest of the group. To the best of our knowledge there
are two pieces of work that can be considered as Inner Ensembles [1,2]. However,
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these two were focused solely on decision trees and then just on choosing the right
feature to split. What we are doing is generalizing this idea to work for many
different kinds of algorithms. Certainly, our framework offers additional benefits.
To support this claim we introduce general guidelines for using Inner Ensembles
which we have applied to two categories of learning: supervised and unsupervised.
For the former we use Bayesian networks, for the latter K-means clustering. We
use ensemble methods similar to bagging. In the future work section, we discuss
the other potential ways of extending this idea especially using boosting instead
of bagging and using Inner Ensembles for other kinds of algorithms. In the rest
of the paper, we begin by explaining how to apply the framework for Inner
Ensembles to existing algorithms. Next, we present experiments that show the
efficacy of our framework. Finally, we will draw conclusions and suggest how
future work will explore new applications for Inner Ensembles.

Fig. 1. An example of a liver disorder diagnosis network [16]

2 Inner Ensembles in Practice

In this section, we describe general guidelines for applying Inner Ensembles to
any algorithms. Then using these guidelines, we describe in detail how our frame-
work is applied to two quite different algorithms: Bayesian networks and K-
means clustering. By choosing both a supervised and unsupervised algorithm,
we aim to demonstrate the broad applicability of our framework. As the struc-
ture of each algorithm is different, it is difficult to define a precise method for
applying Inner Ensembles in every case. However, with the knowledge of how
each algorithm works, we can follow some general guidelines. We need to identify
decision points, where choices are made based on a measure. Then, we need to
locate the input and output of that decision maker. By manipulating the input,
say by sampling the data, we produce different outputs. We combine these out-
puts and apply the result to the decision being made at that point inside the
algorithm. This procedure is shown in algorithm 1.
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Algorithm 1. General guidelines for using Inner Ensembles

1: Locating a decision maker inside the algorithm.
2: Finding a measure based on which that decision maker works.
3: Indicating the input and output of the measure.
4: Applying the ensemble on the measure:
5: Changing the input of the measure in different ways. {It can be sampling

of data or feature based modifications or other methods.}
6: Generating an output based on each input.
7: Combining the outputs
8: Applying the output of the ensemble for decision making.

2.1 Learning Bayesian Network Structure

Bayesian networks have been used for many applications: medicine, expert sys-
tems [17] and path finder systems [18]. One of the major advantages is their com-
prehensibility [19]. This advantage would clearly be lost when multiple networks
form an ensemble. Let us illustrate this point using the real world application of
liver disorder diagnosis [16]. The network, shown in figure 1, consists of the risk
factors and symptoms for several related disorders and it is important that it
be understandable for a clinician. For example, the network shows that Alcohol
Abuse and Obesity are risk factors for Hepatic Steatosis, a fatty liver. Hepatic
Steatosis, itself, may produce Pain and is linked to Cirhosis. When using an en-
semble of Bayesian networks, we would have many such networks with different
numbers of arcs which may represent quite different relationships; it would be
difficult for clinician to understand such a model. By using Inner Ensembles, we
gain many of the benefits of the traditional ensemble method while keeping the
comprehensibility of the base algorithm.

Bayesian networks specify a set of conditional independence assumptions; this
is captured in the structure of the network. To completely specify the network, we
also need conditional probability tables [20]. Therefore, for Bayesian networks,
there are two distinct learning problems, we focus on the former. Specifically, we
apply our framework to build the structure of the network during the learning
phase of the algorithm. Bayesian network algorithms search for the best network
structure among all possible ones. The popular K2 algorithm, shown in Algo-
rithm 2, uses a scoring function to determine the better of two networks and a
given ordering of nodes to determine the sequence in which they are processed
[21]. For all the nodes in the ordered list (line 2), the algorithm begins with
no parents for each node (line 3), πi is the set of parents of the ith node. At
each step (line 4), one parent is added to the node, and the score, g(i, πi ∪ {z}),
of the network structure is calculated (line 5), Prec(xi) in algorithm 2 denote
the nodes that precede node xi in the ordered list. The parent that increases
the score the most is added to the node’s list of parents πi. Adding parents to
the node stops if the addition does not increase the score of the structure (lines
7-11). On completion, the algorithm produces a final structure.

