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Abstract. Short-term energy load forecasting, such as hourly predic-
tions for the next n (n ≥ 2) hours, will benefit from exploiting the
relationships among the n estimated outputs. This paper treats such
multi-steps ahead regression task as a sequence labeling (regression)
problem, and adopts a Continuous Conditional Random Fields (CCRF)
strategy. This discriminative approach intuitively integrates two layers:
the first layer aims at the prior knowledge for the multiple outputs, and
the second layer employs edge potential features to implicitly model the
interplays of the n interconnected outputs. Consequently, the proposed
CCRF makes predictions not only basing on observed features, but also
considering the estimated values of related outputs, thus improving the
overall predictive accuracy. In particular, we boost the CCRF’s predic-
tive performance with a multi-target function as its edge feature. These
functions convert the relationship of related outputs with continuous val-
ues into a set of “sub-relationships”, each providing more specific feature
constraints for the interplays of the related outputs. We applied the pro-
posed approach to two real-world energy load prediction systems: one for
electricity demand and another for gas usage. Our experimental results
show that the proposed strategy can meaningfully reduce the predictive
error for the two systems, in terms of mean absolute percentage error
and root mean square error, when compared with three benchmarking
methods. Promisingly, the relative error reduction achieved by our CCRF
model was up to 50%.

Keywords: Conditional Random Fields, Energy Demand Forecast.

1 Introduction

Commercial building owners are facing rapidly growing energy cost. For exam-
ple, energy accounts for approximately 19% of total expenditures for a typical
commercial building in the U.S.; in Canada, annual energy cost for commercial
buildings is about 20 billion dollars. Particularly, these numbers are expected to
double in the next 10 years1. Aiming at reducing this operational cost, build-
ings have started to respond to utility’s Time of Use Pricing or Demand and

1 http://www.esource.com, http://nrtee-trnee.ca/
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Response signals. Such smart energy consumption, however, requires accurate
short-term load predictions.

One of the main challenges for short-term energy load is to predict multiple
time-ticks ahead, namely multiple target variables. Typically, these predicted
outcomes are correlated. For instance, knowing the current hour’s overall energy
usage will help estimate the next hour’s energy demand. To make use of the rela-
tionships among predicted outputs, this paper deploys the Conditional Random
Fields (CRF) [8], a sequential labeling method. More specifically, we adopt the
Continuous Conditional Random Fields (CCRF) [10]. As depicted on the left
subfigure in Figure 1, our CCRF approach intuitively integrates two layers. The
first layer consists of variable (node) features (filled squares in Figure 1), and
aims at the prior knowledge for the multiple outputs. The second layer employs
edge potential features (unfilled squares in Figure 1) to implicitly model the
interplays of the interconnected outputs, aiming at improving the predictions
from the first layer. Consequently, the proposed method makes predictions not
only basing on observed features, but also considering the estimated values of
related outputs, thus improving the overall predictive accuracy.

In addition to its capability of implicitly modeling the interplays between
outputs through its edge potential functions, the CCRF strategy can include a
large number of accurate regression algorithms or strong energy predictors as its
node features, thus enhancing its prior knowledge on each individual output. Im-
portantly, the proposed CCRF method has the form of a multivariate Gaussian
distribution, resulting in not only efficient learning and inference through matrix
computation, but also being able to provide energy load projects with smooth
predicted confidence intervals, rather than only the forecasted load values, thus
further benefiting the decision makings for energy load management.

In particular, we addressed the weak feature constraint problem in the CCRF
with a novel edge function, thus boosting its predictive performance. Such weak
constraint issue arises because CCRF takes aim at target outputs with continu-
ous values. In detail, CRF’s function constraints are weak for edge features with

yt-1 yt yt+1 

X 

xi < 3.6 

yes 

xm > 9.8 
no 

yes no 

yt =0.9 
Yt-1=6.3 

yt=6.0 
Yt+1=9.1 

Yt-1=2.0 
Yt-2=7.8 

Fig. 1. A chain-structured Continuous CRF with PCTs trees (right subfigure) as edge
potential functions (unfilled squares). Here the filled squares are the node features.



