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Abstract. DCell has been proposed for one of the most important data
center networks as a server centric data center network structure. DCell
can support millions of servers with outstanding network capacity and
provide good fault tolerance by only using commodity switches. In this
paper, we prove that there exist r vertex disjoint paths {Pi|1 ≤ i ≤ r}
between any two distinct vertices u and v of DCellk (k ≥ 0) where
r = n+k−1 and n is the vertex number of DCell0. The result is optimal
because of any vertex in DCellk has r neighbors with r = n+ k − 1.
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1 Introduction

Data centers become more and more important with the development of cloud
computing. Specifically, in recent years, data centers are critical to the business
of companies such as Amazon, Google, FaceBook, and Microsoft, which have
already owned tremendous data centers with more than hundreds of thousands
of servers. Their operations are important to offer both many on-line applications
such as web search, on-line gaming, email, cloud disk and infrastructure services
such as GFS [1], Map-reduce [2], and Dryad [3].

Researches showed that the traditional tree-based data center networks [4]
have issues of bandwidth bottleneck, failure of single switch, etc.. In order to
solve the defects of tree-based data center networks, there are many data center
networks which have been proposed such as DCell [4], BCube [5], and FiConn
[6, 7]. DCell has many good properties including exponential scalability, high
network capacity, small diameter, and high fault tolerantly. In comparison with
good capabilities of DCell, BCube is meant for container-based data center net-
works which only supports thousands of servers, and FiConn is not a regularly
network which may raises the construction complexity.

DCells use servers as routing and forwarding infrastructure, and the multi-
cast routing frequency between servers are quite high in data center networks.
Multi-cast routing algorithms in DCells can be based on the Hamiltonian model
as methods on [8, 9]. One-to-one disjoint path covers (also named spanning con-
nectivity [10, 11]) are the extension of the Hamiltonian-connectivity which could
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as well as used on multi-cast routing algorithms in DCells to largely decrease
deadlock and congestion, compared with tree-based multi-cast routing. How-
ever, the problem of finding disjoint path covers is NP-complete [13]. Therefore,
a large amount researches on problems of disjoint path covers focused on dif-
ferent special networks, such as hypercubes [13–16], their variants [17–19], and
others [20–22].

So far there is no work reported about the one-to-one disjoint path cover
properties of DCell. In this paper, we prove that there exist r vertex disjoint
paths {Pi|1 ≤ i ≤ r} between any two distinct vertices u and v of DCellk
(k ≥ 0) where n is the vertex number of DCell0 and r = n+ k − 1. The result
is optimal because of any vertex in DCellk has r neighbors with r = n+ k − 1.

This work is organized as follows. Section 2 provides the preliminary knowl-
edge. Some basic one-to-one disjoint path covers properties are given in Section
3. We make a conclusion in Section 4.

2 Preliminaries

A data center network can be represented by a simple graphG = (V (G) , E (G)),
where V (G) represents the vertex set and E (G) represents the edge set, and
each vertex represents a server and each edge represents a link between servers
(switches can be regarded as transparent network devices [4]). The edge from
vertex u to vertex v is denoted by (u, v). In this paper all graphs are simple and
undirected.

We use G1 ∪G2 to denote the subgraph induced by V (G1)∪V (G2) of G. For
U ⊆ V (G), we use G[U ] to denote the subgraph induced by U in G, i.e., G[U ] =
(U,E′), where E′ = {(u, v) ∈ E(G)|u, v ∈ U}. A path in a graph is a sequence
of vertices, P :< u0, u1, . . . , uj , . . . un−1, un >, in which no vertices are repeated
and uj, uj+1 are adjacent for 0 ≤ j < n. Let V (P ) denote the set of all vertices
appearing in P . We call u0 and un the terminal vertices of P . P can be denoted
by P (u0, un), which is a path beginning with u0 and ending at un. Let P1 denote
< u1, u2, . . . , uk−1, uk > and P2 denote < uk, uk+1, . . . , uk+n >, then P1 + P2

denotes the path < u1, u2, . . . , uk, uk+1, . . . , uk+n >. If e = (uk, uk+1), then
P1 + e denote the path < u1, u2, . . . , uk, uk+1 >. Furthermore, if e = (uk−1, uk),
P1 − e denote the path < u1, u2, . . . , uk−1 >.

