
K. Mori et al. (Eds.): MICCAI 2013, Part I, LNCS 8149, pp. 58–65, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Multi-atlas Based Simultaneous Labeling of Longitudinal 
Dynamic Cortical Surfaces in Infants 

Gang Li, Li Wang, Feng Shi, Weili Lin, and Dinggang Shen 

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA 

Abstract. Accurate and consistent labeling of longitudinal cortical surfaces is 
essential to understand the early dynamic development of cortical structure and 
function in both normal and abnormal infant brains. In this paper, we propose a 
novel method for simultaneous, consistent, and unbiased labeling of longitudin-
al dynamic cortical surfaces in the infant brain MR images. The proposed me-
thod is formulated as minimization of an energy function, which includes the 
data fitting, spatial smoothness and temporal consistency terms. Specifically, in 
the spirit of multi-atlas based label fusion, the data fitting term is designed to in-
tegrate adaptive contributions from multi-atlas surfaces, according to the simi-
larity of their local cortical folding with that of the subject surface. The spatial 
smoothness term is designed to adaptively encourage label smoothness based 
on the local folding geometries, i.e., also allowing label discontinuity at sulcal 
bottoms, where the cytoarchitecturally and functionally distinct cortical regions 
are often divided. The temporal consistency term is further designed to encour-
age the label consistency between temporal corresponding vertices with similar 
local cortical folding. Finally, the entire energy function is efficiently mini-
mized by a graph cuts method. The proposed method has been successfully ap-
plied to the labeling of longitudinal cortical surfaces of 13 infants, each with 6 
serial images scanned from birth to 2 years of age. Both qualitative and quantit-
ative evaluation results demonstrate the validity of the proposed method.   
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1 Introduction 

The human cerebral cortex develops dynamically in the first 2 years of life [1], with 
all primary and secondary cortical folding being well established at term birth [2]. 
Accurate and consistent labeling of longitudinal dynamic infant cortical surfaces into 
regions of interest (ROIs) is essential to understand postnatal development of cortical 
structure and function in both normal and abnormal infant brains. Many methods have 
been developed for the labeling of a single cortical surface. However, applying these 
methods to each longitudinal cortical surface independently is likely to generate lon-
gitudinally-inconsistent labeling results, especially in the ambiguous cortical regions, 
thus leading to inaccurate cortex development measurements. One strategy to ensure 
the longitudinal consistent labeling is to first label the cortical surface of a selected 
time point (usually the first or the last time point), and then propagate the labeling 
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result to other time points. However, the surface labeling results by this strategy could 
be biased by the selected time point, in addition to the potential propagation of labe-
ling errors. Accordingly, efforts have been made towards unbiased and consistent 
labeling of longitudinal cortical surfaces. For example, in the longitudinal pipeline of 
FreeSurfer, a within-subject template is first built by rigidly aligning all longitudinal 
images of a subject to a median image, and then the cortical surfaces of the within-
subject template are reconstructed and labeled. These labeled cortical surfaces will be 
rigidly transformed back to the space of each longitudinal image as initialization and 
further deformed independently to refine the labeling results [3]. Although this inde-
pendent refinement may be suitable for the adults with small longitudinal changes, it 
becomes problematic when applied to the infants with dynamic longitudinal changes.  

In this paper, we propose a novel method for simultaneous, consistent, and un-
biased labeling of longitudinal dynamic cortical surfaces in serial infant brain MR 
images. The proposed method is formulated as minimization of an energy function, 
which includes the data fitting, spatial smoothness, and temporal consistency terms. 
The data fitting term is designed to integrate adaptive contributions from multiple 
atlas surfaces, according to the similarities of their local cortical folding with the sub-
ject surface. The spatial smoothness term is also designed to adaptively encourage 
label smoothness based on the local folding geometries. The temporal consistency 
term is further designed to adaptively encourage longitudinal label consistency based 
on the temporal similarities of local cortical folding. The energy function is efficiently 
minimized by the alpha-expansion graph cuts method [4]. The proposed method has 
been successfully applied to labeling of longitudinal cortical surfaces of 13 infants, 
each with 6 serial images in the first 2 years of life. Both qualitative and quantitative 
evaluation results demonstrate the accuracy and consistency of the proposed method.  

