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Abstract. Atlases have a tremendous impact on the study of anatomy
and function, such as in neuroimaging, or cardiac analysis. They provide
a means to compare corresponding measurements across populations, or
model the variability in a population. Current approaches to construct
atlases rely on examples that show the same anatomical structure (e.g.,
the brain). If we study large heterogeneous clinical populations to capture
subtle characteristics of diseases, we cannot assume consistent image
acquisition any more. Instead we have to build atlases from imaging data
that show only parts of the overall anatomical structure. In this paper we
propose a method for the automatic contruction of an un-biased whole
body atlas from so-called fragments. Experimental results indicate that
the fragment based atlas improves the representation accuracy of the
atlas over an initial whole body template initialization.

Keywords: Anatomical atlas construction, Medical imaging fragments,
Average shape and intensity model, Landmark transformation accuracy.

1 Introduction

Models that represent common characteristics of a specific anatomical structure,
or atlases are at the center of medical imaging analysis in the context of quanti-
tative morphometric population analysis, or as a reference frame to summarize
functional data across large cohorts. In computational anatomy anatomical at-
lases have been constructed for single organs such as the brain [3], or for entire
body regions such as the abdomen [6]. Anatomical atlases help to automati-
cally distinguish between healthy and pathological subjects [4] or to segment
or annotate anatomical structures contained in the imaging data [8]. Existing
approaches commonly rely on the presence of the same anatomical structure of
interest in all examples that form the training data for the atlas, and the target
data the atlas is applied to. This is feasible for organ specific studies, such as in
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Fig. 1. Overview of fragment to WB reference space registration. The goal is to find a
transformation TFi,R which registers a fragment Fi with the WB reference template R.

neuroimaging, where the brain is the focus of analysis [1]. It is not feasible for
building a representative model of the entire human body. In clinical practice,
only those parts of the anatomy relevant for diagnosis are imaged [2]. We call
these imaging data fragments. To use this data for population studies, to repre-
sent anatomical variability, or to identify characteristics of pathologies we need
methodology to build an atlas from fragment data.

The contribution of this work is an atlas construction framework to construct
an un-biased template from clinical medical imaging fragment data. Fragments
acquired during clinical routine cover the human body in overlapping regions.
The proposed atlas construction allows for the dense sampling of a wide range of
anatomical regions in a clinical population. It goes beyond building and stitching
individual atlases that represent individual anatomical regions. Furthermore, the
atlas adds structure to arbitrary clinical imaging data examples, that constitute
its training population. The framework provides functionality to localize the
region of a fragment in relation to a Whole Body (WB) reference template and
to register the fragment within the WB reference space. Based on the fragments
the average shape and intensity template is updated. The method is closely
related to Guimond et. al. [3] but extends it to image fragments. This fragment
based model enables the bundling of imaging fragments within a single common
WB reference space.

The results indicate that our approach is feasible, and is able to construct
an atlas in situations where a large fraction of the data shows only part of
the structure of interest. After an initial fit to a WB template the fragment
registrations, and the template are updated and refined in an iterative process
that further reduces bias.

2 Methods

Given a set of fragments F1, ...,FN , where Fi ∈ R
mi×ni×hi , we seek to find

a reference template R ∈ R
m×n×h and corresponding transformations TFi,R so

thatTFi,R maps each position between the reference template and the individual
fragment. To initialize the group-wise registration, all fragments are registered
to a WB volume, that can either be a single individual, or the result of group-wise
registration of multiple WB volumes. For each fragment the corresponding region
(reference space fragment) FR,i in R is determined. Then, the fragments Fi are
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Fig. 2. Overview of miniature similarity based robust center estimation

registered to their corresponding region FR,i. After initialization the template
is updated to represent both shape and appearance variation in the fragment
population, and the fragments are registered to the updated template iteratively.
This leads to an increasinlgy un-biased template RF representing the population
of fragments [3]. Fig. 1 illustrates all components contributing to the registration
problem addressed. The main computation steps of the algorithm are: (1) For
each fragment Fi estimate the center ci in R. (2) Estimate the corresponding
reference fragment FR,i. (3) Non-rigidly register Fi to FR,i. (4) Compute up-
dated fragment based shape and intensity population model RF based on the
registered fragments. In the following we describe the steps in detail.