A path in a graph G containing every vertex of G is called a Hamiltonian
path (HP ). HP (u, v,G) can be denoted by a Hamiltonian path beginning with
a vertex u and ending with another vertex v in graph G. Obviously, if (v, u) ∈
E(G), then HP (u, v,G) + (v, u) is a Hamiltonian cycle in G. A Hamiltonian
graph is a graph containing a Hamiltonian cycle. G is called a Hamiltonian-
connected graph if there exists a Hamiltonian path between any two different
vertices of G. Obviously, if G is a Hamiltonian-connected graph, then G must
be the Hamiltonian graph. Suppose that u and v are two vertices of a graph G.
We say a set of r paths between u and v is an r-disjoint path cover in G if the r
paths do not contain the same vertex besides u and v and their union covers all
vertices of G. An r-disjoint path cover is abbreviated as an r-DPC for simplicity.
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A graph G is one-to-one r-disjoint path coverable (r-DPC-able for short) if there
is an r-DPC between any two vertices of G. In this paper G is r-DPC-able is
not same as G is (r + 1)-DPC-able.

For any other fundamental graph theoretical terminology, please refer to [12].
DCell uses recursively-defined structure to interconnect servers. Each server

connects to different levels of DCell through multiple links. We build high-level
DCell recursively form many low-level ones. Due to this structure, DCell uses
only mini-switches to scale out instead of using high-end switches to scale up,
and it scales doubly exponentially with server vertex degree.

We use DCellk to denote a k-dimension DCell (k ≥ 0), DCell0 is a com-
plete graph on n vertices (n ≥ 2). Let t0 denote the number of vertices in
a DCell0, where t0 = n. Let tk denote the number of vertices in a DCellk
(k ≥ 1), where tk = tk−1 × (tk−1 + 1). The vertex of DCellk can be labeled
by [αk, αk−1, · · · , αi, · · · , α0], where αi ∈ {0, 1, · · · , ti−1}, i ∈ {1, 2, · · · , k}, and
α0 ∈ {0, 1, · · · , t0 − 1}. According to the definition of DCellk [4, 23], we provide
the recursive definition as Definition 1.

Definition 1. The k-dimensional DCell, DCellk, is defined recursively as
follows.

(1) DCell0 is a complete graph consisting of n vertices labeled with
[0],[1],· · · ,[n− 1].

(2) For any k ≥ 1, DCellk is built from tk−1 + 1 disjoint copies DCellk−1,
according to the following steps.

(2.1) Let DCell0k−1 denote the graph obtained by prefixing the label of each
vertex of one copy of DCellk−1 with 0. Let DCell1k−1 denote the graph obtained
by prefixing the label of each vertex of one copy of DCellk−1 with 1. · · · . Let
DCell

tk−1

k−1 denote the graph obtained by prefixing the label of each vertex of one

copy of DCellk−1 with tk−1. Clearly, DCell
0
k−1

∼= DCell1k−1
∼= · · · ∼= DCell

tk−1

k−1 .
(2.2) For any αk, βk ∈ {0, 1, · · · , tk−1} and αk ≥ βk (resp. αk < βk), con-

necting the vertex [αk, αk−1, · · · , αi, · · · , α1, α0] of DCell
αk

k−1 with the vertex

[βk, βk−1, · · · , βi, · · · , β1, β0] of DCellβk

k−1 as follow:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

αk = β0 +
k−1∑

j=1

(βj × tj−1) + 1

βk = α0 +

k−1∑

j=1

(αj × tj−1)

(1)

(resp.),
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

αk = β0 +

k−1∑

j=1

(βj × tj−1)

βk = α0 +
k−1∑

j=1

(αj × tj−1) + 1

(2)

where αi, βi ∈ {0, 1, · · · , ti−1}, i ∈ {1, 2, · · · , k}, and α0, β0 ∈ {0, 1, · · · , t0 − 1}.
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By Definition 1, DCellαk

k−1 is a subgraph of DCellk, where αk ∈
{0, 1, · · · , tk−1}.