We follow the general guidelines presented in algorithm 1 to apply Inner En-
sembles to the Bayesian network algorithm. First we locate a decision maker.
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Algorithm 2. K2 algorithm

1: Input: A set of n nodes, An ordering of the nodes, u maximum number of parents
for each node, A database D containing N instances.

2: for i=1 to n do
3: πi = φ, Pold = g(i, πi), OKTOProceed = true.
4: while OKTOProceed and |πi| < u do
5: z is the node in Pred(xi) - πi that maximizes g(i, πi ∪ {z})
6: Pnew = g(i, πi ∪ {z})
7: if Pnew > Pold then
8: Pold = Pnew, πi = πi ∪ {z}
9: else
10: OKTOProceed = false
11: end if
12: end while
13: write ( Node: xi , Parents of this node: , πi)
14: end for

Algorithm 3. LOO global score ”g” for K2 algorithm.

1: Acc = 0.
2: D = D1, ...DN . {Instances}
3: for i = 1 to N do
4: Estimate conditional probability for network using existing structure and D-Di.

5: Acc = Acc+ PredictAccuracy(Di)
6: end for
7: score is: Acc

N
.

According to algorithm 2, it decides if a node can be added as a parent. The
next step is to find a score function for this decision maker, g(i, πi ∪{z}). There
are two types: local and global [22]. We use the global score function g (line 3
algorithm 2) calculated as shown in algorithm 3. Here, using leave-one-out cross
validation (LOO), the algorithm extracts one instance for validation, the rest
of the data forming the training set (line 4). At each iteration, the network is
built using the training set and tested on the single instance. The final score of
the network is the average of the scores across all splits of the data (lines 5,7).
The nest step according to algorithm 1 is to indicating the input and the output
of the scoring function (LOO global score). The input is the training data and
the output is the score. Then, line 5 of algorithm 1, we change the input of the
measure by generating E sampling of the data for which E is the ensemble size.
For each of those E samplings, the output of the LOO global score is calculated
(line 6 algorithm 1) and finally the E outputs are combined by averaging (line 7).
Using this procedure, the global score is redefined as shown in algorithm 4, we
call this the gEnsemble score. Sampling of the data in algorithm 4 can be any kind
of sampling. It can be with or without replacement. It can also be a different
size with respect to the original dataset. Depending on the type of the sampling,
we have different ensemble methods. For example, in the case of sampling with
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Algorithm 4. Ensemble LOO global score ”gEnsemble” for K2 algorithm.

1: E {Ensemble Size}
2: D = D1, ...DN . {Instances}
3: FinalScore = 0.
4: for k = 1 to E do
5: DS = Sample(D,Size) {DS = DS1, ...DSSize}
6: FinalScore = FinalScore+ LOOScore(DS).
7: end for
8: score is: FinalScore

E

replacement and sample size of 100%, we have bagging. Once the best structure
has been selected, the algorithm proceeds in the conventional fashion calculating
the conditional probability tables necessary for the complete Bayesian network.

2.2 K-means Clustering

For unsupervised learning, we apply Inner Ensembles to K-means clustering,
a very popular clustering method. One advantage of such a method is that it
characterizes each cluster in terms of a single point, called a prototype. The pro-
totype is a representative of all samples inside that cluster and thus the meaning
of that cluster. The idea that a prototype is an important way of representing a
particular concept is central to certain theories in Cognitive Science [23]. For our
purposes, what is important about prototypes is that they help in the human
understanding of the structure of a particular problem or domain. In medical
diagnosis, a prototype might be a vector of numerical results from tests or mea-
surements. A clinician assessing an individual’s risk for a heart problems will
combine measurements of blood pressure, cholesterol and weight. A prototype,
identified in a clustering over many subjects, representing a high risk patient
would be clearly separated from one of low risk. Prototypes offer other advan-
tages such as use in compression and for efficient finding of the nearest neighbor
[24]. Using a traditional ensemble of K-means clustering, we loose the proto-
types which are the cluster centers for K-means. Using Inner Ensembles we keep
the cluster prototype, and thus comprehesibility, while gaining the performance
advantage of the ensemble method.

