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Abstract. In this work we compare parametric diffusion MRI models
which explicitly seek to explain fibre dispersion in nervous tissue. These
models aim at providing more specific biomarkers of disease by disentan-
gling these structural contributions to the signal. Some models are drawn
from recent work in the field; others have been constructed from combi-
nations of existing compartments that aim to capture both intracellular
and extracellular diffusion. To test these models we use a rich dataset
acquired in vivo on the corpus callosum of a human brain, and then
compare the models via the Bayesian Information Criteria. We test this
ranking via bootstrapping on the data sets, and cross-validate across
unseen parts of the protocol. We find that models that capture fibre
dispersion are preferred. The results show the importance of modelling
dispersion, even in apparently coherent fibres.

1 Introduction

Diffusion MRI probes the tissue microstructure, by measuring the water disper-
sion in biological tissue. This technique is often applied in the brain, especially
where parallel fibres restrict the water mobility anisotropically, thus providing
putative measures of white matter integrity and connectivity.

Currently, the standard model for imaging diffusion in tissue is the diffusion
tensor (DT) [1], which assumes a trivariate Gaussian dispersion pattern. Derived
indices, e.g. mean diffusivity or fractional anisotropy, can correlate with major
tissue damage, but lack the sensitivity and the specificity to provide indices such
as axon radius, density, orientation and permeability. Stanisz et al. [2] pioneered
a multi-compartment representation of separate diffusive processes in nervous
tissue. The Ball-and-Stick model, by Behrens et al. [3] is the simplest possible
two-compartment model with restricted axonal diffusion and isotropic extra-
axonal diffusion. A recent class of parametric models has emerged to describe
data better by additionally accounting for fibre directional incoherence, which
is abundant in the brain, even at a sub-voxel level.
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Ball-and-Sticks [3] can have more-than-one intracellular diffusion compart-
ments. Zhang et al. [4] constructed NODDI to describe fibres with an explicit
orientation dispersion index derived from a Watson distribution and tests the
model with in-vivo human whole-brain data. Sotiropoulos et al. [5] design Ball-
and-Rackets to describe fibre fanning through a Bingham distribution by ex-
tending the Ball-and-Sticks model [3]. The Bingham distribution extends the
Watson distribution to account for asymmetric/anisotropic dispersion. This
model is then applied to post-mortem macaque monkey brain data.

In this work, similar to the taxonomy provided in Panagiotaki et al. [6], we
construct models that combine Ball (for isotropic diffusion), Zeppelin (for 2D
anisotropic diffusion) or Tensor (for 3D anisotropic diffusion) for extracellular
diffusion, with various models for intracellular diffusion: two-Sticks, a Watson or
Bingham distribution of Sticks. We also add a further compartment for isotrop-
ically restricted diffusion: Dot (a zero radius sphere) or CSF. We then fit these
models to a very rich dataset and, in addition to the fitting quality, we take
into account the model complexity by using the Bayesian Information Criterion
in order to discover which models explain the data best. Lastly, to validate the
BIC ranking, we test the models through both bootstrapping on the data sets
and prediction of unseen parts of the protocol.

2 Methods

This section first describes the models, then the data acquisition and the pre-
processing done to obtain a set of measurements for fitting the models. Lastly,
we detail the fitting procedure and the criterion applied to compare the models.

2.1 Models

Generic Model: The signal for a model with two or more types of compart-
ments can be expressed as: S = S0

{∑
fk
icS

k
ic + frcSrc + (1− frc −

∑
fk
ic)Sec

}
,

where fic is the weight of the intracellular signal compartment Sic, frc is the
weight of the isotropically restricted signal compartment Src, Sec is the extra-
cellular signal compartment, and k is the compartment index.

Extracellular Compartments: The compartments used to capture signal out-
side the axons and the isotropically restricted compartments are the Tensor, the
Zeppelin, the Zeppelin with tortuosity and the Ball. Tensor signal is modelled
through the DT, as S = exp[λ1(e1e

t
1) + λ2(e2e

t
2) + λ3(e3e

t
3)], where e1, e2

and e3 are the three characteristic vectors that define the 3D orientation of the
Tensor and, along those directions, λ1, λ2 and λ3 give the size of the tensor
(or “apparent diffusivity”). The Zeppelin is a special case of the Tensor where
λ2=λ3. We follow Szafer et al. [7] to express the Zeppelin with tortuosity, which
has the radial diffusivity expressed in terms of the axial one, λ2=λ1fic. Further,
setting all three eigenvalues the same makes a Ball, where λ1=λ2=λ3.
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32 HARDI shells (of 45 directions each)