Figure 1(1), 1(2), and 1(3) demonstrate DCell0, DCell1, and DCell2 with
t0 = 2 respectively. 1(4) and 1(5) demonstrate DCell0 and DCell1 with t0 = 3
respectively.

3 Main Results

In this section, we will study one-to-one disjoint path cover properties of DCell.

Theorem 1. DCellk (k ≥ 0) is Hamiltonian-connected with t0 ≥ 2 except for
DCell1 with t0 = 2 . In other word, DCellk (k ≥ 0) is 1-DPC-able with t0 ≥ 2
except for DCell1 with t0 = 2.

Proof . We omit the proof due to the page limitation. �

Theorem 2. DCellk is a Hamiltonian graph for any k ≥ 0. In other word,
DCellk is 2-DPC-able for any k ≥ 0.

Proof . We omit the proof due to the page limitation. �

Lemma 1. DCell0 is (t0 − 1)-DPC-able with t0 ≥ 2.

Proof . The lemma holds for DCell0 which is a complete graph [12]. �

Lemma 2. DCell1 is 2-DPC-able with t0 = 2.

Proof . DCell1 is a cycle with 6 vertices. Therefore,DCell1 is 2-DPC with t0 = 2
[12]. �

Lemma 3. DCell2 is 3-DPC-able with t0 = 2.

Proof . For t0 = 2, we use construction method to proof this lemma. We can
construct an 3-DPC between u and v in DCell2 for any pair of vertices {u, v} ∈
V (DCell2).

For example, the 3-DPC {P1, P2, P3} (resp. {R1, R2, R3}, {T1, T2, T3},
{S1, S2, S3}, {U1, U2, U3}) from [0, 0, 0] to [0, 0, 1] (resp. [0, 1, 0], [0, 1, 1], [0, 2, 0],
[0, 2, 1]) whose union covers V (DCell2) with t0 = 2 are listed below (Similarly
for the other cases).
P1 =< [0, 0, 0], [0, 0, 1] >,
P2 =< [0, 0, 0], [0, 1, 0], [0, 1, 1], [0, 2, 1], [0, 2, 0], [0, 0, 1]>,
P3 =< [0, 0, 0], [1, 0, 0], [1, 0, 1], [2, 0, 1], [2, 2, 0], [2, 2, 1], [2, 1, 1], [4, 1, 0],

[4, 0, 0], [4, 0, 1], [4, 2, 0], [5, 2, 0], [5, 2, 1], [6, 2, 1], [6, 1, 1], [6, 1, 0], [6, 0, 0], [6, 0, 1],
[6, 2, 0], [4, 2, 1], [4, 1, 1], [3, 1, 1], [3, 2, 1], [3, 2, 0], [5, 1, 1], [5, 1, 0], [5, 0, 0], [5, 0, 1],
[1, 2, 0], [1, 2, 1], [1, 1, 1], [1, 1, 0], [3, 0, 1], [3, 0, 0], [3, 1, 0], [2, 1, 0], [2, 0, 0], [0, 0, 1]>.
R1 =< [0, 0, 0], [0, 1, 0] >,
R2 =< [0, 0, 0], [0, 0, 1], [0, 2, 0], [0, 2, 1], [0, 1, 1], [0, 1, 0]>,
R3 =< [0, 0, 0], [1, 0, 0], [1, 0, 1], [1, 2, 0], [1, 2, 1], [1, 1, 1], [1, 1, 0], [3, 0, 1],
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Fig. 1. (1), (2), and (3) demonstrate DCell0, DCell1, and DCell2 with t0 = 2 respec-
tively. (4) and (5) demonstrate DCell0 and DCell1 with t0 = 3 respectively.
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[3, 2, 0], [3, 2, 1], [3, 1, 1], [4, 1, 1], [4, 2, 1], [6, 2, 0], [6, 0, 1], [6, 0, 0], [6, 1, 0], [6, 1, 1],
[6, 2, 1], [5, 2, 1], [5, 1, 1], [5, 1, 0], [5, 0, 0], [5, 0, 1], [5, 2, 0], [4, 2, 0], [4, 0, 1], [4, 0, 0],
[4, 1, 0], [2, 1, 1], [2, 2, 1], [2, 2, 0], [2, 0, 1], [2, 0, 0], [2, 1, 0], [3, 1, 0], [3, 0, 0], [0, 1, 0]>.
T1 =< [0, 0, 0], [0, 1, 0], [0, 1, 1]>,
T2 =< [0, 0, 0], [0, 0, 1], [0, 2, 0], [0, 2, 1], [0, 1, 1]>,
T3 =< [0, 0, 0], [1, 0, 0], [1, 0, 1], [1, 2, 0], [1, 2, 1], [1, 1, 1], [1, 1, 0], [3, 0, 1],