Modeling Short-Term Energy Load with CCRF 435

continuous values, compared to that of binary features, because of CRF’s linear
parameterization characteristics [13,14]. That is, for a binary feature, knowing
the mean is equivalent to knowing its full probability distribution. On the con-
trary, knowing the mean may not tell too much about the distribution of a
continuous variable. Since CRF strategies are devised to form models satisfy-
ing certain feature constraints [14], such weak feature constraints will limit the
resultant CRF’s predictive performance. Moreover, typical approaches of divid-
ing continuous values into “bins” cannot be applied to our CCRF method here
because for energy load forecasting, one has to be able to simultaneously “bin”
multiple target variables that are unknown in inference time. To address the
above concern for the CCRF model, we employ a multi-target function, namely
the Predictive Clustering Trees (PCTs) strategy [1], as the CCRF’s edge fea-
ture. The PCTs method first partitions instances with similar values for multi-
ple related target variables, only based on their shared observation features, into
disjoint regions. Next, it models a separate relationship among these target vari-
ables in each smaller region. In other words, the PCTs convert the relationship of
the related target variables into a set of sub-relationships, each containing more
specific constraints for the related target variables. As a result, it enables the
CCRF to better capture the correlations between related outputs, thus boosting
the CCRF’s predictive performance.

We applied the proposed method to two real-world energy load forecasting
systems: one for gas which is used to warm buildings in winter, and another for
electricity for building cooling in summer. Also, we compared our approach with
three benchmarking strategies: 1) a random forests method where each branch
is a multi-objective decision tree for multiple target variables, 2) a collection
of regression trees each targeting an individual target variable, and 3) a CCRF
model with basic features. Our experimental results show that the proposed
method can significantly reduce the predictive error, in terms of mean absolute
percentage error and root mean square error, for the two energy systems, when
compared with the three baseline algorithms.

This paper is organized as follows. Section 2 introduces the background. Next,
a detailed discussion of the proposed algorithm is provided in Section 3. In
Section 4, we describe the comparative evaluation. Section 5 presents the related
work. Finally, Section 6 concludes the paper and outlines our future work.

2 Background

2.1 Conditional Random Fields

Conditional Random Fields (CRF) are undirected graphical models that define
the conditional probability of the label sequence Y = (y1, y2, · · · , yn), given
a sequence of observations X = (x1, x2, · · · , xr). That is, the discriminative
strategy aims to model P (Y |X). Specifically, benefiting from the Hammersley-
Clifford theorem, the conditional probability can be formally written as:

P (Y |X) =
1

Z(X)

∏

c∈C

Φ(yc, xc)
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where C is the set of cliques2 in the graph, Φ is a potential function defined
on the cliques, and Z(x) is the normalizing partition function which guarantees
that the distribution sums to one.

One of the most popular CRFs is the linear chain CRF (depicted on the
left of Figure 1), which imposes a first-order Markov assumption between la-
bels Y . This assumption allows the CRF to be computed efficiently via dynamic
programming. In addition, the clique potentials Φ in the linear chain CRF are
often expressed in an exponential form, so that the formula results in a maxi-
mum entropy model. Formally, the linear-chain CRF is defined as a convenient
log-linear form:

P (Y |X) =
1

Z(X)

n∏

t=1

exp(υT · f(t, yt−1, yt, X)) (1)

where, Z(X) =
∑

Y

n∏

t=1

exp(υT · f(t, yt−1, yt, X))

Here, f(t, yt−1, yt, X) is a set of potential feature functions which aim to capture
useful domain information; υ is a set of weights, which are parameters to be
determined when learning the model; and yt−1 and yt are the label assignments
of a pair of adjacent nodes in the graph.

2.2 Continuous Conditional Random Fields

The CRF strategy is originally introduced to cope with discrete outputs in la-
beling sequence data. To deal with regression problems, Continuous Conditional
Random Fields (CCRF) has recently been presented by Qin et al. [10], aiming
at document ranking. In CCRF, Equation 1 has the following form.