Algorithm 5 details the steps in K-means clustering [25]. It starts by initializ-
ing the cluster centers (line 1). Then, over several iterations, it assigns instances
to the closest cluster center and updates the centers (lines 4-7). Finally, the al-
gorithm stops when there are no more changes in the cluster centers (line 9).
Following the lines of general guidelines, algorithm 1, we need to find a deci-
sion maker inside K-means algorithm that assigns each instance to the closest
cluster center (line 1). Next we find a score function, the Euclidean distance in
this case (line 2). Next we find the input and output of the score function (line
3). The input of the Euclidean distance is the cluster centers and the data; the
output is the distance of the data to each cluster center. Thus we can change
the input of the measure that is the data by generating E different sampling
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Algorithm 5. K-means clustering algorithm.

1: Initialize K cluster centers μ1, μ2, ..., μK

2: Data: X = {X1, X2, ..., XN}
3: repeat
4: for All data instances Xi do
5: m = argminK{d(Xi, μK)} {Closest cluster center to each instance}
6: Assign instance Xi to cluster center μm

7: end for
8: Update cluster centers.
9: until (No assignment change or max iterations)
10: Return The clusters.

Algorithm 6. Inner K-means clustering algorithm

1: Initialize K cluster centers μ1, μ2, ..., μK

2: Data: X = {X1, X2, ..., XN}
3: repeat
4: for All data instances Xi do
5: m = {m1, ..., mN}.
6: for j= 1 to Ensemble size do
7: S = Sample(FeatureSpace)
8: I = argminE{d(XSj , μE)} {Closest cluster center to each instance}
9: mI = mI + 1
10: end for
11: L = argmaxe(me) {Voting}
12: Assign instance Xi to cluster center μL

13: end for
14: Update cluster centers.
15: until (No assignment change or max iterations)
16: Return The clusters.

of the data (line 5). Although we initially used sampling of the instances, our
experimental results were poor because it has little impact on the location of the
centers. Thus we lose diversity that is very important for ensemble methods. To
improve diversity, we use random subsets of features for each ensemble member.
The algorithm repeatedly selects a random subset of features. Next the outputs
of each generated input are calculated (line 6). In this case based on the feature
subset, the closest cluster center is found using Euclidean distance. Therefore
for each data instance, we have a set of candidate cluster centers according to
different feature subsets. In the combining step (line 7), the cluster center with
the most number of votes is selected for that particular data instance. This is
shown in algorithm 6.

3 Experimental Results

In this section, we run several experiments for our new versions of the K2
Bayesian network and K-means clustering algorithms. We believe that Inner
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Ensembles attain many of the benefits of traditional ensemble through similar
means, i.e.. reducing the variance in the bias-variance trade-off [26]. So, we ex-
pect that whenever the ensemble methods work, Inner Ensembles will. Thus,
the experiments test two different hypotheses: that our new versions are supe-
rior in performance to the base algorithms and that whenever the traditional
ensemble method improves the performance, Inner Ensembles improves it too.
For Bayesian networks, we compare the results with bagging because the Inner
Ensembles sampling method we used is similar to bagging. For Inner K-means,
we compare the results with several cluster ensemble methods in terms of dif-
ferent cluster validation measures. For both experiments, we use UCI repository
datasets [27]. As the statistical test, we used Friedmans test and for post-hoc we
use Nemenys test both with α = 0.05 in all of the experiments. We report the
results of a sensivity analysis study in the course of which different parameters
of the algorithm are considered. These parameters include:

– Ensemble Size: 10 different ensemble sizes 10-100.
– Sample Size:10 different sampling sizes 10%-100%
– Resampling Mode: With or without replacement.

3.1 Inner Ensemble K2

In addition to the experiments noted above, for Bayesian networks we run an-
other to confirm that in terms of classification time as well as in terms of com-
prehensibility our method is superior to bagging. We use 14 datasets from the
UCI repository with different number of classes, features and instances. In all
of the tables, BN is the original network, IEBN the Inner Ensemble Bayesian
Network and BGBN the bagging of Bayesian networks.

For each of the parameters, we used 10 fold cross validation 10 times. For
each run, the average error of the network is calculated. Table 1 shows the
comparison of the accuracy for different ranges of parameters. In this table IEBN
No Rep means sampling without replacement. Also S-Size and En-Size list the
range of parameters for the sample size and the ensemble size for which IEBN
performs better than BN. For better understanding, we include the percentage
of parameters that results in better performance and we list the average and
the best results for those parameters. For simplicity of presentation, we only
report the results obtained for sampling without replacement because in this
sampling regimen, IEBN works better than BN on 62% of the parameters while
for sampling with replacement it only works on 46% of the parameters.