[3, 0, 0], [3, 1, 0], [2, 1, 0], [2, 0, 0], [2, 0, 1], [2, 2, 0], [2, 2, 1], [2, 1, 1], [4, 1, 0], [4, 1, 1],
[3, 1, 1], [3, 2, 1], [3, 2, 0], [5, 1, 1], [5, 1, 0], [5, 0, 0], [5, 0, 1], [5, 2, 0], [5, 2, 1], [6, 2, 1],
[6, 1, 1], [6, 1, 0], [6, 0, 0], [6, 0, 1], [6, 2, 0], [4, 2, 1], [4, 2, 0], [4, 0, 1], [4, 0, 0], [0, 1, 1]>.
S1 =< [0, 0, 0], [0, 0, 1], [0, 2, 0]>,
S2 =< [0, 0, 0], [0, 1, 0], [0, 1, 1], [0, 2, 1], [0, 2, 0]>,
S3 =< [0, 0, 0], [1, 0, 0], [1, 0, 1], [1, 2, 0], [1, 2, 1], [1, 1, 1], [1, 1, 0], [3, 0, 1],

[3, 0, 0], [3, 1, 0], [3, 1, 1], [4, 1, 1], [4, 1, 0], [4, 0, 0], [4, 0, 1], [4, 2, 0], [4, 2, 1], [6, 2, 0],
[6, 0, 1], [6, 0, 0], [6, 1, 0], [2, 2, 1], [2, 1, 1], [2, 1, 0], [2, 0, 0], [2, 0, 1], [2, 2, 0], [5, 1, 0],
[5, 1, 1], [3, 2, 0], [3, 2, 1], [6, 1, 1], [6, 2, 1], [5, 2, 1], [5, 2, 0], [5, 0, 1], [5, 0, 0], [0, 2, 0]>.
U1 =< [0, 0, 0], [0, 0, 1], [0, 2, 0], [0, 2, 1]>,
U2 =< [0, 0, 0], [0, 1, 0], [0, 1, 1], [0, 2, 1]>,
U3 =< [0, 0, 0], [1, 0, 0], [1, 0, 1], [1, 2, 0], [1, 2, 1], [1, 1, 1], [1, 1, 0], [3, 0, 1],

[3, 0, 0], [3, 1, 0], [2, 1, 0], [2, 0, 0], [2, 0, 1], [2, 2, 0], [5, 1, 0], [5, 0, 0], [5, 0, 1], [5, 2, 0],
[4, 2, 0], [4, 0, 1], [4, 0, 0], [4, 1, 0], [2, 1, 1], [2, 2, 1], [6, 1, 0], [6, 1, 1], [6, 2, 1], [5, 2, 1],
[5, 1, 1], [3, 2, 0], [3, 2, 1], [3, 1, 1], [4, 1, 1], [4, 2, 1], [6, 2, 0], [6, 0, 1], [6, 0, 0], [0, 2, 1]>.

�

Lemma 4. For any α, β ∈ {0, 1, · · · , tk}, m ∈ {1, 2, · · · , tk − 3}, and α �= β, let

x ∈ V (DCellαk ) be an arbitrary white vertex, y ∈ V (DCellβk ) be an arbitrary

black vertex, and G0 = DCellαk ∪ DCellβk ∪ (
⋃m
θ=0DCell

ωθ

k ), where DCellαk ,

DCellβk , DCell
ω0

k , · · · , DCellωi

k , · · · , DCellωm

k are internally vertex-independent
with i ∈ {0, 1, · · · ,m} and ωi ∈ {0, 1, · · · , tk}. Then there exists a path between
x and y that containing every vertex in DCellk[V (G0)] where k ≥ 1 and t0 = 2.