P (Y |X) =
1

Z(X,α, β)
exp(

n∑

1

H(α, yi, X) +
∑

i∼j

G(β, yi, yj , X)) (2)

where i ∼ j means yi and yj are related, and

Z(X,α, β) =

∫

y

exp(

n∑

1

H(α, yi, X) +
∑

i∼j

G(β, yi, yj , X))dy

Here, potential feature functions H(yi, X) and G(yi, yj, X) intend to capture
the interplays between inputs and outputs, and the relationships among related
outputs, respectively. For descriptive purpose, we denote these potential func-
tions as variable (node) feature and edge feature, respectively. Here, α and β
represent the weights for these feature functions. Typically, the learning of the
CCRF is to find weights α and β such that conditional log-likelihood of the

2 A clique is a fully connected subgraph.
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training data, i.e., L(α, β), is maximized, given training data D = {(X,Y )}L1 (L
is the number of sample points in D):

(α̂, β̂) = argmax
α,β

(L(α, β)), where L(α, β) =
L∑

l=1

logP (Yl|Xl) (3)

After learning, the inference is commonly carried out through finding the most
likely values for the P (Yl) vector, provided observation Xl:

Ŷl = argmax
Yl

(P (Yl|Xl)) (4)

Promisingly, as shown by Radosavljevic et al. [12], if the potential feature
functions in Equation 2 are quadratic functions of output variables Y , the CCRF
will then have the form of a multivariate Gaussian distribution, resulting in a
computationally tractable CCRF model. Our approach deploys such a Gaussian
form CCRF model with newly designed edge and variable features. We will
discuss our model and feature design in detail next.

3 CCRF for Energy Load

One of the core developments for a CCRF model is its edge and variable features.

3.1 Model Design

Our edge features are designed to capture the relationships between two adjacent
target variables, and to ensure that the resultant CCRF has a multivariate Gaus-
sian form. Our motivations are as follows. Our analysis on real-world short-term
energy load data indicates that, for these data the adjacent target variables are
highly correlated. As an example, Figure 2 pictures the partial autocorrelation
graphs of two years’ hourly gas demand and electricity load (we will discuss these
two data sets in details in Section 4) in the left and right subfigures, respectively.
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Fig. 2. Partial autocorrelation graphs of the gas demand and electricity load data
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These two subfigures indicate that adjacent target variables show significant cor-
relation, compared to the other related target variables. For example, as shown
in Figure 2, for both the gas demand and electricity load data, the first lag bears
a correlation value of over 0.8. In contrast, other lags have a correlation of less
than 0.3. These results suggest that the energy loads of a pair of adjacent hours
are highly correlated.

Aiming to capture the above mentioned correlation between two adjacent
target variables, we deploy G(β, yi, yj , X) =

∑
S βsωs(yi − yj)

2 as our edge
function form. Here yi and yj are the i-th and j-th target outputs, respectively.
Since the correlation of energy usages of a pair of adjacent hours is much higher
than other hours (as previous shown), in our design the i-th and j-th represent
two adjacent hours. The ωs is the s-th of a set of S indicator functions with
values of either zero or one, indicating if the correlation between yi and yj
should be measured or not. The β here represents the weights for these feature
functions, and these weights will be learned by the CCRF during the training. In
particular, the quadratic function forms here are specially designed to ensure that
the CCRF results in a multivariate Gaussian form with efficient computation for
the learning and inference, as will be further discussed later in this section.

In contrast to the edge potential feature which takes into account the inter-
actions between predicted target variables, the variable potential feature of the
CCRF, as described in Equation 2, aims at making good use of many efficient
and accurate regression predictors. To this end, we consider variable features
of the form H(α, yi, X) =

∑m
k=1 αk(yi − fk(X))2. Here, yi indicates the i-th

target output, fk(X) is the k-th of m predictors for the target output yi. This
specific variable feature form is motivated by the following two reasons. First,
with this particular form, the resultant CCRF strategy is able to include many
efficient and accurate single-target regression models, such as Regression Trees
or Support Vector Machines, or existing state-of-the-art energy load predictors
as its features. One may include a large number of such predictors, namely with
a large m, and the CCRF will automatically determine their relevance levels
during training. For example, for target output yi, we can have the output from
a single-target Regression Trees and the prediction from a SVM as its two fea-
tures; during the learning, the CCRF will determine their contribution to the
final prediction of the yi through their weights. Second, the quadratic form here
ensures that the final model results in a computationally tractable CCRF, as
will be discussed next.

With the above edge and variable features, our CCRF strategy results in the
graph structure depicted in Figure 1, bearing the following formula.