2 Methods 

2.1 Dataset and Image Preprocessing 

Serial T1, T2, and diffusion-weighted MR images of 13 healthy infants (9 males/4 
females) were acquired at every 3 months from 2 weeks to 1.5 years of age, using a 
Siemens 3T head-only MR scanner. T1 images (160 axial slices) were acquired with 
the following imaging parameters: TR/TE = 1900/4.38ms, flip angle = 7, resolution = 1 ൈ 1 ൈ 1 mm3. T2 images (70 axial slices) were acquired with the imaging parame-
ters: TR/TE = 7380/119ms, flip angle = 150, resolution = 1.25 ൈ 1.25 ൈ 1.95 mm3. 
Diffusion-weighted images (DWI) (60 axial slices) were acquired with the parame-
ters: TR/TE = 7680/82 ms, resolution = 2 ൈ 2 ൈ 2 mm3, 42 non-collinear diffusion 
gradients, and diffusion weighting b =1000s/mm2. Distortion correction of DWI was 
also performed. T2 images and fractional anisotropy (FA) images, derived from DWI, 
were rigidly aligned onto their T1 images and further resampled to 1 ൈ 1 ൈ 1 mm3. 
For each set of aligned T1, T2, and FA images, non-cerebral tissues were removed. 
Then, all longitudinal images of the same infant were rigidly aligned. Brain tissue was 
segmented by a 4D level-set method by integration of the complementary information 
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of T1, T2 and FA images [5]. After tissue segmentation, non-cortical structures were 
masked and filled, and each brain was separated into left and right hemispheres. 

Then, the inner cortical surface (the interface between white matter (WM) and gray 
matter (GM)) of each hemisphere was reconstructed by correcting topological defects 
and tessellating WM as a triangular mesh [1]. The inner cortical surface was further 
inflated and mapped to a standard sphere [6]. All longitudinal cortical surfaces of the 
same infant were group-wisely aligned to establish within-subject correspondences 
using Spherical Demons [7]. Fig. 1(a) shows the longitudinal inner surfaces of a rep-
resentative infant, color-coded by the mean curvatures. Fig. 1(b) shows group-wisely 
aligned longitudinal spherical surfaces of the infant, again color-coded by the mean 
curvatures. As can be seen, all primary and secondary cortical folding are well estab-
lished at term birth. Moreover, the longitudinal cortical folding are quite stable during 
postnatal development and thus are well aligned by group-wise surface registration.  

The publically available 39 cortical surfaces with manual parcellation based on 
sulcal bottoms by experts [7, 8] were adopted as multi-atlas surfaces. Information on 
image acquisition and demographics can be found in [8]. To warp atlas surfaces to 
subject surfaces, all atlas surfaces were first group-wisely aligned using Spherical 
Demons [7]. Then each longitudinal surface of the subject was aligned onto the 
group-wisely aligned atlas surfaces [7]. Finally, the deformation field from each atlas 
surface to the subject surface was computed by concatenating the deformation field 
from this atlas surface to the group-wisely aligned atlas surfaces and the deformation 
field from the group-wisely aligned atlas surfaces to the subject surface. Accordingly, 
each atlas surface can be warped to each subject surface. Note that the group-wise 
alignment is only required to perform one time, and can be used for all subjects, thus  
 

 

Fig. 1. (a) Longitudinal inner cortical surfaces of a representative infant, color-coded by the 
mean curvatures. (b) Group-wisely aligned longitudinal spherical surfaces of the infant, color-
coded again by the mean curvatures. Red colors indicate sulci and blue colors indicate gyri. 
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this strategy is computationally much more efficient than the conventional way of 
pair-wise registration between each atlas surface and each longitudinal surface of the 
subject. On the other hand, due to the inter-individual variability of the cortical fold-
ing patterns and also the regularization constraints in the registration, a subject surface 
and each warped atlas surface might not have the maximum similarity of their local 
cortical folding. This issue will be taken care for surface labeling in the section 2.2. 

2.2 Simultaneous Labeling of Longitudinal Cortical Surfaces 

The proposed method for simultaneous, consistent, and unbiased labeling of longitu-
dinal cortical surfaces in the infant is formulated as an energy minimization problem: ܧ ൌ ௗܧ ൅ ௦ܧ௦ߙ ൅  ௧                                 (1)ܧ௧ߙ

where ܧௗ  is the data fitting term, ܧ௦  is the spatial smoothness term, and ܧ௧  is  
temporal consistency term. ߙ௦ and ߙ௧ are the weighting parameters.  