Proof . Let G1 = DCellαk ∪DCellβk . Select z ∈ V (DCellαk ) and u ∈ V (DCellγk),
such that z �= x, (u, z) ∈ E(DCellk), and DCell

γ
k ⊆ G0, where two graphs G1

and DCellγk are internally vertex-independent. Select ω ∈ V (DCellβk ) and v ∈
V (DCellδk), such that ω �= y, (ω, v) ∈ E(DCellk), and DCell

δ
k ⊆ G0 where three

graphs G1, DCell
γ
k , and DCell

δ
k are internally vertex-independent. According to

Theorem 1, there exists a path P from x to z that containing every vertex in
DCellαk and a path Q from ω to y that containing every vertex in DCellβk .
Let G2 = G0[V (

⋃m
θ=0DCell

ωθ

k )]. We can construct a path S from u to v that
containing every vertex in G2 which is similar to Theorem 1. Then there exists
a path P +(z, u)+ S+ (v, ω) +Q between x and y that containing every vertex
in DCellk[V (G0)] where k ≥ 1 and t0 = 2. �

Lemma 5. DCellk is (k + 1)-DPC-able with k ≥ 2 and t0 = 2.
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Proof . We will prove this lemma by induction on the dimension k of DCell. By
lemma 3, the lemma holds for t0 = 2 and k = 2. For t0 = 2, supposing that the
lemma holds for k = τ (τ ≥ 2), we will prove that the lemma holds for k = τ+1.

For any vertex x, y ∈ V (DCellτ+1) with x �= y. Let x ∈ V (DCellατ ) and
y ∈ V (DCellβτ ) with α, β ∈ {0, 1, · · · , tτ}. We can identity α and β as follows.

Case 1. α = β. There exist (τ + 1) vertex disjoint paths {Pi|1 ≤ i ≤ τ + 1}
between any two distinct vertices x and y of DCellατ . Select u ∈ V (DCellγτ )
and v ∈ V (DCellδτ ), such that (x, u), (y, v) ∈ E(DCellτ+1), where three graphs
DCellατ , DCell

γ
τ , and DCellδτ are internally vertex-independent. According to

Lemma 4, there exists a path Pτ+2 from u to v that visits every vertex in
DCellτ+1[V (DCellτ+1−DCellατ )]. Then there exist (τ+2) vertex disjoint paths
{Pi|1 ≤ i ≤ τ + 2} between any two distinct vertices x and y of DCellτ+1.

Case 2. α �= β and (x, y) ∈ E(DCellτ+1). Let P1 =< x, y >. Select
x0 ∈ V (DCellατ ) (resp. y0 ∈ V (DCellβτ )), such that (x, x0) ∈ E(DCellατ ) (resp.
(y, y0) ∈ E(DCellβτ )). According to the induction hypothesis, there exist (τ +1)
vertex disjoint paths {P ′

i |2 ≤ i ≤ τ + 2} (resp. {Q′
j|2 ≤ j ≤ τ + 2}) between

any two distinct vertices x and x0 (resp. y0 and y) in DCellατ (resp. DCellβτ ).
Let P ′′

2 =< x, x0 > (resp. Q′′
2 =< y0, y >), P ′

i =< x, · · · , xi, x0 > (resp.
Q′
j =< y0, yj , · · · , y >), and P ′′

i = P ′
i − (xi, x0) (resp. Q

′′
j = Q′

j − (y0, yj)) with
3 ≤ i ≤ τ+2 (resp. 3 ≤ j ≤ τ+2). Furthermore, let zi ∈ V (DCellγiτ ) (resp. wj ∈
V (DCell

δj
τ )) with 2 ≤ i ≤ τ+2 (resp. 2 ≤ j ≤ τ+2) and (xi, zi) ∈ E(DCellτ+1)

(resp. (yi, wj) ∈ E(DCellτ+1)). Let W0 =
⋃τ+2
θ=2 DCell

γθ
τ , W1 =

⋃τ+2
θ=2 DCell

δθ
τ

and W = W0 ∪W1 ∪ DCellατ ∪ DCellβτ . For 2 ≤ i ≤ τ + 2, we can claim the
following two subcases with respect to DCellγiτ .