P (Y |X) =
1

Z(X,α, β)
exp(

n∑

1

H(α, yi, X) +
∑

i∼j

G(β, yi, yj , X))

=
1

Z(X,α, β)
exp(−

n∑

i=1

m∑

k=1

αk(yi − fk(X))2 −
∑

i∼j

S∑

s=1

βsωs(yi − yj)
2) (5)
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In this equation, we have n target outputs (i.e., {yi}n1 ), m variable features
(i.e., {fk(X)}m1 ) for each target yi, and S edge features (with s as index) for
modeling the correlation between two outputs yi and yj (where indicator function
ωs indicates if the correlation between the i-th and j-th outputs will be taken
into account or not). In our case, we use edge features to constrain the square of
the distance between two outputs when the two outputs are adjacent. Note that
we here assume that the neighboring information between two target outputs
will be given.

Intuitively, the integration of the variable and edge feature, as described in
Equation 5, forms a model with two layers. The variable features αk(yi−fk(X))2

are predictors for individual target variables. That is, these variable features
depend only on the inputs. Hypothetically, if the edge functions are disabled, the
predictions of the CCRF model will be the outputs of these individual predictors.
In this sense, we can consider the variable features as the prior knowledge for the
multiple outputs. On the other hand, the edge potential functions βsωs(yi−yj)

2

involve multiple related target variables, constraining the relationships between
related outputs. In fact, we can think of the edge features as representing a
separate set of weights for each multi-targets output configuration. In other
words, these weights serve as a second layer on top of the variable features. This
second layer aims to fine-tune the predictions from the first layer, namely the
prior knowledge provided by the variable features.

Promisingly, following the idea presented by Radosavljevic et al. [12], the
above CCRF, namely Equation 5 can be further mapped to a multivariate Gaus-
sian because of their quadratic forms for the edge and variable potential features:

P (Y |X) =
1

(2π)n/2|∑ |1/2 · exp(−1

2
(Y − μ(X))T

∑−1(Y − μ(X))) (6)

In this Gaussian mapping, the inverse of the covariance matrix Σ is the sum
of two n× n matrices, namely Σ−1 = 2(Q1 +Q2) with

Q1
ij =

{∑
m
k=1αk if i = j

0 otherwise
and Q2

ij =

{∑n
j=1

∑S
s=1 βsωs if i = j

−∑S
s=1 βsωs if i �= j

Also the mean μ(X) is computed as Σθ. Here, θ is a n dimensional vector
with values of

θi = 2
∑

m
k=1αkfk(X)

Practically, this multivariate Gaussian form results in efficient computation
for the learning and inference of the CCRF model, which is discussed next.

Training CCRF. In the training of a CRF model, feature function constraints
require the expected value of each feature with respect to the model be the same
as that with respect to the training data [14]. Following this line of research, with
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a multivariate Gaussian distribution that aims at maximizing log-likelihood, the
learning of a CCRF as depicted in Equation 3 becomes a convex optimization
problem. As a result, stochastic gradient ascent can be applied to learn the
parameters.

Inference in CCRF. In inference, finding the most likely predictions Y , given
observation X as depicted in Equation 4, boils down to finding the mean of the
multivariate Gaussian distribution. Specifically, it is computed as following:

Ŷ = argmax
Y

(P (Y |X)) = μ(X) = Σθ

Furthermore, the 95%-confidence intervals of the estimated outputs can be ob-
tained by Ŷ ± 1.96× diag(Σ), due to the Gaussian distribution.

3.2 Cope with Weak Feature Constraint in CCRF

Recall from Section 3.1 that the edge features in our CCRF have the form of (yi−
yj)

2. This particular function form aims to ensure that not only the correction
between adjacent outputs are taken into account, but also the resultant CCRF
has a multivariate Gaussian form with efficient computation for the learning and
inference. This design, however, results in a weak feature constraint problem for
the CCRF because now each edge function depends on multiple, continuous
target variables. We detail this challenge as follows.

In a nutshell, CRF is a maximum entropy model with feature constraints
that capture relevant aspects of the training data. That is, training a CRF
amounts to forcing the expected value of each feature with respect to the model
to be the same as that with respect to the training data. Consequently, the
constraints with binary feature, for example, contain essential information about
the data because knowing the mean of the binary feature is equivalent to knowing
its full distribution. On the other hand, knowing the mean may not tell too
much about the distribution of continuous variables because of CCRF’s linear
parameterization characteristics [13,14]. As an example, the mean value of the
red curve distribution on the left subfigure in Figure 3 does not tell us too much
about the distribution of the curve. As a result, the CCRF may learn less than
it should from the training data.