We begin by comparing the average performances of IEBN and BGBN with
original BN. The null hypothesis for Friedman’s test is BN , IEBN and BGBN
perform similarly. The Friedman statistic is 26.14 for IEBN and BGBN while
the critical value for Friedman’s test is 6.00 for the 3 models. Thus we can reject
the null hypothesis, there is at least one classifier with significant difference in
performance. We use Nemenyi’s test to rank the classifiers according to their per-
formance. The critical value for Nemenyi’s test is equal to 2.34 for the 3 models
and the q-values for BN-IEBN and IEBN-BGBN are 2.83 and 2.27 respectively
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Table 1. The Accuracy of the Various Algorithms

IEBN No Rep IEBN No Rep BGBN

Dataset BN S-Size En Size Perc Avrg Best Avrg Best

Breast-w 97.1 [10-90] [10-100] 70% 97.2 97.31 97.18 97.18
Credit-a 85 [10-90] [10-100] 99% 85.62 86.06 86.24 86.48
Ecoli 80.77 [10-90] [10-100] 50% 81.03 81.7 85.35 85.92
Glass 70.84 [10-90] [10-50] 4% 71.1 71.31 74.21 75.14
Heart-c 80.76 [10-90] [10-100] 96% 81.63 82.74 82.56 82.94
Heart-S 82.19 [10-90] [10-100] 32% 82.48 82.96 82.71 83.19
Hepatitis 82.39 [10-60] [40-100] 10% 82.75 83.55 82.88 83.03
Iris 92.87 [10-90] [10-100] 81% 93.24 93.8 94.58 94.93
Labor 88.25 [10-90] [10-100] 99% 90.64 92.81 93.04 94.04
Liver 56.93 [10-90] [10-100] 90% 57.41 58.41 63.75 64.58
Lymph 81.96 [10-90] [10-100] 97% 83.19 85.14 84.66 85.41
Pima 74.66 [10-90] [10-100] 97% 75.35 76.05 75.77 75.98
Tic-tac 92.44 [50-90] [10-100] 18% 92.58 92.73 96.87 97.18
Vote 96.05 [30-90] [10-100] 26% 96.12 96.25 96.15 96.21

Average 83 62% 83.59 84.34 85.42 85.87

which shows that the performance of BN on all the datasets is significantly dif-
ferent from that of IEBN. On the other hand the performance of IEBN and
BGBN is not significantly different. We also use Friedman’s test to compare the
BN with the best results of IEBN and the best results of BGBN. Here the Fried-
man statistic is 22.29 and the critical value for Friedman’s test is 6.00 for the 3
models. Thus we can reject the null hypothesis. By performing Nemenyi’s test,
the q-value for BN-IEBN and IEBN-BGBN are 3.4 and 1.13 which confirm that
IEBN is significantly different from BN but not from BGBN. Generally we can
see that with sampling without replacement, on 62% of the entire parameters
IEBN works significantly better than BN on all of the datasets.

Generally, as expected, IEBN improves the performance over the original net-
work whenever Bagging does but the improvement is smaller. Therefore we are
not expecting improvements on Breast-w and Vote dataset because bagging does
not. For individual datasets on which bagging improves the performance , except
for Tic-tac-toe, the performance improves over that of the base algorithm. How-
ever the gain for Ecoli and Glass datasets are small. Future work on the way of
creating ensembles inside the Bayesian network, will determine how closely our
method can approach bagging in terms of performance. At present, our method
is just applied to learning the structure of the network. One possible avenue for
future work is to apply Inner Ensembles for the second part of Bayesian network
learning, estimating conditional probabilities.To compare the classification times
of Inner Ensembles and bagging, we ran the experiment on all of the datasets for
different ensemble sizes, and averaged over all of the datasets. Figure 2 shows
the average time for different ensemble size for BGBN versus IEBN. As we can
see from this figure, the classification time is a lot faster for Inner Ensembles
than bagging. An increase in the ensemble size in the case of Inner Ensembles
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Fig. 2. Classification time (mS) for BGBN vs IEBN

has little effect on classification time because the number of models remains the
same.

So in this section, we have shown how our method achieves some of the perfor-
mance improvement of bagging while maintaining the comprehensibility, classifi-
cation performance and fast classification time of the original Bayesian network.

