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Abstract. Publishing datasets about individuals that contain both re-
lational and transaction (i.e., set-valued) attributes is essential to sup-
port many applications, ranging from healthcare to marketing. However,
preserving the privacy and utility of these datasets is challenging, as it
requires (i) guarding against attackers, whose knowledge spans both at-
tribute types, and (ii) minimizing the overall information loss. Existing
anonymization techniques are not applicable to such datasets, and the
problem cannot be tackled based on popular, multi-objective optimiza-
tion strategies. This work proposes the first approach to address this
problem. Based on this approach, we develop two frameworks to offer
privacy, with bounded information loss in one attribute type and mini-
mal information loss in the other. To realize each framework, we propose
privacy algorithms that effectively preserve data utility, as verified by
extensive experiments.

1 Introduction

Privacy-preserving data mining has emerged to address privacy concerns related
to the collection, analysis, and sharing of data and aims at preventing the disclo-
sure of individuals’ private and sensitive information from the published data.
Publishing datasets containing both relational and transaction attributes, RT-
datasets for short, is essential in many real-world applications. Several marketing
studies, for example, need to find product combinations that appeal to specific
types of customers. Consider the RT -dataset in Fig. 1a, where each record cor-
responds to a customer. Age, Origin and Gender are relational attributes, whereas
Purchased-products is a transaction attribute that contains a set of items, repre-
senting commercial transactions. Such studies may require finding all customers
below 30 years old who purchased products E and F. Another application is in
healthcare, where several medical studies require analyzing patient demographics
and diagnosis information together. In such RT -datasets, patients features (e.g.,
demographics) are modeled as relational attributes and diagnosis as a transac-
tion attribute. In all these applications, the privacy protection of data needs
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Relational attributes Transaction attribute
Id Name Age Origin Gender Purchased-products

0 John 19 France Male E F B G
1 Steve 22 Greece Male E F D H
2 Mary 28 Germany Female B C E G
3 Zoe 39 Spain Female F D H
4 Ann 70 Algeria Female E G
5 Jim 55 Nigeria Male A F H

(a)

Relational attributes Transaction attribute
Id Age Origin Gender Purchased-products

0 [19:22] Europe Male E F (A,B,C,D) G
1 [19:22] Europe Male E F (A,B,C,D) H
2 [28:39] Europe Female E (A B,C D) G
3 [28:39] Europe Female F (A,B,C,D) H
4 [55:70] Africa All E G
5 [55:70] Africa All F (A,B,C,D) H

(b)

Fig. 1. (a) An RT -dataset with patient demographics and IDs of purchased products,
and (b) a 2-anonymous dataset with respect to relational attributes and 22-anonymous
with respect to the transaction attribute. Identifiers Id and Name are not published.

to performed without adding fake or removing truthful information [5,16]. This
precludes the application of ε-differential privacy [3], which only allows releasing
noisy answers to user queries or noisy summary statistics, as well as suppression
[19], which deletes values prior to data release.

A plethora of methods can be used to preserve the privacy of datasets con-
taining only relational or only transaction attributes [9,12,15,18]. However, there
are currently no methods for anonymizing RT -datasets, and simply anonymizing
each attribute type separately, using existing methods (e.g., [9,12,15,18]), is not
enough. This is because information concerning both relational and transaction
attributes may lead to identity disclosure (i.e., the association of an individ-
ual to their record) [15]. Consider, for example, the dataset in Fig. 1a which
is anonymized by applying the methods of [18] and [8] to the relational and
transaction attributes, as shown in Fig. 1b. An attacker, who knows that Jim is
a 55-year-old Male from Nigeria who purchased F, can associate Jim with record
5 in Fig. 1b. Thwarting identity disclosure is essential to comply with legisla-
tion, e.g., HIPAA, and to help future data collection. At the same time, many
applications require preventing attribute disclosure (i.e., the association of an
individual with sensitive information). In medical data publishing, for example,
this ensures that patients are not associated with sensitive diagnoses [17].

Furthermore, anonymized RT -datasets need to have minimal information loss
in relational and in transaction attributes. However, these two requirements are
conflicting, and the problem is difficult to address using multi-objective opti-
mization strategies [4]. In fact, these strategies are either inapplicable or incur
excessive information loss, as we show in Section 3.

Contributions. Our work makes the following specific contributions:

– We introduce the problem of anonymizing RT -datasets and propose the first
approach to tackle it. Our privacy model prevents an attacker, who knows
the set of an individual’s values in the relational attributes and up tom items
in the transaction attribute, from linking the individual to their record.

