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Abstract. We present a new framework for diffeomorphic image regis-
tration which supports natural interpretations of spatially-varying met-
rics. This framework is based on left-invariant diffeomorphic metrics
(LIDM) and is closely related to the now standard large deformation
diffeomorphic metric mapping (LDDMM). We discuss the relationship
between LIDM and LDDMM and introduce a computationally conve-
nient class of spatially-varying metrics appropriate for both frameworks.
Finally, we demonstrate the effectiveness of our method on a 2D toy
example and on the 40 3D brain images of the LPBA40 dataset.

1 Introduction

Medical image registration often consists in estimating the transformation ¢
which “best” maps images I and J. In diffeomorphic registration frameworks,
¢ is constrained to be a diffeomorphism, and in particular invertible. Successful
diffeomorphic approaches include the Large Deformation Diffeomorphic Metric
Matching framework (LDDMM) [I33], and the closely-related Symmetric Nor-
malisation (SyN) algorithm [2], as well as LogDemons [14]. In the LDDMM
framework, we seek a path of diffeomorphisms ¢(t), such that ¢(0) is the iden-
tity and ¢(1) is the final transformation of the image. The spatial (Eulerian)
velocity of a path ¢(t) is the time-varying vector field v defined by

Fp(t) = v(t) 0 ¢(1), (1)

where the the symbol o denotes composition. Given a Hilbert space V' of smooth
vector fields with norm ||.||y, the matching problem is to find a time-varying
vector field v that minimises the functional
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under the constraint (). The minimisation problem () is well-posed provided
that the norm on V is sufficiently strong in terms of smoothness. The first term
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of @) is a “regularisation term” (or “energy term”) that serves both to guarantee
a well-posed problem and to force ¢ to stay “small”. In practice, V is defined
by its reproducing kernel K which is often chosen to be Gaussian.

Spatially-varying or non-isotropic regularisation is of great interest in med-
ical applications, where it can represent variable deformability of tissue. For
example, [7] models sliding conditions between the lungs and the ribs using
piecewise-diffeomorphic transformations, i.e. transformations which are diffeo-
morphic in different regions only, and not in the whole image domain. Another
recent example is the direction-dependent regularisation in [8], which computes
displacement fields directly (and so large deformations may be non-invertible).
Both of these papers use a fixed regularisation scheme based on prior anatomical
knowledge. Neither paper uses fully diffeomorphic transformations.

Spatially-varying (or non-isotropic) regularisation within a diffeomorphic
framework is clearly of interest, however it has not appeared in the literature
until now. In LDDMM and SyN, we believe that this is because their stan-
dard interpretation in terms of moving source images does not support a natural
interpretation of a spatially-varying regularisation kernel. Indeed in LDDMM,
consider a deformation path ¢(t) and a point X in the source image. As X
moves along the path ¢(¢)(X), the contribution of its spatial velocity (defined
by (@) to the functional J(v) in ([2) depends on the value of the regularisation
kernel K at the (moving) point ¢(¢)(X). Conversely the value of K at a single
point z affects the regularisation along a whole curve of points in the source
image. Thus there is no sense in which K (z) at a single value of  can be said
to describe deformability at a single point of the source image.

With this motivation, we propose a new diffeomorphic registration frame-
work that does support natural interpretations of spatially-varying metrics: Left-
Invariant Diffeomorphic Matching (LIDM). This framework is analogous to
LDDMM but based on a left-invariant metric, i.e. based on a norm in the
body (Lagrangian) coordinates of the source image. This means that instead
of the norm being applied to the spatial (Eulerian) velocity defined by (), it is
applied to the convective velocity defined by

Oo(t) = do(t) - v(t), 3)

where d¢(t) is the spatial derivative of ¢(t) and the symbol - denotes the mul-
tiplication of a matrix and a vector. The matching problem in LIDM is to
minimise the same functional as in LDDMM (@) but under the "new” constraint
@). In this framework, the v(¢) in () is a convective velocity, which is expressed
in body coordinates at all times ¢t. At any given point X in the source image,
the contribution of v(¢)(X) to the energy term is controlled by K(X) for all
t. Hence K(X) regularises the deformation at X, and in this sense describes
a priori deformability of the source image at X. The parameters of K can be
learnt from data, a point to which we return in the Discussion.