3.2 Inner Ensemble K-means

To test our new version of K-means, we compare results on 15 UCI datasets, each
with the necessary numerical attributes used by such a clustering system. Among
possible different performance measures for clustering, we use Normalized Mu-
tual Information that determines the shared information between the clusterings
[28] and Purity that measures the coherence of a cluster [29]. Equation 1 shows
NMI for which I(X,Y ) is the mutual information between two random variables
X,Y ; H(X) is the entropy of X ; X is the result of the clustering; Y contains
the true labels. Equation 2 shows the cluster Purity. In this equation, n is the
total number of instances, m the number of clusters and Pj is the fraction of
the cluster to which the largest class of objects is assigned. For both measures,
the larger the value the better the results.

NMI(X,Y ) =
I(X,Y )

√
H(X)H(Y )

(1)

Purity =

m∑

j=1

nj

n
Pj (2)

For these experiments, we compare the performance of inner K-means with
two different types of cluster ensemble method. The first is a graph-based ap-
proach (G-Based) that includes three different methods CSPA, MCLA and
HGPA [28]. The second is based on pair-wise similarity. The methods of this
latter group first build a similarity matrix, called a co-association matrix and
then uses it for different forms of hierarchical clustering. This group is also called
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Hierarchical Agglomerative Clustering Consensus (HAC) [30]. There are three
different methods for HAC based on the hierarchical clustering: single, average
and complete linkage.

For simplicity, we do not report the results of all 6 ensemble methods. Instead,
for the graph based methods, we report the best performance of CSPA, MCLA
and HGPA. For the HAC methods, we report the best performance among the
different linkage types. For each of the parameters (ensemble size, sample size),
we run Inner Ensemble, cluster ensemble and original K-means 30 times with 30
different initial cluster centers and the average performance is calculated. For a
fair comparison, we run original K-means with the same cluster centers as used
for Inner Ensembles. As the Inner Ensembles uses different subsets of features,
we generate the members for cluster ensemble the similar way. If the number of
instances are larger than 500, we sample the data without replacement until 500
is reached.

In table 2, we report the results of a sensitivity analysis using a range of
parameters.We only report the results obtained with sampling with replacement,
using this resampling strategy, Inner Ensemble K-means (IEK-m) works better
than K-means on 55% of the parameters while for sampling without replacement
it just works on 53% of the parameters. From this table, we can see that IEK-m
generally outperforms K-means, the graph-based and HAC methods in terms of
the NMI measure. For the Heart-s, Pima and Sonar datasets, the NMI is close
to zero, the clusters that where extracted from these datasets are nothing like
the true classes. For Sonar and Vehicles and Yeast the cluster ensemble methods
do not improve the performance and, as we expected, IEK-m does not improve
it either. IEK-m improves the performance on the rest of the datasets except
for Ecoli for which one of the ensemble methods decreases the performance. In
comparison, HAC improves the performance on just 8 out of 15 datasets, does
not improve it on 7 .G-based methods improve the performance on 9 out of 15,
do not improve it on 3 and decrease it on 3 datasets.

To compare the performances all datasets, first we compare the average per-
formance of K-means, IEK-m, G-Based and HAC. The Friedman statistics for
the average case for K-means, IEK-m, G-Based and HAC is 9.66, larger than
the critical value 7.5 for 4 models. The q-value for K-means and IEK-m for NMI
is 2.75, larger than the critical value which is 2.57 for 4 models. This shows
that IEK-m is significantly different from K-means on all datasets in the average
case. Also for the NMI measure, the q-values for HAC and G-Based are 0.14
and 1.06 respectively which are both less than 2.57 showing that that for the
average case, IEK-m is not significantly different from G-Based and HAC. To
compare the best results, the Friedman statistics for the best case is 16.5 which
is larger than the critical value 7.5 for 4 models. The q-value for K-means and
IEK-m for NMI is 3.88 which is larger than the critical value which is 2.57 for 4
models. This shows that for the best case IEK-m is significantly different from
the K-means on the entire data. Also for the NMI measure in the best case, the
q-values for HAC and G-Based are 1.06 and 2.12 which both are less than 2.57
. In the best case , IEK-m is not significantly different from G-Based and HAC.
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Table 2. Comparison of K-means, Inner Ensemble K-means and Ensemble K-means
(G-Based, HAC) in terms of NMI