– We develop an approach for producing (k, km)-anonymous RT -datasets with
bounded information loss in one attribute type and minimal information loss
in the other. Following this approach, we propose two frameworks which em-
ploy generalization [15] and are based on a three-phase process: (i) creating
k-anonymous clusters with respect to the relational attributes, (ii) merging
these clusters in a way that helps anonymizing RT -datasets with low infor-
mation loss, and (iii) enforcing (k, km)-anonymity to each merged cluster.
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Relational attributes Transaction attribute
Id Age Origin Gender Purchased-products

0 [19:22] Europe Male D E (B,D) G
1 [19:22] Europe Male E E (B,D) H

2 [28:39] Europe Female (B,C,F) (D,E) G
3 [28:39] Europe Female (B,C,F) (D,E) H

4 [55:70) Africa All (A,E,F) G
5 [55:70) Africa All (A,E,F) H

(a)

Relational attributes Transaction attribute
Id Age Origin Gender Purchased-products

0 [19:70] All All E F (A,B,C,D) G
1 [19:70] All All E F (A,B,C,D) H
2 [19:70] All All E (A,B,C,D) G
3 [19:70] All All F (A,B,C,D) H
4 [19:70] All All E G
5 [19:70] All All F (A,B,C,D) H

(b)

Relational attributes Transaction attribute
Id Age Origin Gender Purchased-products

0 [19:39] Europe All E F (B,C,D) G
1 [19:39] Europe All E F (B,C,D) H
2 [19:39] Europe All E (B,C,D) G
3 [19:39] Europe All F (B,C,D) H

4 [55:70) Africa All (A,E,F) G
5 [55:70) Africa All (A,E,F) H

(c)

Relational attributes Transaction attribute
Id Age Origin Gender Purchased-products

0 [19:70] All All E F (A,B,D) G
1 [19:70] All All E F (A,B,D) H
4 [19:70] All All E G
5 [19:70] All All F (A,B,D) H

2 [28:39] Europe Female (B,C,F) (D,E) G
3 [28:39] Europe Female (B,C,F) (D,E) H

(d)

Fig. 2. The (2, 22)-anonymous datasets from applying (a) Rfirst, and (b) Tfirst to
the dataset of Fig. 1a, and (c) RmergeR, and (d) RmergeT , to the clusters of Fig. 2a

– We propose a family of algorithms to implement the second phase in each
framework. These algorithms operate by building clusters, which can be
made (k, km)-anonymous with minimal information loss, and preserve dif-
ferent aspects of data utility.

– We investigate the effectiveness of our approach by conducting experiments
on two real-world RT -datasets. Our results verify that the proposed ap-
proach is effective at preserving data utility.

Paper organization. Section 2 defines concepts used in this work. Section 3
clarifies why popular multi-objective optimization strategies are unsuited for en-
forcing (k, km)-anonymity and formulates the target problems. Sections 4 and 5
present our approach and an instance of it. Sections 6 and 7 present experiments
and discuss related work, and Section 8 concludes the paper.

2 RT -Datasets and Their Anonymity

RT -datasets. An RT-dataset D consists of records containing relational at-
tributes R1, . . . , Rv, which are single-valued, and a transaction attribute T ,
which is set-valued. For convenience, we consider that: (i) identifiers have been
removed from D, and (ii) a single transaction attribute T is contained in D1.

(k, km)-anonymity. We propose (k, km)-anonymity to guard against identity
disclosure. To prevent both identity and attribute disclosure, (k, km)-anonymity
can be extended, as we explain in Section 5.

Before defining (k, km)-anonymity, we associate each record r in an RT -
dataset D with a group of records G(r), as shown below.

1 Multiple transaction attributes T1, . . . , Tu can be transformed to a single transaction
attribute T , whose domain contains every item in the domain of T1, . . . , Tu, preceded
by the domain name, i.e., dom(T ) = {d.t | d = Ti and t ∈ dom(Ti), i ∈ [1, u]}.
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Definition 1. For a record r ∈ D, its group G(r) is a set of records that con-
tains r and each record q ∈ D, such that q[R1, . . . , Rv] = r[R1, . . . , Rv] and q[T ]∩
I = r[T ] ∩ I, where I is any set of m or fewer items of r[T ]2.

Group G(r) contains r and all records that are indistinguishable from r to an
attacker, who knows the values of r in relational attributes and up to m items
in the transaction attribute. The size of G(r), denoted with |G(r)|, represents
the risk of associating an individual with a record r. Thus, to provide privacy,
we may lower-bound |G(r)|. This idea is captured by (k, km)-anonymity.

Definition 2. A group of records G(r) is (k, km)-anonymous, if and only if
|G(r)| ≥ k, for each record r in G(r). An RT-dataset D is (k, km)-anonymous,
if and only if the group G(r) of each record r ∈ D is (k, km)-anonymous.

For example, in Fig. 2a groups {0,1} (=G(0)=G(1)), {2,3} (=G(2)=G(3)) and
{4,5} (=G(4)=G(5)) are (2, 22)-anonymous, rendering the whole dataset (2, 22)-
anonymous. Note that in each group, all records have the same values in the
relational attributes, as required by Definition 1, but do not necessarily have the
same items in the transaction attribute Purchased-products (see Fig. 2b).

The notion of (k, km)-anonymity for RT -datasets extends and combines rela-
tional k-anonymity [15] and transactional km-anonymity [17].

Proposition 1. Let D[R1, . . . , Rv] and D[T ] be the relational and transaction
part of an RT-dataset D, respectively. If D is (k, km)-anonymous, then D[R1, . . . ,
Rv] is k-anonymous and D[T ] is km-anonymous.