Case 2.1. DCellγiτ ⊆ W1. Select wj ∈ V (DCellγiτ ) such that 2 ≤ j ≤ τ +
2. According to Theorem 1, there exists path a S from zi to wj in DCellγiτ .
Furthermore, let W =W ∪DCellγiτ and Pi = P ′′

i + (xi, zi) + S + (wj , yj) +Q′′
j .

Case 2.2. DCellγiτ �⊆ W1. Select DCell
δj
τ+1 �⊆ W such that 2 ≤ j ≤ τ + 2.

Then, choose DCellpτ and DCellqτ , such that three graphs DCellpτ , DCell
q
τ , and

W are are internally vertex-independent with p, q ∈ {0, 1, · · · , tk}. Let W ′
i =

DCellγiτ ∪ DCell
δj
τ ∪ DCellpτ ∪ DCellqτ , according to Lemma 4, there exists a

path S from zi to wj in DCellτ [W
′
i ]. Furthermore, let W = W ∪W ′

i and Pi =
P ′′
i + (xi, zi) + S + (wj , yj) +Q′′

j .
Furthermore, select Pi, such that zi �∈ V (W1) and wj ∈ V (W ′

i ) where 2 ≤
i ≤ τ + 2 and 2 ≤ j ≤ τ + 2. According to Lemma 4, there exists path S
from zi to wj in DCellτ+1[V (W ′

i ) ∪ (V (DCellτ+1) − V (W ))]. Furthermore, let
Pi = P ′′

i + (xi, zi) + S + (wj , yj) +Q′′
j .

According to above discussions, there exist (τ+2) vertex disjoint paths {Pi|1 ≤
i ≤ τ + 2} between any two distinct vertices x and y of DCellτ+1.

Case 3. α �= β and (x, y) �∈ E(DCellτ+1). Select u ∈ V (DCellτ+1) (resp. v ∈
V (DCellτ+1)), such that (x, u) ∈ E(DCellτ+1) (resp. (y, v) ∈ E(DCellτ+1)),
u ∈ DCellφτ (resp. v ∈ DCellψτ ), and φ, ψ ∈ {0, 1, · · · , tk}, where DCellατ and
DCellφτ (resp. DCellβτ and DCellψτ ) are internally vertex-independent. We can
claim the following three subcases with respect to u and v.
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Case 3.1. u ∈ V (DCellβτ ). Select x0 ∈ V (DCellατ ), such that (x, x0) ∈
E(DCellατ ). Let y0 = u. According to the induction hypothesis, there exist
(τ + 1) vertex disjoint paths {P ′

i |2 ≤ i ≤ τ + 2} (resp. {Q′
j|1 ≤ j ≤ τ + 1})

between any two distinct vertices x and x0 (resp. y0 and y) in DCellατ (resp.
DCellβτ ). Let P1 = (x, y0) + Q′

1 and Q′′
τ+2 = ∅. Then, let P ′′

2 =< x, x0 >,
P ′
i =< x, · · · , xi, x0 > (resp. Q′

j =< y0, yj, · · · , y >), and P ′′
i = P ′

i − (xi, x0)
(resp. Q′′

j = Q′
j − (y0, yj)) with 3 ≤ i ≤ τ + 2 (resp. 2 ≤ j ≤ τ + 1). Further-

more, let zi ∈ V (DCellγiτ ) (resp. wj ∈ V (DCell
δj
τ )), where 2 ≤ i ≤ τ + 2 (resp.

1 ≤ j ≤ τ + 1), wτ+2 = v ∈ V (DCell
δτ+2
τ ), and (xi, zi) ∈ E(DCellτ+1) (resp.