To tackle this constraint weakness, one typically introduces the “Binning”
technique. That is, one can divide the real value into a number of bins, and
then each bin is represented by a binary value. However, in the CCRF, typical
“Binning” techniques are difficult to apply to the edge functions because all the
values for these features are predicted values of the target variables, and we do
not know these values beforehand. That is, we do not know, for example, the
values of yi and yj in inference time. To cope with unknown target variables, one
may have to “Bin” these features using only the known input variables. Never-
theless, relying on only the observed inputs may not be enough to distinguish
the interactions between the pair of unknown outputs. For example, a large yi



Modeling Short-Term Energy Load with CCRF 441

value and a small yj value may have the same result, as computed by (yi− yj)
2,

as that of a small yi and a large yj value pair. These observations suggest that
it will be beneficial to has a “Binning” technique that is able to simultaneously
take the interactions of a pair of outputs and the observed inputs into account.

Following this line of thought, we propose to use the Predictive Clustering
Trees (PCTs) [1]. The aim here is to use the PCTs to divide the relationships
of related outputs into a set of “sub-relationships”, each providing more specific
feature constraints for the interplays of the related outputs. The PCTs strategy
considers a decision tree as a hierarchy of clusters. The root node corresponds to
one cluster containing all data, which is recursively partitioned into smaller clus-
ters while moving down the tree. When dealing with multiple target attributes,
the PCTs approach can be viewed as a tree where each leaf has multiple targets,
compared to that of traditional decision tree which learns a scalar target. The
PCTs method extends the notion of class variance towards the multi-dimensional
regression case. That is, given a distance function, such as the sum of the vari-
ances of the target variables, for the multi-dimensional target space, the PCTs
algorithm partitions the input space, namely X , into different disjoint regions,
where each is a leaf and each groups instances with similar values for the target
variables Ys. When deployed for CCRF, each PCTs tree can be used to model
the interactions between the related Ys through its leaves. The graph structure
in Figure 1 pictures our CCRF model, where each unfilled square describes an
edge feature, and each is represented by a PCTs tree on the right of the figure.

We illustrate the above weak edge feature constraint and the proposed PCTs
solution with Figure 3. In this figure, the red curve shows the distribution of the
edge potential feature of (yi − yj)

2 in the gas demand (used for heating) data
set. Here, yi and yj represent the energy loads of two neighboring hours, namely
hours i and j, respectively. This distribution subsumes three sub-distributions,
depicted by the blue, brown, and green curves, respectively. In detail, the blue
curve pictures the distribution of (yi− yj)

2 where the hours i and j have similar

x = similar temperatures 
between the two hours 

yes no 

yes no 

(yi-yj)2,depicted 
by blue curve 

(yi-yj)2,depicted 
by red curve 

(yi-yj)2,depicted 
by green curve 

(yi-yj)2,depicted 
by brown curve 

x = sharp dropped temperatures 
between the two hours 

(yi-yj)2 

11

22 33

Fig. 3. Left subfigure: distribution of (yi − yj)
2 (red curve), and the subsumed three

sub-distributions (blue, brown, and green curves); right subfigure: the PCT tree that
shows what X values were used to convert the red curve into the three sub regions
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temperature; the brown curve presents the same two hours with a dramatically
increasing temperature; and the green curve shows the distribution of the same
two hours where the temperature drops sharply. Intuitively, one can consider the
red curve pictures a joint probability of P ((yi − yj)

2, X), and the other three
curves show the conditional probability of P ((yi − yj)

2|X) when X takes one of
the three weather scenarios, namely, similar, sharply increasing, and dramatically
dropping temperatures between two neighboring outputs.