IEK-m Rep IEK-m Rep G-Based HAC

Dataset K-means S-Size En Size Perc Avrg Best Avrg Best Avrg Best

Ecoli 0.59 [-] [-] 0% 0.59 0.59 0.57 0.57 0.61 0.62
Glass 0.38 [40-90] [10-100] 49% 0.4 0.42 0.34 0.34 0.38 0.38
Heart-s 0.02 [20-90] [10-100] 88% 0.11 0.31 0.04 0.05 0.02 0.02
Iris 0.71 [50-90] [10-100] 48% 0.75 0.8 0.77 0.82 0.77 0.79
Letter 0.44 [30-90] [10-100] 63% 0.45 0.46 0.47 0.47 0.47 0.48
Optdig 0.72 [20-90] [10-100] 86% 0.74 0.75 0.75 0.76 0.75 0.77
Pendig 0.67 [40-90] [10-100] 54% 0.68 0.7 0.68 0.69 0.69 0.7
Pima 0.02 [30-90] [10-100] 68% 0.05 0.09 0.11 0.11 0.02 0.02
Segment 0.54 [20-90] [10-100] 67% 0.59 0.63 0.56 0.58 0.61 0.62
Sonar 0.01 [10-90] [10-100] 66% 0.01 0.02 0.01 0.01 0.02 0.02
Vehicle 0.19 [20-90] [10-100] 80% 0.19 0.2 0.19 0.19 0.19 0.2
Vowel 0.2 [20-80] [10-100] 34% 0.24 0.29 0.21 0.21 0.21 0.21
Wavef 0.36 [20-90] [10-100] 53% 0.37 0.38 0.36 0.37 0.36 0.37
Wine 0.43 [20-90] [10-100] 69% 0.55 0.72 0.45 0.51 0.43 0.43
Yeast 0.28 [90-90] [70-70] 1% 0.28 0.28 0.27 0.27 0.28 0.28

Average 0.37 55% 0.4 0.44 0.39 0.4 0.39 0.39

Table 3. Comparison of K-means, Inner Ensemble K-means and Ensemble K-means
(G-Based, HAC) in terms of purity

IEK-m Rep IEK-m Rep G-Based HAC

Dataset K-means S-Size En Size Perc Avrg Best Avrg Best Avrg Best

Ecoli 0.81 [90-90] [30-90] 6% 0.81 0.82 0.8 0.8 0.81 0.82
Glass 0.57 [30-90] [10-100] 49% 0.58 0.6 0.6 0.62 0.57 0.57
Heart-s 0.59 [20-90] [10-100] 88% 0.68 0.81 0.62 0.63 0.59 0.59
Iris 0.83 [50-90] [10-100] 56% 0.86 0.9 0.91 0.94 0.9 0.92
Letter 0.32 [20-90] [10-100] 76% 0.34 0.35 0.34 0.35 0.34 0.35
Optdig 0.74 [10-90] [10-100] 96% 0.77 0.79 0.81 0.82 0.78 0.8
Pendig 0.69 [40-90] [10-100] 62% 0.71 0.73 0.72 0.73 0.7 0.71
Pima 0.66 [30-80] [10-100] 48% 0.67 0.7 0.68 0.69 0.66 0.66
Segment 0.57 [20-90] [10-100] 79% 0.61 0.64 0.62 0.66 0.64 0.65
Sonar 0.55 [10-90] [10-100] 66% 0.56 0.58 0.55 0.56 0.55 0.56
Vehicle 0.45 [20-90] [10-100] 84% 0.46 0.47 0.47 0.47 0.47 0.47
Vowel 0.23 [20-80] [10-100] 46% 0.26 0.31 0.24 0.24 0.23 0.23
Wavef 0.56 [10-90] [10-100] 40% 0.56 0.59 0.55 0.55 0.56 0.56
Wine 0.7 [20-90] [10-100] 71% 0.81 0.92 0.75 0.78 0.7 0.7
Yeast 0.52 [50-90] [50-80] 8% 0.52 0.52 0.52 0.52 0.54 0.54

Average 0.59 58% 0.61 0.65 0.61 0.62 0.6 0.61
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Table 3 shows the results of the clustering in terms of the purity measure. We
report the results obtained for sampling with replacement because this sampling
regimen, IEK-m works better than BN on 58% of the parameters while for
sampling without replacement it only works on 53% of the parameters. IEK-m
generally outperforms both K-means and ensemble methods. For the average
case IEK-m improves the performance on most i.e. 12 out of 15 datasets and for
the best case 14 out of 15 datasets. Also in the average case , the HAC methods
improve the performance on 7 out of 15 datasets and on the best case 10 out of
15, but not on the rest. The average case for the G-based methods improves the
performance on 11 out of 15, decrease the performance of Waveform and Ecoli
and with no improvement on the rest and for the best case,G-Based improves
the performance on 12 out of 15 dataset and it is otherwise to the average case.