In Section ], we present the gradient calculation of the matching functional
in the LIDM model. We then develop in Section [ the correspondence between
LIDM and LDDMM. Finally, the performance of the LIDM model is tested on
synthetic and real data in Section [
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2 A Gradient Descent Algorithm for LIDM

In this section, we apply a standard adjoint calculation in order to compute the
gradient of the LIDM functional (2], which is the same as in LDDMM, subject
to Eq. (@), and not Eq. (). Our method is very similar to that in [II]. The first
step is to write the constraint ([B)) in the following form:

Orpi(t) = (Voi,v(t)), (4)

for 4 = 1,...,d, where d is the dimension of the ambient space, ¢; is the i‘"

coordinate of ¢, and (-,-) the standard scalar product on R?. As usual, we
introduce time dependent Lagrange multipliers denoted by P;(t) € L?(R¢, R) in
order to compute the adjoint equations, the augmented functional is then

d 1
d(v,P) =3(v) + Z/o (P, 0:9i(t) — (Vi  v(t))ra) L2 (e ) dt - (5)

Note that the scalar product (-, ) ;2(ga gy is the usual pairing in L?(R? R). The
gradient of (B]) can be computed by taking free variations of the augmented
functional. Variations w.r.t. v lead to

Va(0)(t) = v(t) = K (Vo(t), P(t))ra , (6)
where K denotes the isomorphism from V* (the dual of V) to V and
(Vo(t), P(t))pa = Zle P,V¢;. In addition, P(t) = [Pi]i=1,...,q iS equivalent
to a vector field and solves Pi(t) = V - (P;(t)v(t)) where V- stands for the diver-
gence of a vector field. The previous equation is given by taking variations of
functional [B) w.r.t. ¢. Note that variations w.r.t. P; lead to the reconstruction

equation ([B]). Last, the boundary condition at time 1 for the case of the square
of the L? norm that appears in (2] is:

P(1) = d¢~"(1)[|Dg(1)|A 0 ¢(1) V1], (7)

where A = A\(I o ¢$~1(1) — J) and |D¢(1)| denotes the Jacobian determinant of
#(1). The notation d¢~7 (1) denotes the inverse transpose of d¢(1). Combining
equations (@) and (), we obtain

Vi(v)(t) = v(t) — K mft), (8)
where m(t) = VI(t)| Do(t)] (f(t) —Jo ¢(t)) and I(t) == I o (¢(1)~1 0 §(1)).

Perhaps not unexpectedly, those equations are very close to the gradient of

the standard LDDMM functional. In the next section, we detail the relations
between the two models.

3 Relation to Standard LDDMM

The previous calculation guides us towards the strong relation between LIDM
and LDDMM models. By comparing the LDDMM gradient (see [6J12] for in-
stance) and the LIDM gradient, the reader may infer the following proposition.
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Proposition 1. The optimal LIDM path $(t) is given by ¢(t) = b1 o ", for
W (t) the LDDMM optimal path. In particular, the final diffeomorphic mappings
are the same in the two models, $(1) = (1).

Proof (Outline). The minimization of the functional ([2) can be written as:

30) = [ Io(olf e+ 170 w1 = T3, )

with Opp(t) = —v(t) o (). This is close to the standard LDDMM formulation
but the two differences are (1) the use of 9)~1 instead of 1 and (2) the minus
sign in the previous flow equation. Moreover, the first term of the functional
is the square of the right-invariant distance d on the group of diffeomorphisms
so that d(Id,v) = d(¢p=1, Id). Indeed, if vg(t) is a geodesic vector field for
LDMMM between Id and 1, then —vg(l — t) is a geodesic between Id and
=1, We therefore have shown that to an optimal path v(t) of functional (2])
corresponds an optimal path vg(t) of the corresponding LDDMM functional
such that v(t) = vg(1 —t).