Proposition 1 shows that (k, km)-anonymity provides the same protection
as k-anonymity [15], for relational attributes, and as km-anonymity [17], for
transaction attributes. Unfortunately, the inverse does not hold. That is, an
RT -dataset may be k and km but not (k, km)-anonymous. For instance, let
D be the dataset of Fig. 1b. Note that D[Age,Origin,Gender] is 2-anonymous and
D[Purchased-products] is 22-anonymous, but D is not (2, 22)-anonymous.

Generalization. We employ the generalization functions defined below.

Definition 3. A relational generalization function R maps a value v in a re-
lational attribute R to a generalized value ṽ, which is a range of values, if R is
numerical, or a collection of values, if R is categorical.

Definition 4. A transaction generalization function T maps an item u in the
transaction attribute T to a generalized item ũ. The generalized item ũ is a
non-empty subset of items in T that contains u.

The way relational values and transactional items are generalized is fundamen-
tally different, as they have different semantics [19]. Specifically, a generalized
value bears atomic semantics and is interpreted as a single value in a range or
a collection of values, whereas a generalized item bears set semantics and is in-
terpreted as any non-empty subset of the items mapped to it [12]. For instance,

2 Expression r[A] is a shortcut for the projection πA(r).
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the generalized value [19:22] in Age, in the record 0 in Fig. 2a, means that the ac-
tual Age is in [19, 22]. Contrary, the generalized item (B, D) in Purchased-products

means that B, or D, or both products were bought. Given a record r, the func-
tion R is applied to a single value v ∈ R, and all records in the k-anonymous
group G(r) must have the same generalized value in R. On the other hand, the
function T is applied to one of the potentially many items in T , and the records
in the km-anonymous G(r) may not have the same generalized items.

Data utility measures. In this work, we consider two general data utility mea-
sures; Rum, for relational attributes, and Tum, for the transaction attribute.
These measures satisfy Properties 1, 2 and 3.

Property 1. Lower values in Rum and Tum imply better data utility.

Property 2. Rum is monotonic to subset relationships. More formally, given
two groups G and G′ having at least k records, and a relational generalization
function R, it holds that Rum(R(G) ∪R(G′)) ≤ Rum(R(G ∪G′)).

Property 2 suggests that data utility is preserved better, when we generalize
the relational values of small groups, and is consistent with prior work on re-
lational data anonymization [2,6]. Intuitively, this is because the group G ∪ G′

contains more distinct values in a relational attribute R than G or G′, and thus
more generalization is needed to make its values indistinguishable.

A broad class of measures, such as NCP, the measures expressed as Minkowski
norms [6], Discernability [1], and the Normalized average equivalence class size
metric [9], satisfy Property 2 [6], and can be used as Rum.

Property 3. Tum is anti-monotonic to subset relationships. More formally, given
two groups G and G′ having at least k records, and a transaction generalization
function T that satisfies Definition 4 and (i) maps each item in the group it is
applied to a generalized item that is not necessarily unique, and (ii) constructs
the mapping with the minimum Tum, it holds that Tum(T (G) ∪ T (G′)) ≥
Tum(T (G ∪G′)).

Property 3 suggests that generalizing large groups can preserve transaction
data utility better, and is consistent with earlier works [12,17]. Intuitively, this
is because, all mappings between items and generalized items constructed by
T when applied to G and G′ separately (Case I) can also be constructed when
T is applied to G ∪ G′ (Case II), but there can be mappings that can only be
considered in Case II. Thus, the mapping with the minimum Tum in Case I
cannot have lower Tum than the corresponding mapping in Case II.

3 Challenges of Enforcing (k, km)-Anonymity

Lack of optimal solution. Constructing a (k, km)-anonymous RT -dataset
D with minimum information loss is far from trivial. Lemma 1 follows from
Theorem 1 and shows that there is no (k, km)-anonymous version of D with
minimum (i.e., optimal) Rum and Tum, for any D of realistic size.
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Theorem 1. Let DR and DT be the optimal (k, km)-anonymous version of an
RT-dataset D with respect to Rum and Tum, respectively. Then, no group in
DR contains more than 2k − 1 records, and DT is comprised of a single group.

Proof. (Sketch) The proof that no group in DR contains more than 2k−1 records
is based on Property 2, and has been given in [6]. The proof that DT is comprised
of a single group is similar and, it is based on Property 3.

Lemma 1. There is no optimal (k, km)-anonymous version D of an RT-dataset
D with respect to both Rum and Tum, unless |D| ∈ [k, 2k − 1].

Inadequacy of popular optimization strategies. Constructing useful
(k, km)-anonymous RT -datasets requires minimizing information loss with re-
spect to both Rum and Tum. Such multi-objective optimization problems are
typically solved using the lexicographical, the conventional weighted-formula, or
the Pareto optimal approach [4]. We will highlight why these approaches are not
adequate for our problem.

Lexicographical. In this approach, the optimization objectives are ranked and
optimized in order of priority. In our case, we can prioritize the lowering of
information loss in (i) the relational attributes (i.e., minimal Rum), or (ii) the
transaction attribute (i.e., minimal Tum).