As can be seen from this example, the edge feature 3 of (yi − yj)
2, as shown

by the red curve, is not able to distinguish the three sub-relationships clustered
by the blue, brown, and green curves. That is, the edge feature constraints
represented by the red curve cannot distinguish between a similar, increasing,
or reducing energy consumption trends. Such weak edge feature will limit the
constraining power of the edge potential functions in the CCRF. It is worth to
further noting that, if we do not simultaneously consider the input variables and
the interplays between the target variables, as what the PCTs do, we may not be
able to distinguish the brown and green curves since these two curves represent
similar (yi − yj)

2 values.
Let us continue with the above example. Tackled by the PCTs, the original

edge feature of (yi − yj)
2, as depicted by the red curve, will be replaced by

three sub features, namely the distributions shown in the blue, brown, and green
curves. In other words, three edge feature constraints, instead of only one, will
be used by the G(β, yi, yj , X) function, representing three different types of
interplays between the (yi, yj) pair: one constraining a small change between yi
and yj , another defining a sharp increase of energy consumption, and the other
confining a quick drop in term of energy consumption.

Let’s sum up the above example. The edge function with PCTs here can nat-
urally model the multi-steps ahead energy consumptions: 1) if the temperature
(which can be observed or forecasted) is sharply dropping, the constraint of a
small yi and a large yj will have a high probability; 2) if the temperature is
dramatically increasing, the constraint of a large yi and a small yj will have a
high probability; 3) if the temperature is similar, similar values for yi and yj will
then have a high probability.

4 Experimental Studies

4.1 Data Sets

Two real world data sets were collected from a typical commercial building in
Ontario: one aims to predict the hourly electricity loads for the next 24 hours,
and another for the next 24 hours’ gas demands. For the electricity, one year
of hourly energy consumption data in 2011 and three months of summer data,
from March 1st to May 31rd in 2012, were collected; for gas, we have the whole

3 Note that, as discussed in Section 3.1, the quadratic function forms here are specially
designed to ensure that the CCRF results in a multivariate Gaussian form with
efficient computation for the learning and inference.
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year’s data in 2011 and winter data from January to March in the year of 2012.
In our experiments, for both the electricity and gas, we trained the model with
the 2011 data and then tested the model using the data from 2012.

4.2 Features and Settings

In these two energy load forecasting systems, the proposed CCRF method de-
ployed 23 edge features, as discussed in Section 3.2. Each such feature aims to
capture the interplays of an adjacent pair of target variables, namely two con-
secutive hours of the 24 hours. The number of sub-regions generated for each of
these edge features were controlled by the search depth of the PCTs trees. The
larger this number, potentially more sub-regions or clusters will be created to
group a pair of related target variables. In our experiments, we set this number
to 3. In fact, we compared with different settings and the model was insensitive
to this parameter.

Also, 24 variable features were used, each focusing on one target variable,
namely an individual hour of the 24 output hours. To this end, we deploy Fried-
man’s additive gradient boosted trees [5,6] as our CCRF model’s variable fea-
tures. Friedman’s additive boosted trees can be considered as a regression version
of the well-known Boosting methodology for classification problems. Promising
results of applying this additive approach have been observed, in terms of im-
proving the predictive accuracy for regression problems [5]. In our studies here,
each such variable feature, namely each target yi, is modeled using an additive
gradient boosted strategy with the following parameters: a learning rate of 0.05,
100 iterations, and a regression tree as the base learner. The input features for
the Friedman machine include past energy usages, temperatures, the day of the
week, and the hour of the day.

In addition, to avoid overfitting in the training of the CCRF, penalized regu-
larization terms 0.5α2 and 0.5β2 were subtracted from the log-likelihood function
depicted in Equation 3. Also, the number of iterations and learning rate for the
gradient ascent in the CCRF learning were set to 100 and 0.0001, respectively.

4.3 Methodology

We compared our method with three benchmarking approaches. The first com-
parison algorithm is a state-of-the-art multi-target system, namely the ensembles
of Multi-Objective Decision Trees (MODTs) [7]. We obtained the settings of the
ensembles of MODTs from their authors. That is, in our experiments, a random
forest strategy was applied to combine 100 individual multi-objective decision
trees. The second benchmarking algorithm is a strategy that trains independent
regression models for each target attribute and then combines the results [9,15].
In our studies, a collection of regression trees were used where each tree models
a target variable. The last comparison approach we compared with is a CCRF
model with basic features. That is, this CCRF strategy used 24 single-target re-
gression trees as its variable features. Also, each of the 23 edge features captures
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the square of the distance between two adjacent target variables. The compari-
son here aims to evaluate the impact of the newly designed features, namely the
predictive clustering approach, to the CCRF strategy.