Data Fitting Term. To define the data fitting term, we take advantage of multi-atlas 
based methods, which account for atlas-subject variability [9]. Given ܭ atlas surfaces 
with each having ܮ labels, the data fitting term is defined as: ܧௗ ൌ ∑ െ݈݃݋ ௫ܲሺ݈௫ሻ௫                                    (2ሻ 

where ௫ܲሺ݈௫ሻ indicates the probability of assigning a label ݈௫ א ሼ1, … ,  in a subject surface. The label probability at a vertex is computed based on the ݔ ሽ to a vertexܮ
shape information of labels in the atlas surfaces, as well as the differences of local 
cortical folding between the subject surface and atlas surfaces. The latter is defined 
based on the average absolute difference of mean curvatures in local surface patches: ܦ൫ܵሺݔሻ, ܵሺݔ௞ሻ൯ ൌ ଵ|ఆೄ| ∑ ሻݕሺܪ| െ ఆೄא௞ሻ|௬ݕሺܪ                    (3) 

where ܦሺ·,·ሻ is the cortical folding difference between two surface patches, and ܵሺ·ሻ 
is a local surface patch, defined as a circular region ߗௌ on the spherical surface with 
the radius of 2.5݉݉ (set experimentally) surrounding a center vertex. |ߗௌ| is the 
number of vertices in the surface patch. ݔ௞ is the corresponding point in atlas surface ݇, for the vertex ݔ in a subject surface. ݕ is a vertex in the subject surface patch, and ݕ௞  is its corresponding point in the atlas surface ݇. ܪሺ·ሻ is the mean curvature. 

To use the shape information of labels in atlas surfaces, we adopt the logarithm of 
odds model [9] based on the signed geodesic distance map on the original cortical 
surface, computed by the fast marching method on triangular meshes. Denoting ݀௞,௟ೣሺ·ሻ as the signed geodesic distance map of label ݈௫ in the atlas surface ݇ that 
has been warped to the subject surface, and also setting the inside of the label being 
positive values, the label probability of the vertex ݔ is finally defined as: 

௫ܲሺ݈௫ሻ ൌ ଵ௄ ∑ exp ቀെγܦ൫ܵሺݔሻ, ܵሺݔ௞ᇱ ሻ൯ቁ כ ଵ௓ೖ൫௫ೖᇲ ൯ exp ቀ݀ߚ௞,௟ೣሺݔ௞ᇱ ሻቁ௄௞ୀଵ           ሺ4ሻ 

where ܼ௞ሺݔ௞ᇱ ሻ ൌ ∑ exp ሺ݀ߚ௞,௟ሺݔ௞ᇱ ሻሻ௅௟ୀଵ  is the partition function for atlas surface ݇. The 
first term in Eq. (4) is the weight of the atlas surface ݇, and the second term in  
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Eq. (4) is the probability of observing label ݈௫ at subject vertex ݔ based on the atlas 
surface ݇. Positive parameters ߚ and γ are experimentally set as 1.0 and 2.0, respec-
tively. ݔ௞ᇱ  could be the corresponding point ݔ௞ in the atlas surface ݇ for the subject 
vertex ݔ  determined by surface registration. However, it might not achieve the max-
imum similarity of local cortical folding due to registration errors. Therefore, after 
surface registration, a better corresponding point ݔ௞ᇱ  in the atlas surface ݇ for the 
subject vertex ݔ can be further determined by local searching for the most similar 
surface patch: ݔ௞ᇱ ൌ arg min ,ሻݔሺܵሺܦ  ܵሺݔ௞כሻሻ, כ௞ݔ א ܰሺݔሻ. ܰሺ·ሻ is the search range, de-
fined as a circular region on the spherical surface with the radius of 2.5݉݉ sur-
rounding the vertex ݔ.  

Spatial Smoothness Term. The spatial smoothness term represents the sum of the 
costs of labeling a pair of spatial neighboring vertices in a subject surface: ܧ௦ ൌ ∑ ௫ܸ,௬௦ ሺ݈௫, ݈௬ሻሼ௫,௬ሽאேೞ                              ሺ5ሻ 

where ௦ܰ is the set of the one-ring neighboring vertex pairs in a cortical surface. ௫ܸ,௬௦  
indicates the cost of labeling a pair of spatial neighboring vertices ݔ and ݕ as ݈௫ and ݈௬, respectively. The costs of discontinuous labeling are set as small values at highly 
bended cortical regions, e.g. sulcal bottoms, where the cytoarchitecturally and func-
tionally distinct cortical regions are often divided, similarly as done by the manual 
labels in atlas surfaces by experts [8]. The costs of discontinuous labeling are set as 
large values at other regions, i.e. flat cortical regions. ௫ܸ,௬௦ ሺ݈௫, ݈௬ሻ is thus defined as: 