Given an RT -datasetD and anonymization parameters k andm, an algorithm
that implements strategy (i) is Rfirst. This algorithm partitions D into a set of
k-anonymous groups C, with respect to the relational attributes (e.g., using [18]),
and applies T to generalize items in each group of records in C, separately (e.g.,
using [17]). Symmetrically, to implement strategy (ii), we may use an algorithm
Tfirst, which first partitions D into a set of km-anonymous groups (e.g., using
the LRA algorithm [17]), and then applies a relational generalization function
(see Definition 3) to each relational attribute, in each group.

Both Rfirst and Tfirst enforce (k, km)-anonymity, but produce vastly dif-
ferent results. For instance, Figs. 2a and 2b show (2, 22)-anonymous versions of
the dataset in Fig. 1a, produced by Rfirst and Tfirst, repectively. Observe
that Rfirst did not generalize the relational attributes as heavily as Tfirst

but applied more generalization to the transaction attribute. This is because,
Rfirst constructs small groups, and does not control the grouping of items.
Contrary, the groups created by Tfirst contain records, whose items are not
heavily generalized, unlike their values in the relational attributes. In either
case, the purpose of producing anonymized RT -datasets that allow meaningful
analysis of relational and transaction attributes together, is defeated.

Conventional weighted-formula. In this approach, all objectives are combined
into a single one, using a weighted formula. The combined objective is then op-
timized by a single-objective optimization algorithm. For example, a clustering-
based algorithm [13] would aim to minimize the weighted sum of Rum and
Tum. However, this approach works only for commensurable objectives [4]. This
is not the case for Rum and Tum, which are fundamentally different and have
different properties (see Section 2). Therefore, this approach is not suitable.
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Algorithm: Rum-bound

// Initial cluster formation
1 {C1, . . . , Cn} := ClusterFormation(D, k)
2 D := {C1, . . . , Cn}
3 if Rum(D) > δ then return false

// Cluster merging
4 D := Rmerge(D, T , δ)

// (k, km)-anonymization
5 for each cluster C ∈ D do
6 D := (D \ C) ∪ T (C)

7 return D

Algorithm: Tum-bound

// Initial cluster formation
1 {C1, . . . , Cn} := ClusterFormation(D, k)
2 D := {C1, · · · , Cn}
3 if Tum(T (D)) ≤ δ then return D

// Cluster merging
4 D := Tmerge(D,T , δ)

// (k, km)-anonymization
5 for each cluster C ∈ D do
6 D := (D \ C) ∪ T (C)

7 if Tum(D) > δ then return false

8 return D

Pareto optimal. This approach finds a set of solutions that are non-dominated
[4], from which the most appropriate solution is selected by the data publisher,
according to their preferences. However, the very large number of non-dominated
solutions that can be constructed by flexible generalization functions, such as
those in Definitions 3 and 4, render this approach impractical.

Problem formulation. To construct a (k, km)-anonymous version of an RT -
dataset, we either upper-bound the information loss in relational attributes and
seek to minimize the information loss in the transaction attribute (Problem 1),
or upper-bound the information loss in the transaction attribute and seek to
minimize the information loss in relational attributes (Problem 2).

Problem 1. Given an RT -dataset D, data utility measures Rum and Tum, pa-
rameters k and m, and a threshold δ, construct a (k, km)-anonymous version D
of D, such that Rum(D) ≤ δ and Tum(D) is minimized.

Problem 2. Given an RT -dataset D, data utility measures Rum and Tum, pa-
rameters k and m, and a threshold δ, construct a (k, km)-anonymous version D
of D, such that Tum(D) ≤ δ and Rum(D) is minimized.

Threshold δ must be specified by data publishers, as in [6]. Thus, constructing
D might be infeasible for an arbitrary δ. Solving Problem 1 or Problem 2 ensures
that D preserves privacy and utility, but it is NP-hard (proof follows from [12]).

4 Anonymization Approach

We propose an approach that overcomes the deficiencies of the aforementioned
optimization approaches and works in three phases:

Initial cluster formation: k-anonymous clusters with respect to relational at-
tributes, which incur low information loss, are formed.

Cluster merging: Clusters are merged until the conditions set by Problems 1 or
2 are met.

(k, km)-anonymization: Each cluster becomes (k, km)-anonymous, by generaliz-
ing the its items with low Tum.
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Based on our approach, we developed two anonymization frameworks, Rum-

bound and Tum-bound, which address Problems 1 and 2, respectively. Rum-

bound seeks to produce a dataset with minimal Tum and acceptable Rum,
and implements the phases of our approach, as follows.

Initial cluster formation (Steps 1–3): Algorithm Rum-bound clusters D, using
a function ClusterFormation, which can be implemented by any generaliza-
tion-based k-anonymity algorithm [9,18,2]. This function produces a set of k-
anonymous clusters C1, . . . , Cn, from which a dataset D containing C1, . . . , Cn,
is created (Step 2). The dataset D must have a lower Rum than δ, since sub-
sequent steps of the algorithm cannot decrease Rum (see Property 2). If the
dataset D does not satisfy this condition, it cannot be a solution to Problem 1,
and false is returned (Step 3).