In summary, the final diffeomorphic mapping is the same in both approaches
but the diffeomorphism paths do differ. There are two optimal paths from Id to
¢1: one left- and one right- geodesic. Fig. 1 illustrates the different optimal paths
given by the two models in an exact matching problem of points (landmarks).

) © o =

Fig.1l. Deformations from the left-most source image to the right-most target image.
Green and blue curves show the optimal LDDMM and LIDM paths, respectively.

4 Spatially-Varying Metrics

The LIDM model opens up the opportunity to use spatially-varying and non-
isotropic metrics, as explained in the Introduction. If some a priori information
on the deformation intensity is known in body coordinates, then this can be
modelled in the regularisation kernel. We now give a simple example of this.

As an idealised situation of interest, one can consider a partition of the tem-
plate image domain 2 C R? into n parts (£2;)%_;. To each part, one can associate
a Gaussian kernel k,, with a given smoothing parameter o; that incorporates
some knowledge on the template. We also introduce a smooth partition of unity
xi : £2 — [0,1] satisfying D1 | x;(z) = 1 for z € £2 and y; vanishing outside a
compact containing §2;. We can build the new kernel K:
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K(2,y) =Y Xi(@)ko, (x,y)X:(y) where z,y € 2.
=1

In addition, this kernel has a variational interpretation (omitted here to save
space) that justifies its form. This is the type of kernels we use for our exper-
imental results on synthetic and real data in Section Bl Such a definition was
motivated (1) by its simplicity to introduce different smoothing on the partition
and (2) by computational considerations. Indeed, the computational cost of the
kernel K is n times the cost of a single Gaussian kernel so that having two or
three regions of interest is feasible in practical situations.

5 Results

5.1 Results on 2D Phantom Images

In this subsection, we register the phantom images shown in Fig. We reg-
istered these images using: LIDM, Symmetric Normalization (SyN)! [2] and
multi-kernel LDDMMZ [6]. Note that SyN is closely-related to LDDMM, and its
implementation in ANTS is considered to be state-of-the-art for neuroimaging
[5]. Specifically, we used the following techniques: (LIDM) Considering the
partition of unity shown in Fig. Bl we used Gaussian smoothing kernels with
standard deviations 33 and 4 pixels in the white and black regions, respectively.
These values were chosen because they are half of the width of the dark grey
circle and the small black structures protruding from its inner surface, respec-
tively. (SyNUf,gd) We used the command "ANTS 2 -m MSQ]target,source,1,0] -i
100x100x1000 -r Gauss[of,04] -t SyN[0.4]”. Gaussian kernels with various stan-
dard deviations to perform fluid-like (o;) and diffusion-like (o4) regularization
were tested: After registering the images using a large kernel (o = 32, 04 = 1:
SyNinit), we composed the deformation with those obtained using finer ker-
nels (o = {1,2,4,8,16} and 04 = 0, or oy = 1 and 04 = {§, ), 5.1,2,4}).
(MK-LDDMM) We used a kernel constructed as the sum of 7 Gaussian ker-
nels having standard deviations linearly sampled between 1 and 50 and weights
automatically tuned (option -M Gauss easier of uTllzReg LDDMM).

To evaluate the registration quality, we measured the sum of the square differ-
ences (SSD) between the registered images in the whole image domain (2 and in
the ROI shown in Fig.[2 as well as the maximum determinant of the Jacobians
(DetJ). SSDs were normalised by the corresponding SSD between the original
images. Results are presented in Fig. [ and Table [[l For SyN, we present a
selection of results giving the best balance between SSD and DetJ.

The lowest SSDs, 0.14 for {2 and 0.21 in the ROI, were obtained by LIDM. A
competitive strategy is (SyN) with fluid regularization (o¢ > 0), where SSD, €
[0.20,0.23] and SSDgo1 € [0.36, 0.38], for max DetJ € [3.59,4.06]. The matching
is however higher using (LIDM) for a similar max DetJ.

! http://www.picsl.upenn.edu/ANTS/
2 http://sourceforge.net/projects/utilzreg/
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Fig.2. Results of image registration tests on a synthetic example

Table 1. Quantitative results obtained on the synthetic images shown in Fig.[2 Sub-
scripts after SyN indicate the degree of fluid- and diffusion-like regularisation (o, 04).