We implemented the CCRF models in Java on a 2.93GHz PC with 64 bit Win-
dows Vista installed. We measured the performance of the tested algorithms
with the mean absolute percentage error (MAPE) and the root mean square
error (RMSE). For descriptive purpose, we referred to the random forests ap-
proach with multi-objective decision trees, the method of learning a collection of
regression trees, the basic CCRF algorithm, and the proposed CCRF strategy
as MODTs, RTs, CCRFs BASE, and CCRFs EP, respectively.

4.4 Experimental Results

In this section we examine the predictive performance of the proposed method
against both the electricity and gas data, in terms of MAPE and RMSE.

Electricity Usage. Our first experiment studies the performance of the tested
methods on the electricity load data. We present the MAPE and RMSE obtained
by the four tested approaches for each of the three months, namely March, April,
and May, in Figure 4. In this figure, we depicted the MAPE and RMSE obtained
on the left and right subfigures, respectively.

The MAPE results, as presented on the left subfigure of Figure 4 show that
the CCRF method appears to consistently reduce the error rate for each of the
three months, when compared to all the other three tested strategies, namely the
collection of regression trees, the random forests with multi-objective decision
trees, and the CCRF model with basic features. For example, when compared
with the collection of regression trees method, namely the RTs approach, the
CCRFs EP model decreases the absolute MAPE for months March, April, and
May with 0.51, 0.53, and 1.0, respectively. The relative average error reduced for
these three tested months was 17.9% (drop from 3.80 to 3.12 as shown on the
left of Figure 4). In terms of RMSE, for each of the three months, the error was
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Fig. 4. MAPE and RMSE obtained by the four methods, against the electricity data
in the months of March, April, and May in 2012
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reduced by the CCRFs EP method from 139.63, 136.91, and 165.86 to 112.11,
114.76, and 118.17, respectively. As depicted on the right of Figures 4, a relative
average reduction was 22.0% (drop from 147.47 to 115.01).

When considering the comparison with the random forests of multi-objective
decision trees, namely the MODTs method, the results as depicted in Figure 4
indicate that the CCRFs EP model was also able to meaningfully reduce the
error. As shown in Figure 4, for both MAPE and RMSE, the CCRFs EP strategy
was able to reduce the error for all the three months. On average, relative error
reductions of 20.08% and 17.66% were achieved by the CCRFs EP model over
the MODTs strategy, in terms MAPE and RMSE, respectively.

Comparing to the CCRFs BASE algorithm, the CCRFs EP method also ap-
pears to consistently outperform the CCRFs BASE strategy for each of the three
months regardless the evaluation metrics used, namely no matter if the MAPE
or RMSE was applied as the predictive performance metrics. As depicted in Fig-
ure 4, average relative error reductions of 11.87% and 13.75% were achieved by
the CCRFs EP model over the CCRFs BASE approach, in terms MAPE and
RMSE, respectively. These results suggest that the advanced potential feature
functions as introduced in Section 3.2 enhanced the proposed CCRF model’s
predictive performance.

Gas Consumption. Our second experiment investigates the performance of
the tested methods on the gas demand data. We present the MAPE and RMSE
obtained by the four tested methods for each of the three months, namely Jan-
uary, February, and March, in Figure 5. In this figure we depicted the MAPE
and RMSE obtained on the left and right subfigures, respectively.

The MAPE results, as presented on the left subfigure of Figure 5 show that
the proposed CCRF EP method appears to consistently reduce the error for
all the three months, when compared to the RTs, MODTs, and CCRFs BASE
methods. For instance, when compared with the RTs algorithm, the results on
the left subfigure of Figure 5 show that the CCRFs EP model decreases the
absolute MAPE for months January, February, and March with 2.61, 1.81, and
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Fig. 5. MAPE and RMSE obtained by the four methods, against the gas data in the
months of January, February, and March in 2012
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2.74, respectively. The relative average error reduced for these three months was
29.15% (drop from 8.19 to 5.80 as indicated in Figure 5). In terms of RMSE,
results on the right of Figure 5 demonstrate that, the CCRF EP strategy out-
performed the RTs algorithm for all the three tested months. A relative average
reduction was 32.77% (drop from 1894 to 1272 as shown on the right of Figure 5).