Cluster merging (Step 4): This phase is the crux of our framework. It is performed
by a function Rmerge, which merges the clusters of D to produce a version
that can be (k, km)-anonymized with minimal Tum and without violating δ. To
implementRmerge we propose three algorithms, namely RmergeR,RmergeT

and RmergeRT , which aim at minimizing Tum using different heuristics.

(k, km)-anonymization (Steps 5–7): In this phase, D is made (k, km)-anonymous,
by applying a transaction generalization function T to each of its clusters.

Tum-bound, on the other hand, focuses on Problem 2 and aims at creating
a dataset with minimal Rum and acceptable Tum. This framework has the
following major differences from Rum-bound.

• At Step 3, after the formation of D, Tum-bound checks if D has lower Tum
than the threshold δ. In such case, D is a solution to Problem 2.

• At Step 4, function Tmerge merges clusters until the Tum threshold is
reached, or no more merging is possible. To implement Tmerge we propose
three algorithms: TmergeR, TmergeR and TmergeRT , which aim at min-
imizing Rum using different heuristics.

• At Step 7, Tum-bound checks if Tum(D) > δ; in this case, we cannot satisfy
Problem 2 conditions and, thus, return false.

Cluster-merging algorithms. We now present three algorithms that imple-
ment function Rmerge, which is responsible for the merging phase of Rum-

bound (Step 4). Our algorithms are based on different merging heuristics. Specif-
ically, RmergeR merges clusters with similar relational values, RmergeT with
similar transaction items and RmergeRT takes a middle line between these
two algorithms. In all cases, relational generalization is performed by a set of
functions G = {L1, . . . ,Lv}, one for each relational attribute (Definition 3) and
transaction generalization is performed by function T (Definition 4).

RmergeR selects the cluster C with the minimum Rum(C) as a seed (Step
2). Cluster C contains relational values that are not highly generalized and is
expected to be merged with a low relational utility loss. The algorithm locates the
cluster C′ with the most similar relational values to C (Step 3) and constructs a
temporary dataset Dtmp that reflects the merging of C and C′ (Step 4). If Dtmp

does not violate the Rum threshold, it is assigned to D (Step 5).
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Algorithm: RmergeR

1 while D changes do
2 Select, as a seed, the cluster C ∈ D

with minimum Rum(C)
3 Find the cluster C′ ∈ D that

minimizes Rum(G(C ∪ C′)) .
4 Dtmp := ((D \ C) \ C′) ∪ G(C ∪ C′)
5 if Rum(Dtmp) ≤ δ then

D := Dtmp

6 return D

Algorithm: RmergeT

1 while D changes do
2 Select, as a seed, the cluster C ∈ D with

minimum Rum(C)
// Find the appropriate cluster C′ to be

merged with C
3 Let {C1, . . . , Ct} be the set of clusters in

D \ C ordered by increasing
Tum(T (C ∪ Ci)), i ∈ [1, t)

4 for i := 1 to t do // Test if C′ = Ci

5 Dtmp := ((D \ C) \ Ci) ∪ G(C ∪ Ci)

6 if Rum(Dtmp) ≤ δ then // C′ is Ci

7 D := Dtmp

8 exit the for loop

9 return D

Algorithm: RmergeRT

1 while D changes do
2 Select, as a seed, the cluster C ∈ D with minimum Rum(C)

3 Let {C1, . . . , Ct} (resp. {Ĉ1, . . . , Ĉt}) be the set of clusters in D \ C ordered by

increasing Rum(G(C ∪ Ci)) (resp. Tum(T (C ∪ Ĉi))), i ∈ [1, t)
// Find the appropriate cluster C′ to be merged with C

4 for i := 1 to t do
5 Find cluster C′, that has the i-th minimum sum of indices u + v s.t.

Cu ∈ {C1, . . . , Ct} and Cv ∈ {Ĉ1, . . . , Ĉt}
6 Dtmp := ((D \ C) \ Ci) ∪ G(C ∪ Ci)
7 if Rum(Dtmp) ≤ δ then
8 D := Dtmp

9 exit the for loop

10 return D

RmergeT starts by selecting the same seed C as RmergeR (Step 2) and
seeks a cluster C′ that contains similar transaction items to C and, when merged
with C, results in a dataset with Rum no higher than δ. To this end, RmergeT

mergesC with every other cluster Ci inD\C and orders the clusters by increasing
Tum(T (C ∪ Ci)) (Step 3). This allows efficiently finding the best merging for
minimizing Tum that does not violate Rum(D) ≤ δ. The algorithm considers
the clusters with increasing Tum(T (C ∪Ci)) scores. The first cluster that gives
a dataset with acceptable Rum is used for merging (Steps 4–5).

RmergeRT combines the benefits of RmergeR and RmergeT . It selects the
same seed cluster C as RmergeT , and constructs two orderings, which sort the
generalized merged clusters in ascending order of Rum and Tum, respectively
(Step 3). Then, a cluster C′ that is as close as possible to C, based on both
orderings (i.e., it has the i-th minimum sum (u + v), where u and v are the
indices of C′ in the {C1, . . . , Ct} and orderings {Ĉ1, . . . , Ĉt} repsectively), is
found (Step 5). The next steps of RmergeRT are the same as in RmergeT .