LIDM SyN”nt SyNQ’O SyNg’o SyN1’0,25 SyNLQ MK-LDDMM

SSDq 0.14  0.46 0.21  0.23 0.19 0.28 0.29
SSDror  0.21 0.73 0.36  0.37 0.37 0.63 0.68
max DetJ 3.70 2.06 4.06 3.59 3.67 2.35 2.6

5.2 Results on 3D Brain Images

We performed additional tests on the 40 subjects of the LONI Probabilistic
Brain Atlas (LPBA40) [9], using the probabilistic tissue maps (white matter,
grey matter and CSF). We first resampled all images to a resolution of 1 mm
and aligned them to subject 09 using non-rigid registration with a very large
smoothing kernel (SyN with the option -r Gauss[50,1]). We then constructed
a partition of unity by dilating (structuring element of 2 mm) and smoothing
(Gaussian kernel of 3 mm) the grey matter density map of subject 09. Finally,
we registered subject 09 to all other ones using two strategies: (LIDM) We first
used LIDM with the predefined partition of unity and Gaussian kernels having
standard deviations of 7 mm around the grey matter and 33 mm elsewhere. The
underlying idea here is that we allow more flexibility for the registration around
the grey matter than in the rest of the image. (SyN,, ,) We also performed
SyN registration with different regularisation parameters: -r Gauss[o r,04], where
(or,0a0) ={(7,2),(3,3),(10,4), (5,1), (2,2)} as well as the parameters of Klein et
al study [5]. We computed the SSD between each pair of registered images, the
target overlaps between the segmented brain regions (see [5]), and the maximum
DetJ of the deformations. SSDs were normalised by the SSD before registration.
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As shown Table 2] SyN gives slightly better average results than LIDM here.
However, normalised SSDs, overlaps and max DetJs are within the range of
values produced by varying the SyN parameters. This shows the validity of
LIDM for the analysis of 3D brain images and opens up interesting perspectives
for further investigations with applications in medical imaging, as discussed in
the next section.

Table 2. Average results obtained on the 40 3D brain images of the LPBA40 dataset

LIDM SyN7’2 SyNg’g SyN10’4 SyN5’1 SyNQ’Q Sle5J

SSD 0.28 0.21 0.23 0.30 0.17 021 0.21
Overlap 0.723 0.717 0.716 0.713 0.715 0.708 0.728
max DetJ 5.02 4.55 3.20 281 6.38 485 5.36

6 Discussion

We have introduced a novel diffeomorphic matching framework, Left Invariant
Diffeomorphic Matching (LIDM), in which spatially-varying and directionally-
dependent regularisation kernels can encode local deformability properties of the
source image. Through the relationship between LIDM and LDDMM described
in Section [ it also follows that spatially-varying and directionally-dependent
kernels in LDDMM are interpretable in the same way, which has not been re-
marked upon before.

We have demonstrated the value of spatially-varying kernels in registration,
in experiments with both synthetic and real data (brain MRI). In both exper-
iments, we applied LIDM with a fixed spatially-varying kernel, chosen on the
basis of observed feature scales (for the synthetic example) and our experience
with other algorithms (for the real data). We compared LIDM with two state-of-
the-art algorithms: SyN (implemented in ANTS) and MK-LDDMM. For SyN,
we explored a wide range of regularisation parameters. In the synthetic exam-
ple, LIDM produced superior matches, as judged by sum of squared differences
(SSD), while for the real data, LIDM produced results similar to SyN but not
as good as the best SyN result. It is significant that in both cases, LIDM gave a
good match with the first (and only) parameters that we chose, which suggests
an important advantage in ease of use.

The main motivation driving our work is to automatically learn spatially-
varying and directionally-dependent regularisation parameters, as has been done
by Simpson et al. [I0] for global regularisation parameters. Our contribution
justifies this project in the diffeomorphic context, in LIDM and LDDMM and
also, by extension, in SyN. Various methods could be used to optimise the pa-
rameters for a population of targets, including Bayesian methods related to those
in [1/4].
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