When considering the comparison with the MODTs method, the results in
Figure 5 indicate that the proposed CCRF model meaningfully reduce the error
rate. For example, for both MAPE and RMSE, the CCRF EP strategy was able
to reduce the error for all the three months. As shown on the right of Figure 5,
average relative error reductions of 56.47% and 55.82% were achieved by the
CCRF EP model over the random forests ensemble.

Comparing to the CCRFs BASE, the CCRFs EP method again appears to
consistently outperform the CCRFs BASE strategy for all the three months in
terms of both the MAPE or RMSE. As depicted in Figure 5, average relative
error reductions of 19.55% and 22.05% were achieved by the CCRFs EP model
over the CCRFs BASE strategy, in terms MAPE and RMSE, respectively.

In summary, the experimental results on the six data sets indicate that, the
proposed CCRF model consistently outperformed the other three tested methods
in terms of MAPE and RMSE. Promisingly, the relative error reduction achieved
by the proposed CCRF algorithm was at least 11.87%, and up to 56.47%.

In addition to its superior accuracy, the proposed CCRF has the form of a
multivariate Gaussian. Therefore, it can provide projects with probability dis-
tributions rather than only the forecasted numbers. In Figure 6, we depicted a
sample of the 24 predictions with their 95% confidence intervals from our gas
forecasting system. The 24 hours ahead predictions, along with their confidence
intervals, were generated for the date of April 1st, 2012, at mid night. In this fig-
ure, the dark curve in the middle shows the 24 predictions, and the two dot curves
depict the two confidence interval bands. These smooth, uncertainty information
could be beneficial for better decision makings in energy load management.

Fig. 6. Outputs with 95% confidence bands for the gas consumptions of April 1st, 2012
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5 Related Work

Short-term energy load forecasting has been an active research area for decades,
and a variety of machine learning techniques have been proposed to cope with
this challenge, including regression algorithms, time series analysis strategies,
Neural networks, and Support Vector Machines, amongst others. An informative
review has been reported by Feinberg and Genethliou [4]. Comparing with the
CCRF methods, many existing approaches either have difficulties to make use of
different types of features (such as dependent features, categorical features etc.),
to generate statistical information of the estimated values (e.g., the confidence
intervals), or to explore the interrelationships among the multiple outputs (e.g.,
structured outputs).

Recent years, Conditional Random Fields has been devised to provide a prob-
abilistic model to represent the conditional probability of a particular label se-
quence. This discriminative framework has been very successfully applied to
many classification tasks, including text labeling [8], activity recognition [14],
recommendation [16], and image recognition [11], amongst others. Also, within
the CRF research community, issues related to the powerful and flexible CRF
model have also been actively studied [2,17]. In contrast, only a few applications
of applying this framework on regression tasks have been reported. These ap-
plications include document ranking [10], Aerosol optical depth estimation [12],
and travel speed prediction [3]. To our best knowledge, this paper is the first
to report an application of Conditional Random Fields on short-term energy
load forecasting. Also, we focus on designing a CCRF with tractable compu-
tation cost for training and inferring, through the carefully designed potential
feature functions. Most importantly, we cope with the weak feature constraint
in a CCRF model, which, to our best knowledge, has not been addressed by any
CCRF paper before.

6 Conclusions and Future Work

Embracing “smart energy consumption” to optimize energy usage in commercial
buildings has provided a unique demand for modeling short-term energy load.
We have devised a Continuous Conditional Random Fields strategy to cope with
these structured outputs tasks. The CCRF can naturally model the multi-steps
ahead energy load with its two layers design. In particular, we deployed a novel
edge feature, namely a multi-target regression strategy, to enable the CCRF to
better capture the interplays between correlated outputs with continuous values,
thus boosting the CCRF model’s accuracy. We evaluated the proposed method
with two real-world energy load forecasting systems. When compared with three
benchmarking strategies, our experimental studies show that the proposed ap-
proach can meaningfully reduce the predictive error for the two energy systems,
in terms of mean absolute percentage errors and root mean square errors.

To our best knowledge, this is the first study on adopting a CRF to model
multiple-steps-ahead energy loads. Furthermore, we introduced a novel multi-
target edge function to address the weak feature constraint problem in the
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CCRF, thus boosting its accuracy. Our future work will test our approach against
more data sets with comprehensive statistical analysis. Also, we plan to further
conduct comparison studies with other state-of-the-art energy predictors.
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