We now discussTmergeR,TmergeR, andTmergeRT , used inTum-bound.
These algorithms perform cluster merging, until D satisfies the Tum threshold,
or all possible mergings have been considered. The pseudocode of RmergeR is
the same as that of TmergeR, except that Step 5 in RmergeR is replaced by
the following steps. Note that D is returned if it satisfies the Tum threshold,
because Rum cannot be improved by further cluster merging (Property 2).
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The pseudocode of TmergeR and TmergeRT can be derived by replacing
the same steps with Steps 5 and 7 in TmergeR and TmergeRT , respectively.

5 if Tum(Dtmp) ≤ δ then
6� D := Dtmp

7� return D

The runtime cost of anonymization is O(F + |C|2·(KR+KT )), where F is the
cost for initial cluster formation, |C| the number of clusters in D, and KR and
KT the cost of generalizing the relational and transaction part of a cluster.

All

Male Female

All

EuropeAfrica

GenderOrigin

Algeria Nigeria Greece France Germany Spain

Fig. 3. Hierarchies for the dataset of Fig. 1a

5 Instantiating and Extending the Frameworks

Our frameworks can be parameterized by generalization functions, data utility
measures, and initial cluster formation algorithms. This section presents such
instantiations and strategies to improve their efficiency, as well as extensions of
our frameworks to prevent both identity and attribute disclosure.

Generalization functions. We employ the local recoding [18] and set-based
generalization [8,12]. As an example, the dataset in Fig. 1b has been created by
applying these functions to the dataset in Fig. 1a, using the hierarchies in Fig. 3.

Data utility measures. To measure data utility in relational and transac-
tion attributes, we used Normalized Certainty Penalty (NCP ) [18] and Utility
Loss (UL) [12], respectively. The NCP for a generalized value ṽ, a record r,

and an RT -dataset D, is defined as: NCPR(ṽ) =
{

0, |ṽ| = 1
|ṽ|/|R|, otherwise ,NCP(r) =

∑
i∈[1,v]

wi·NCPRi(r[Ri]) andNCP(D) =
∑

r∈D NCP(r)

|D| resp., where |R| denotes the

number of leaves in the hierarchy for a categorical attribute R (or domain size for
a numerical attribute R), |ṽ| denotes the number of leaves of the subtree rooted
at ṽ in the hierarchy for a categorical R (or the length of the range for a numer-
ical R), and wi ∈ [0, 1] is a weight that measures the importance of an attribute.
The UL for a generalized item ũ, a record r, and an RT -dataset D, is defined as:

UL(ũ) = (2|ũ| − 1) ·w(ũ), UL(r) =
∑

∀ũ∈r UL(ũ)

2σ(r)−1
and UL(D) =

∑
∀r∈D UL(r)

|D| resp.,

where |ũ| is the number of items mapped to ũ, w(ũ) ∈ [0, 1] a weight reflecting
the importance of ũ [12], and σ(r) the sum of sizes of all generalized items in r.

Initial cluster formation with Cluster. The initial cluster formation
phase should be implemented using algorithms that create many small clusters,
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with low Rum, because this increases the chance of constructing a (k, km)-
anonymous dataset with good data utility. Thus, we employ Cluster, an algo-
rithm that is instantiated with NCP and local recoding, and it is inspired by

the algorithm in [2]. The time complexity of Cluster is O( |D|2
k · log(|D|)).

Algorithm: Cluster

1 C := ∅
// Create clusters of size k

2 while |D| ≥ k do
3 Select, as a seed, a random record s from D
4 Add s and each record r ∈ D having one of the lowest k−1 values in NCP(G({s, r})) to

cluster C
5 Add cluster C to C and remove its records from D

// Accommodate the remaining |D| mod k records
6 for each record r ∈ D do
7 Add r to the cluster C ∈ C that minimizes NCP(G(C ∪ r))

8 Apply G to the relational values of each cluster in C
// Extend clusters

9 for each cluster C ∈ C do
10 Let S be the set of clusters in C with the same values in relational attributes as C.
11 Extend C with the records of S and remove each cluster in S from C.
12 return C

Efficiency optimization strategies. To improve the efficiency of cluster-
merging algorithms, we compute Rum(Dtmp) incrementally, thereby avoiding
to access all records in Dtmp, after a cluster merging. This can be performed for
all measures in Section 2, but we illustrate it for NCP . We use a list λ of tuples
<|C|,NCP (rc))>, for each cluster C in Dtmp and any record rc in C, which is

initialized based on D. Observe that NCP(Dtmp) =

∑
∀C∈Dtmp

(|C|·NCP(rc))

|D| , and

it can be updated, after C and C′ are merged, by adding: (|C|+|C′|)·NCP(rc∪c′ )
|D| −

|C|·NCP(rc)−|C′|·NCP(rc′ )
|D| . This requires accessing only the records in C ∪ C′.