2.1 Fragment Center Estimation

The first step to register Fi to R is to estimate its center position ci in R. This
is based on calculating the appearance similarity of the fragment Fi and a set of
fragments Fc

j with known center points ccj , following an approach proposed in
[2]. Fig. 2 provides an overview of the center estimation algorithm. For each Fc

j

we construct a miniature Mj by resizing it to dimensions of 32× 32× 32 voxels.
Fi is downscaled analogously. We compute the Normalized Cross Correlation
(NCC) and select those k miniatures for whom this similarity is highest.

Given the centers cc1, ..., c
c
k of of the k top ranked miniatures, we calculate the

median position, and keep the 50 percent of estimates closest to the median. The
region containing these estimates is denoted as Region of Trimmed Estimates
(RTE). From this set we calculate the center estimate by ci =

1
k/2

∑
ccj∈RTE ccj

for Fi. This estimate is used to initialize the transformation and the fragment
region in the WB template.

2.2 Fragment Region Estimation

Based on ci we estimate the region inR corresponding to the fragment. We refine
the fragment center estimate ci as well as the region IFR,i (voxel coordinates)
of the reference fragment FR,i (intensity volume) with respect to R iteratively.
The initial region IFR,i corresponding to the fragment is spanned by the bound-
ing box, with same dimensions as the fragment, centered around ci, defined by
coordinates of two opposite corners xcor1,i and xcor2,i. The input fragment Fi is
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affinely registered to the corresponding reference fragment FR,i = R(IFR,i) re-
sulting in an affine transformation Ta

Fi,R
. Based on Ta

Fi,R
, we update IFR,i . For

the region update the two homogeneous corner coordinates xcor1,i and xcor2,i are

transformed by the inverse of Ta
Fi,R

. i.e., x1
cor l,i = Ta,−1

Fi,R
(xcor l,i) with l = 1, 2.

The updated corresponding region I1FR,i
of the fragment is now spanned by the

transformed corner points x1
cor1,i and x1

cor2,i leading to an updated reference

space fragment F1
R,i and a rigid component Tr

Fi,R
of the transformation TFi,R.

The updated center position c1i is computed as the arithmetic mean of the trans-
formed corner points.

The localization procedure is iterated with the updated reference fragment
until the region estimate IkFR,i

converges. We keep the affine transformation
Ta

Fi,R
of the final iteration k as initialization for the non-rigid registration.

2.3 Non-rigid Registration of the Fragment to the WB Template

The previous computation step estimates the corresponding reference space frag-
ment FR,i and region IFR,i of the input fragment Fi in the WB template R.
The final step of fragment to WB registration is the non-rigid registration of the
query fragment Fi with the reference space fragment FR,i yielding the non-rigid
transformation Tnr

Fi,R
. For registration B-spline based Free Form Deformation

(FFD) is used [7],[5]. The final result is an embedding of the non-rigidly regis-
tered fragment F′

i in the WB reference template R as well as the corresponding
transformation TFi,R = Tnr

Fi,R
◦Ta

Fi,R
◦Tr

Fi,R
.

2.4 Fragment Based Un-biased WB Reference Template Update

With the algorithm described in the previous subsections, we register fragments
Fi with i = 1, ..., N to a common reference template R ∈ R

m×n×h. In the first
stage fragments are registered to an initial template R0. After the first iteration,
this template is updated based on the fragment appearance, and deformation
information, to obtain an un-biased template. For each fragment Fi we have the
corresponding region IFR,i in R, the reference fragment FR,i, the transformation

TFi,R, and the transformed fragment F′
i = Fi(T

−1
Fi,R

(x)).
Based on these components the shape and intensity averaging, proposed by

Guimond et. al. [3] is enhanced to a fragment based model. For a region con-
strained shape and intensity averaging we calculate for every voxel x in R, the
set of fragments I(x) = {i|T−1

Fi,R
(x) ∈ Fi} that contribute to it as well as the

corresponding number of contributors N(x) = |I(x)|. Based on N(x) the aver-

age fragment registration F
′ ∈ R

m×n×h is formalized as F
′
(x) = 1

N(x)

∑
i∈I(x)

Fi(T
−1
Fi,R

(x)). The transformations of the fragments towards R are averaged

in each voxel x, i.e., TF = M(Tnr
Fi,R

) where i ∈ I(x). In practice we follow
Guimond et. al [3] and estimate the mean by averaging the vector fields of
the non-rigid transformations. We exclude rigid and affine transformations from
un-biasing, since they mainly capture variability in image acquisition (e.g., body
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Fig. 3. Construction results of the fragment based WB shape and intensity model RF

on 60 head, thorax, and abdomen fragments

region imaged, resolution), and assume that the population variability is encoded
in the non-rigid component of the transformations. The fragment based average
shape and intensity model R1