The Friedman statistics for the average case is 11.5 which is larger than the
critical value 7.5 for 4 models. On average, the q-value for K-means and IEK-
m for Purity is 2.89 which is larger than the critical value which is 2.57 for
4 models. This shows that IEK-m performs significantly better than K-means
on all datasets. For the Purity measure, in the average case, the q-values for
HAC and G-Based are 0.84 and 0.07 respectively which are both larger than
2.57. Thus IEK-m is not significantly different from G-Based and HAC. The
Friedman statistics for the best case is 17.00 larger than the critical value 7.5
for 4 models. In the best case, the q-value for K-means and IEK-m for Purity
is 3.81 which is larger than the critical value of 2.57. Thus IEK-m performs
significantly better than K-means on all datasets. Also for the best case, the
q-values for HAC and G-Based are 1.55 and 0.56 both larger than 2.57. Thus
IEK-m is not significantly different from G-Based and HAC.

To sum up, our experiments show that our framework is broadly applicable
on different types of algorithms. More specifically, we apply our framework on
two groups of supervised and un-supervised learning. Our experiments generally
show that: (1) As we expected, wherever ensemble methods work, our frame-
work improves the performance on both the supervised and the un-supervised
cases. (2) Our framework improves the performance on a large portion of the
parameters. (3) For both supervised and un-supervised learning, our framework
improves the performance significantly over the original method. But it does not
improve the performance over ensemble methods for supervised learning. How-
ever, for un-supervised learning, our results shows that Inner Ensembles works
comparably or are superior to the regular ensembles.

4 Limitations and Future Work

One limitation of the work is that the reported results are based on the parame-
ters for which Inner Ensembles improve the performance. A better way of doing
the experiments is to find the best parameters prior to evaluating performance.To
address this issue, we have run some initial experiments using cross-validation
to find the best parameters before running the algorithm on the test data. So
far we have only done this for K-means where we obtained very similar results
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to those presented earlier. To validate the stability, we run IEK-m on different
noisy data. We add random noise to the most 50% significant features of the
datasets from 20%, 40%, 60% and the primary results shows that the IEK-m is
more stable than original K-means and generally comparable to cluster ensem-
bles on 20% and 40% noise. On 60% some of the cluster ensemble methods are
more stable than IEK-m but still IEK-m is more stable than original K-means.

So far, we do the experiments to confirm the performance of the Inner En-
sembles. But as we mentioned in the introduction there are other advantages of
using Inner Ensembles such as stability, classification time and small memory
usage. We need further experiments to confirm the stability of the IEBN and a
discussion about the memory usage of the Inner Ensembles and speed of IEK-
m which we thing can be faster in online clustering. For future work, we want
to explore other classification and clustering algorithms. Nor are we restricted
solely to those situations, we can apply this idea to a variety of other algorithms,
such as the type of search used in learning or the pruning method for decision
trees or other groups of methods such as feature selection. One important fac-
tor that affects the performance of the ensemble method is diversity. For future
work the effect of diversity on the performance of Inner Ensembles needs to be
investigated too. The idea can be extended in other ways. First we can improve
the specific methods discussed in this paper by using different kind of samplings,
such as weighted ones. So far we just used voting, akin to bagging. However, we
intend to investigate different kinds of ensemble methods, such as boosting.

5 Conclusion

The main objective of this paper was to extend the possible ways that the
machine learning community makes use of ensemble methods. Our particular
approach is called Inner Ensembles. By using this new approach on supervised
and unsupervised learning algorithms, we showed that this idea is broadly ap-
plicable. For supervised learning, we applied our method to the learning of the
structure of Bayesian networks, a popular classification algorithm; for unsuper-
vised learning we used it for K-means clustering, a popular clustering method.
In the case of Bayesian network, Inner Ensembles work generally better than
original Bayesian network but worse than bagging. On the other hand, for K-
means, inner K-means performs better than original K-means and comparable
to two families of clustering ensemble. We introduced this idea as a framework
that has the potential of of being applicable in many different ways other than
those we have discussed in this paper.
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