The efficiency of RmergeT , RmergeRT , TmergeR, and TmergeRT can
be further improved by avoiding computing Tum(T (C ∪C1)), . . . ,Tum(T (C ∪
Ct)). For this purpose, we merge clusters using Bit-vector Transaction Distance

(BTD). The BTD for records r1, r2 is defined as BTD(r1, r2) = ones(b1�b2)+1
ones(b1∧b2)+1 ·

ones(b1 ∨ b2), where b1 and b2 are the bit-vector based representations of r1[T ]
and r2[T ], �, ∧ and ∨ are the Boolean operators, for XOR, AND, and OR, and
the function ones counts the number of 1 bits in a bit-vector. The BTD of a
cluster C is defined as BTD(C) = max{BTD(r1, r2)| for all r1, r2 ∈ C}. BTD
helps enforcing (k, km)-anonymity with minimal Tum, as it favors the grouping
of records with a small number of items, many of which are common.

Preventing both identity and attribute disclosure. To prevent both
types of disclosure, we propose the concept of (k, �m)-diversity, defined below.

Let G(r) be a group of records and G(r′) be a group with the same records
as G(r) projected over {R1, . . . , Rv, T

′}, where T ′ contains only the nonsensitive
items in T . G(r) is (k, �m)-diverse, if and only if G(r′) is (k, km)-anonymous,
and an attacker, who knows up to m nonsensitive items about an individual,
cannot associate any record in G(r) to any combination of sensitive items, with
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Table 1. Description of the datasets

Dataset |D| Rel. att. |dom(T )| Max, Avg # items/record

Informs 36553 5 619 17, 4.27

YouTube 131780 6 936 37, 6.51

a probability greater than 1
� . An RT -dataset D is (k, �m)-diverse, if and only if

the group G(r) of each record r ∈ D is (k, �m)-diverse.
(k, �m)-diversity forestalls identity disclosure, and, additionally, the inference

of any combination of sensitive items, based on �m-diversity [17]. Extending
our anonymization frameworks to enforce (k, �m)-diversity requires: (i) applying
Tum to nonsensitive items, and (ii) replacing the transaction generalization
function T , which enforces km-anonymity to each cluster, with one that applies
�m-diversity. The �m-diversity version of AA [17] was used as such a function.

6 Experimental Evaluation

In this section, we evaluate our algorithms in terms of data utility and efficiency,
and demonstrate the benefit of choices made in their design.

Experimental setup. We implemented all algorithms in C++ and applied
them to Informs (https://sites.google.com/site/informsdataminingcontest)
and YouTube (http://netsg.cs.sfu.ca/youtubedata) datasets, whose charac-
teristics are shown in Table 11. The default parameters were k=25, m=2, and
δ=0.65, and hierarchies were created as in [17]. Our algorithms are referred to
in abbreviated form (e.g., RmR for RmergeR) and were not compared against
prior works, since they cannot (k, km)-anonymize RT -datasets. The algorithms
that enforce (k, �m)-diversity are named after those based on (k, km)-anonymity.
All experiments ran on an Intel i5 at 2.7 GHz with 8 GB of RAM.

Data utility. We evaluated data utility on Informs and YouTube using
k=25 and k=100, respectively, and varied δ in [X, 1), where X is the NCP
of the dataset produced by Cluster, for Rum-bound, or the UL, for Tum-

bound. Data utility is captured using ARE [9,12,16], which is invariant of the
way our algorithms work and reflects the average number of records that are re-
trieved incorrectly, as part of query answers. We used workloads of 100 queries,
involving relational, transaction, or both attribute types, which retrieve random
values and/or sets of 2 items by default [9,12]. Low ARE scores imply that ano-
nymized data can be used to accurately estimate the number of co-occurrences
of relational values and items. This statistic is an important building block of
several data mining models.

Figs. 4a to 4g demonstrate the conflicting objectives of minimizing information
loss in relational and transaction attributes, and that Rum-bound can produce
useful data. By comparing Fig. 4a with 4c, and Fig. 4d with 4g, it can be seen

1
Informs contains the relational attributes {month of birth, year of birth, race, years
of education, income}, and the transaction attribute diagnosis codes. YouTube con-
tains the relational attributes {age, category, length, rate, #ratings, #comments},
and the transaction attribute related videos.

https://sites.google.com/site/informsdataminingcontest
http://netsg.cs.sfu.ca/youtubedata
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Fig. 4. ARE for queries involving (x, y) relational values and items. Figs. (a)-(c) are for
Informs; (d)-(g) for YouTube (Rum-bound). Fig. (h) is for Informs (Tum-bound).
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Fig. 5. ARE for queries involving (x, y) relational values and items. Figs. (a)-(c) are
for Informs (Rum-bound); Fig. (d) is for Informs (Tum-bound).

that a small δ forces all algorithms to incur low information loss in the relational
attributes, whereas a large δ favors the transaction attribute. Also, NCP is at
most δ, in all tested cases, and data remain useful for queries involving both
attribute types (see Figs. 4b, 4e, and 4f). We performed the same experiments for
the Tum-bound and present a subset of them in Fig. 4h. Note that, increasing
δ (i.e., the bound for UL), favors relational data, and that the information loss
in the transaction attribute is low. Similar observations can be made for the
(k, lm)-diversity algorithms (see Fig. 5).