F of iteration one is computed by applying the re-

gion dependent inverse average deformationT
−1

F to the region dependent average

intensity registration image F
′
. This results in R1

F (x) = F
′
(T

−1

F (x)) and draws

the shape of the average intensity registration F
′
towards the geometric popu-

lation center of the training fragments [3]. The result is an un-biased fragment
based model R1

F representing the underlying fragment population F1, ...,FN .
We proceed by again registering the fragments to this template, and updating
the template Rk

F iteratively, until convergence.

3 Experimental Results

We evaluate the fragment based WBA construction on data that includes a sin-
gle initial WB Computed Tomography (CT) volume R and 60 CT fragments
Fi encompassing parts of the body including head, thorax, or abdomen. All
volumes are isotropic and have a voxel dimension of 2 mm. In each fragment
expert annotated bone landmarks are placed for evaluation, if present. They are
used as reference for validation of registration accuracy, and the representational
power of the atlas. The aim of the experiment is to show, (1) that the proposed
method is capable to register medical imaging fragments containing locally lim-
ited anatomical regions to a common WB reference template R and (2) that the
fragment based model RF improves the representation of the imaging data in
comparison to the initialization R.

3.1 Experimental Setup

All 60 fragments Fi are registered with the WB template R resulting in the
registered fragments F′

i and the corresponding transformations TFi,R (see sub
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section 2.2 and Subsection 2.3). Fragment center estimation was based on 1200
annotated fragments. The registrations are used to compute the average frag-
ment model RF as described in sub section 2.4. Fig. 3 summarizes the results
and shows the resulting fragment based model RF . Additionally the contribu-
tion of each training fragment Fi to the respective region of RF is highlighted.
In Fig. 3(c) blue rectangles indicate the bounding boxes of the fragments in the
reference space.

After model computation all fragments are registered to the updated, un-
biased fragment based template RF . The registration transformations TFi,R

and TFi,RF are applied to the coordinates of the landmarks annotated in the
respective fragments. This yields landmark distributions containing the position
estimates for each of the landmark positions in the two reference spaces R and
RF . As evaluation measure the centroid of these landmark distributions as well
as the mean distance of all landmarks in a distribution to their centroid are
computed. If the method proposed is valid, the average distance to the centroids
is expected to decrease for the fragment based model RF .

3.2 Evaluation of Landmark Transformation Accuracy

Fig. 4 shows the initial WB template R in comparison to the fragment based
model RF . In addition to the maximum intensity projections the one, two, and
three standard deviation areas of the transformed landmark distributions are
visualized as ellipses. The numbers identify individual landmarks, annotated in
the fragments. For both cases we registered the individual fragments to the tem-
plate. We interpret a lower spread of the mapped positions as an indicator that
the template is a better representative of the population. The fragment based
model provides an improved representation of the fragment data, in particular in
the abdominal region (landmark 32, 47-52). The bar plot in Fig. 5a presents the
mean distances of the landmarks in a distribution to their centroid. The original
WB template R is shown in blue; the fragment based model RF in red.

In the abdominal region the transformation error decreases for the fragment
based model in each of the seven landmarks (32, 47-52). The average distance
over all seven landmarks decreases from 8.7 mm to 7.1 mm (-1.6 mm). Landmark
52 shows a maximum decrease of -2.58 mm. For the thorax region, the average
distance shows a decrease for the first four landmarks (29, 30, 31, 33) and an
increase for the remaining four of the eight landmarks (34, 47, 48, 49). The
accuracy improvement over all thorax landmarks is summarized by an average
transformation error decrease from 6.23 mm to 6.08 mm (-0.15 mm). The aver-
age distance to the center of the landmark distribution in the head fragments
decreases for landmark 35, 36, 37, 41 and 42. The average distance of landmark
40 and 50 is not effected by the model. Landmark 38 and 39 show an increased
distance. The accuracy improvement over all head landmarks is summarized by
an average transformation error decrease from 3.96 mm to 3.82 mm (-0.14 mm).

Fig. 5b summarizes the average landmark transformation improvement
achieved by the fragment based model for each landmark. Values below zero in-
dicate that the model performs correct in the region of the respective landmark.
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(a) Initial WB template R. (b) Fragment based WB model RF .