 ௫ܸ,௬௦ ൫݈௫, ݈௬൯ ൌ ൫ଵାܖሺ௫ሻ·ܖሺ௬ሻ൯ଶ כ ൫௘ష|ಹሺೣሻ|ା௘ష|ಹሺ೤ሻ|൯ଶ כ ሺ1 െ ሺห݈௫ߜ െ ݈௬หሻሻ (6) 

where ܖ  is the normal direction and ߜ  is the Dirac delta function. If ݈௫ ൌ ݈௬ ൫ห݈௫ߜ , െ ݈௬ห൯ ൌ 1; otherwise, ߜ൫ห݈௫ െ ݈௬ห൯ ൌ 0. Therefore, ௫ܸ,௬௦ ൫݈௫, ݈௬൯ is 0, if ݈௫ ൌ ݈௬ . At 
highly bended cortical regions, e.g. sulcal bottoms, ݔ and ݕ belonging to different 
regions generally have quite different normal directions and also large magnitudes of 
mean curvatures, therefore, both the first and second terms in Eq. (6) are small val-
ues; while ݔ and ݕ in the same region generally have the similar normal direction 
but large magnitudes of mean curvatures, only the second term in Eq. (6) is a small 
value. If ݔ and ݕ are at other cortical regions, i.e. flat cortical regions, their normal 
directions will be quite similar and their magnitudes of mean curvatures are close to 0, 
thereby, both the first and second terms in Eq. (6) are close to 1. 

Temporal Consistency Term. The temporal consistency term represents the sum of 
the costs of labeling a pair of temporal corresponding vertices between a pair of longi-
tudinal cortical surfaces: ܧ௧ ൌ ∑ ௫ܸ,௬௧ ሺ݈௫, ݈௬ሻሼ௫,௬ሽאே೟ ൌ ∑ exp ቀെγܦ൫ܵሺݔሻ, ܵሺyሻ൯ቁ ሺ1 െ ሺห݈௫ߜ െ ݈௬หሻሻሼ௫,௬ሽאே೟   (7) 

where ௧ܰ is the set of temporal corresponding vertex pairs, and defined in any two 
longitudinal surfaces in a subject. ௫ܸ,௬௧  indicates the cost of labeling a pair of temporal 
corresponding vertices ݔ and ݕ as ݈௫ and ݈௬, respectively. The cost of discontinuous 
labeling of a pair of temporal corresponding vertices is set based on their local  
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hemisphere in each of the 13 subjects, according to the mean-curvature based cortical 
surface labeling protocol in [8]. We calculate the Dice coefficients between automatic 
and manual labeling regions. Fig. 4 shows the Dice coefficients of PreCG and STG 
on the 13 subjects by 3 different methods. The average Dice coefficients for 
PreCG/STG are 0.941/0.939 (proposed method), 0.932/0.930 (proposed method with-
out temporal constraint (by setting ߙ௧ as 0)), and 0.918/0.914 (FreeSurfer), respec-
tively. As can be seen, the proposed method achieves the highest Dice coefficient.   

To further demonstrate the consistency of the longitudinal surface labeling results, 
Fig. 5(a) shows label boundaries of the aligned longitudinal spherical surfaces of a 
typical subject by the proposed method and FreeSurfer. As can be seen, the proposed 
method achieves temporally more consistent labeling boundaries than FreeSurfer. To 
quantitatively evaluate the consistency, we compute the average value of mean sym-
metric distance of boundaries [8] for labeled regions between each pair of aligned  
longitudinal surfaces in each of 13 infants, as shown in Fig. 5(b). The average boun-
dary distance by 3 methods are 0.52±0.002mm (proposed method), 0.75±0.03mm 
(proposed method without temporal constraint), and 0.90±0.03mm (FreeSurfer),  
respectively. The proposed method achieves the lowest boundary distance.  

 

Fig. 3. Close-up views of representative longitudinal cortical surface labeling results. (a) and 
(c) Results by the proposed method. (b) and (d) Results by FreeSurfer. Yellow arrows indicate 
several regions with longitudinally-inconsistent labels by FreeSurfer.  

 

Fig. 4. Dice coefficients of precentral (left) and superior temporal (right) gyri by the proposed 
method, the proposed method without temporal constraint, and FreeSurfer on 13 subjects 
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Fig. 5. (a) Label boundaries of all aligned longitudinal surfaces of a typical subject, overlaid on 
the mean spherical surface that is color-coded by the average mean curvatures. Red curves are 
the results by the proposed method, and white curves are the results by FreeSurfer. (b) Average 
boundary distance of all labels between every pair of aligned longitudinal surfaces in each of 13 
infants by the proposed method (with and without temporal constraint) and FreeSurfer. 

4 Discussion and Conclusion 

This paper presented a novel method for consistent labeling of longitudinal dynamic 
infant cortical surface using multi-atlas surfaces. The preliminary results on 13 infants 
demonstrated its promising performance. Our main contributions are: first, we pro-
posed a data fitting term based on the shape information adaptively derived from atlas 
surfaces; second, we proposed a spatial smoothness term adaptive to the cortical fold-
ing geometries and also a temporal consistency term adaptive to the temporal similari-
ties of the cortical folding. Our future work includes parameter optimization, more 
validation, and application to a large-scale dataset for early brain development study.  
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