Next, we compared RmR, RmT , and RmRT . As shown in Fig. 4, RmR in-
curred the lowest information loss in the transaction attribute, and the highest
in the relational attributes, and RmT had opposite trends. RmRT allows more
accurate query answering than RmR, in relational attributes, and than RmT , in
the transaction attribute, as it merges clusters, based on both attribute types.
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bound. UL vs. number of cluster mergings for (g) Rum-bound, and (h) Tum-bound

Similar results were obtained for YouTube (see Figs. 4d-4g), from comparing
TmT , TmR, and TmRT (see e.g., Fig. 4h), and from comparing the (k, lm)-
diversity algorithms (see Figs. 5). Figs. 6a and 6b show the size of the largest
cluster created by RmR, RmT , and RmRT , for varying δ. RmR created the
largest clusters, as it merges many clusters with similar relational values. These
clusters have low UL, as shown in Figs. 6c and 6d. Furthermore, Figs. 6a and 6c,
show that RmRT created slightly larger clusters than RmT , which have lower
UL scores. The results for TmT , TmR, and TmRT and the (k, lm)-diversity al-
gorithms were similar.

Efficiency. We studied the impact of dataset size using random subsets of
Informs, whose records were contained in all larger sets. As can be seen in
Fig. 7a, RmT outperformed RmR and RmRT , and it was more scalable, due
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to the use of the BTD measure. RmRT was the slowest, because it computes
two cluster orderings. TmT , TmR, and TmR perform similarly to RmR, RmT ,
and RmRT (their results were omitted). Fig. 7a shows the cost of Cl. We also
studied the impact of k using the largest dataset of the previous experiment.
Fig. 7b shows that the runtime of RmR, RmT , and RmRT improves with k, as
fewer clusters are merged. RmT was up to 2.2 times more efficient than RmR

and RmRT was the least efficient. Fig. 7b shows that the runtime of Cl improves
with k. The cost of the (k, lm)-diverse algorithms was similar (omitted).

Benefits of algorithmic choices. To show that BTD helps efficiency with-
out degrading data utility, we developed the baseline algorithmsRmTUL,RmTUL,
TmTUL, and TmRTUL, which do not perform the optimization of Section 5. Due
to their high runtime, a subset of Informs with 4K records was used. Observe
in Figs. 7c and 7e that RmT and RmRT have the same UL scores with their
corresponding baseline algorithms, but are at least 10 times more efficient and
scalable with respect to δ. Similar observations can be made from Figs. 7d and
7f, for TmR and TmRT . Last, we show that UL decreases monotonically, as our
algorithms merge clusters. Figs. 7g-7h show the results with δ = 1 for the dataset
used in the previous experiment. The fact that UL never increases shows that
avoiding to compute UL(T (Dtmp)) after a cluster merge does not impact data
utility but helps efficiency. The (k, lm)-diversity algorithms performed similarly.

7 Related Work

Preventing identity disclosure is crucial in many real-world applications [5,11]
and can be achieved through k-anonymity [15]. This privacy principle can be
enforced through various generalization-based algorithms (see [5] for a survey).
Thwarting attribute disclosure may additionally be needed [14,19,17], and this
can be achieved by applying other privacy models, such as l-diversity [14], to-
gether with k-anonymity.

Privacy-preserving transaction data publishing requires new privacy models
and algorithms, due to the high dimensionality and sparsity of transaction data
[19,7,17]. km-anonymity is a model for protecting transaction data against at-
tackers, who know up to m items about an individual [17]. Under this condition,
which is often satisfied in applications [17,16,11], an individual cannot be asso-
ciated with fewer than k records in the dataset. km-anonymity can be enforced
using several algorithms [17,12,8], which can be incorporated into our frame-
works. However, km-anonymity does not guarantee protection against stronger
attackers, who know that an individual is associated with exactly certain items
[17,16]. This is because, by excluding records that have exactly these items from
consideration, the attackers may be able to increase the probability of associat-
ing an individual with their record to greater than 1

k (although not necessarily
1). A recent method [20] can guard against such attackers while preserving data
utility based on a nonreciprocal recoding anonymization scheme. To thwart both
identity and attribute disclosure in transaction data publishing, [17] proposes
�m-diversity, which we also employ in our frameworks.
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Our frameworks employ generalization, which incurs lower information loss
than suppression [17] and helps preventing identity disclosure, contrary to buck-
etization [7]. Also, we seek to publish record-level and truthful data. Thus, we
do not employ ε-differential privacy [3], nor disassociation [16]. However, the
relationship between (k, km)-anonymization and relaxed differential privacy def-
initions is worth investigating to strengthen protection. For instance, Li et al.
[10] proved that safe k-anonymization algorithms, which perform data group-
ing and recoding in a differentially private way, can satisfy a relaxed version of
differential privacy when preceded by a random sampling step.

8 Conclusions

In this paper, we introduced the problem of anonymizing RT -datasets and pro-
posed the first approach to protect such datasets, along with two frameworks for
enforcing it. Three cluster-merging algorithms were developed, for each frame-
work, which preserve different aspects of data utility. Last, we showed how our
approach can be extended to prevent both identity and attribute disclosure.
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