Fig. 4. Landmark distributions before and after fragment based un-biased WB tem-
plate computation. The ellipses indicate the distribution of landmarks mapped from
all fragments the template. Ideally they should coincide. The fragment based model
improves the agreement.
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(a) Average distance of landmark distributions to their centroids.

(b) Average improvement of landmark transformation accuracy.

Fig. 5. Landmark transformation accuracy of abdominal fragments before and after
fragment based WB template update. (blue: initial WB reference R, red: fragment
based WB template RF ).

The landmark transformation accuracy is increased for 16 landmarks, remains
the same for landmark 40 and 50, and decreases for 6 of the 24 landmarks. The
best results are achieved in the abdominal region.

This increased landmark transformation accuracy indicates that it is feasible
to construct a whole body template from fragments. All fragment positions were
located reliably during the initial center estimate. The decreased registration
error of the landmarks shows that the fragment based WB model improves the
representation of the underlying fragment population. Note that we did not
explicitly evaluate the effect of pathologies present in the fragments at this point.
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4 Conclusion

We propose methodology for constructing a WBA from fragments. The fragment
based atlas is motivated by the fact, that typically individual medical imaging
data recorded in hospitals do not cover the entire body region, while their inclu-
sion into atlas building is necessary if we aim for a representative model of a large
population [2,3]. This is relevant to represent the natural variability for model
learning [3], disease characterization [4], or epidemiological research [9]. Existing
approaches take only examples that cover identical anatomical structures into
account (e.g., the brain [4]). The present work overcomes this limitation. The
method estimates the position as well as the precise mapping between coordi-
nates of a fragment and the WB reference fully automatically. In an iterative
procedure the fragments are registered to a WB template, and this template is
updated to reduce bias. The results show that our approach is feasible if the
majority of the data consists of fragments, and reduces bias compared to an
initial WB template.

References

1. Dale, A.M., Fischl, B., Sereno, M.I.: Cortical surface-based analysis – i. segmentation
and surface reconstruction. Neuroimage 9, 179–194 (1999)

2. Donner, R., Haas, S., Burner, A., Holzer, M., Bischof, H., Langs, G.: Evaluation of
fast 2d and 3d medical image retrieval approaches based on image miniatures. In:
Müller, H., Greenspan, H., Syeda-Mahmood, T. (eds.) MCBR-CDS 2011. LNCS,
vol. 7075, pp. 128–138. Springer, Heidelberg (2012)

3. Guimond, A., Meunier, J., Thirion, J.P.: Average brain models: A convergence study.
Computer Vision and Image Understanding 77(2), 192–210 (2000)

4. Joshi, S., Davis, B., Jomier, B.M., Gerig, G.: Unbiased diffeomorphic atlas construc-
tion for computational anatomy. Neuroimage 23 (suppl. 1), 151–160 (2004)

5. Modat, M., Ridgway, G.R., Taylor, Z.A., Lehmann, M., Barnes, J., Hawkes, D.J.,
Fox, N.C., Ourselin, S.: Fast free-form deformation using graphics processing units.
Comput. Methods Prog. Biomed. 98(3), 278–284 (2010)

6. Park, H., Bland, P.H., Meyer, C.R.: Construction of an abdominal probabilistic atlas
and its application in segmentation. IEEE TMI 22(4), 483–492 (2003)

7. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.:
Nonrigid registration using free-form deformations: application to breast MR im-
ages. IEEE TMI 18(8), 712–721 (1999)

8. Sabuncu, M.R., Yeo, B.T.T., Van Leemput, K., Fischl, B., Golland, P.: A Generative
Model for Image Segmentation Based on Label Fusion. IEEE TMI 29(10), 1714–1729
(2010)

9. Sabuncu, M.R., Balci, S.K., Shenton, M.E., Golland, P.: Image-driven population
analysis through mixture modeling. IEEE TMI 28(9), 1473–1487 (2009)


	Constructing an Un-biased Whole Body Atlas from Clinical Imaging Data by Fragment
Bundling
	1 Introduction
	2 Methods
	2.1 Fragment Center Estimation
	2.2 Fragment Region Estimation
	2.3 Non-rigid Registration of the Fragment to the WB Template
	2.4 Fragment Based Un-biased WB Reference Template Update

	3 Experimental Results
	3.1 Experimental Setup
	3.2 Evaluation of Landmark Transformation Accuracy

	4 Conclusion
	References