(yi, wj) ∈ E(DCellτ+1)). The required {Pi|2 ≤ i ≤ τ + 2} paths can be derived
by the similar approach as the Case 2, so we skip it.

According to discussions in Case 3 and Case 3.1, there exist (τ + 2) vertex
disjoint paths {Pi|1 ≤ i ≤ τ + 2} between any two distinct vertices x and y of
DCellτ+1.

Case 3.2. v ∈ V (DCellατ ). The required paths can be derived by the similar
approach as the Case 3.1, so we skip it.

Case 3.3. u �∈ V (DCellβτ ) and v �∈ V (DCellατ ). Let P
′′
1 = Q′′

1 = ∅, x1 = x,
z1 = u, w1 = v and y1 = y. Select x0 ∈ V (DCellατ ) (resp. y0 ∈ V (DCellβτ )),
such that (x, x0) ∈ E(DCellατ ) (resp. (y, y0) ∈ E(DCellβτ )). According to the
induction hypothesis, there exist (τ +1) vertex disjoint paths {P ′

i |2 ≤ i ≤ τ +2}
(resp. {Q′

j|2 ≤ j ≤ τ + 2}) between any two distinct vertices x and x0 (resp. y0
and y) in DCellατ (resp. DCellβτ ). Let P

′′
2 =< x, x0 > (resp. Q′′

2 =< y0, y >),
P ′
i =< x, · · · , xi, x0 > (resp. Q′

j =< y0, yj, · · · , y >), and P ′′
i = P ′

i − (xi, x0)
(resp. Q′′

j = Q′
j− (y0, yj)) with 3 ≤ i ≤ τ +2 (resp. 3 ≤ j ≤ τ +2). Furthermore,

let zi ∈ V (DCellγiτ+1) (resp. wj ∈ V (DCell
δj
τ )), where 2 ≤ i ≤ τ + 2 (resp.

2 ≤ j ≤ τ + 2) and (xi, zi) ∈ E(DCellτ+1) (resp. (yi, wj) ∈ E(DCellτ+1)). The
required {Pi|1 ≤ i ≤ τ +2} paths can be derived by the similar approach as the
Case 2, so we skip it.

According to discussions in Case 3 and Case 3.3, there exist (τ + 2) vertex
disjoint paths {Pi|1 ≤ i ≤ τ + 2} between any two distinct vertices x and y of
DCellτ+1.

In summary, for any two distinct vertices x, y ∈ V (DCellτ+1), there exist
(τ+2) vertex disjoint paths {Pi|1 ≤ i ≤ τ +2} between any two distinct vertices
x and y of DCellτ+1. �

Lemma 6. For any t0 ≥ 3 and k ≥ 0, DCellk is (k + t0 − 1)-DPC-able.

Proof . We will prove this lemma by induction on the dimension k of DCell. For
any t0 ≥ 3, by Lemma 1, the lemma holds for k = 0. For any t0 ≥ 3, supposing
that the lemma holds for k = τ , where τ ≥ 0, the proof that the lemma holds
for k = τ + 1 is similar to that of lemma 5 and thus omitted. �

Theorem 3. DCellk is (k + t0 − 1)-DPC-able with k ≥ 0.
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Proof . By Lemma 1, the theorem holds for k = 0 and t0 ≥ 2. By Lemma 2, the
theorem holds for k = 1 and t0 = 2. By Lemma 5, the theorem holds for k ≥ 2
and t0 = 2. By Lemma 6, the theorem holds for t0 ≥ 3 and k ≥ 0. �

4 Conclusions

DCell has been proposed for one of the most important data center networks and
can support millions of servers with outstanding network capacity and provide
good fault tolerance by only using commodity switches. In this paper, we prove
that there exist r vertex disjoint paths {Pi|1 ≤ i ≤ r} between any two distinct
vertices u and v of DCellk (k ≥ 0) where n is the vertex number of DCell0
and r = n+ k − 1. The result is optimal because of any vertex in DCellk has r
neighbors with r = n+ k − 1. According to our result, the method in [8, 9] can
be used to decrease deadlock and congestion in multi-cast routing in DCell.
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