 

 
b=  218  (δ=6 |Δ=30|G=55) −−−−Q1

b=  260  (δ=6 |Δ=30|G=60)−−−−Q1

b=  374  (δ=6 |Δ=50|G=55)−−−−Q2

b=  445  (δ=6 |Δ=50|G=60)−−−−Q2

b=  530  (δ=6 |Δ=70|G=55)−−−−Q4

b=  631  (δ=6 |Δ=70|G=60)−−−−Q4

b=  686  (δ=6 |Δ=90|G=55)−−−−Q3

b=  816  (δ=6 |Δ=90|G=60)−−−−Q3

b=  577  (δ=10 |Δ=30|G=55)−−−Q3

b=  687  (δ=10 |Δ=30|G=60)−−−Q3

b= 1,010 (δ=10 |Δ=50|G=55)−−Q4

b= 1,202 (δ=10 |Δ=50|G=60)−−Q4

b= 1,443 (δ=10 |Δ=70|G=55)−−Q1

b= 1,718 (δ=10 |Δ=70|G=60)−−Q1

b= 1,876 (δ=10 |Δ=90|G=55)−−Q2

b= 2,233 (δ=10 |Δ=90|G=60)−−Q2

b= 1,218 (δ=15 |Δ=30|G=55)−−Q2

b= 1,449 (δ=15 |Δ=30|G=60)−−Q2

b= 2,192 (δ=15 |Δ=50|G=55)−−Q1

b= 2,608 (δ=15 |Δ=50|G=60)−−Q1

b= 3,166 (δ=15 |Δ=70|G=55)−−Q4

b= 3,768 (δ=15 |Δ=70|G=60)−−Q4

b= 4,140 (δ=15 |Δ=90|G=55)−−Q3

b= 4,927 (δ=15 |Δ=90|G=60)−−Q3

b= 2,375 (δ=22 |Δ=30|G=55)−−Q3

b= 2,826 (δ=22 |Δ=30|G=60)−−Q3

b= 4,470 (δ=22 |Δ=50|G=55)−−Q4

b= 5,320 (δ=22 |Δ=50|G=60)−−Q4

b= 6,566 (δ=22 |Δ=70|G=55)−−Q2

b= 7,814 (δ=22 |Δ=70|G=60)−−Q2

b= 8,661 (δ=22 |Δ=90|G=55)−−Q1

b=10,308 (δ=22 |Δ=90|G=60)−−Q1

Fig. 1. The 2◦ data set. The legend gives b-value (δ | Δ | |G|) in units of
s/mm2(ms|ms|mT/m); Q1-Q4 on the right define the four quarters of the full pro-
tocol used in the cross-validation. The insert picture is of a sagittal slice of the brain;
boxed is the scanned volume, encompassing the corpus callosum. G is the applied gra-
dient vector and n is the fibre direction; the x-axis gives the absolute value of the cosine
of the angle between the applied gradient and fibre direction: to the left, the gradient
is perpendicular to the fibres; to the right, parallel.

Intracellular Compartments: Sticks are used to represent the axonal dif-
fusion, via either a discrete set of Sticks [3] (we pick two) or an underlying
Bingham/Watson fibre orientation distribution [4,5]. The Bingham distribu-
tion is f(n|κ1, κ2,µ1,µ2) = [1F1(

1
2 ,

3
2 , κ1, κ2)]

−1exp[κ1(µ1 · n)2 + κ2(µ2 · n)2],
where κ1 and κ2 are the concentration parameters, such that κ1 ≥ κ2 ≥ 0; the
mutually orthogonal vectors µ1 and µ2 indicate the orientation axes of fibre
dispersion. This is similar to a bivariate Gaussian distribution with elliptical
contours on the sphere. The denominator, 1F1, is a confluent hypergeometric
function of first kind [8]. The Watson distribution is a special case of the Bing-
ham distribution, where there is only one κ and µ (κ2 = 0); this corresponds to
circular contours on the sphere.
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2.2 Data Acquisition and Preprocessing

We use a PGSE sequence on a 3T Phillips scanner, with cardiac gating and
TR=4s. The full protocol uses 32 HARDI shells. Each shell has a unique set of
45 directions, randomly rotated to enhance the angular resolution. The protocol
has a wide range of achievable b-values, 218 to 10,308 s/mm2, combining δ =
{6, 10, 15, 22}ms, Δ = {30, 50, 70, 90}ms, |G| = {55, 60}mT/m, and three
interwoven b=0 acquisitions.

The data is acquired in two separate non-stop sessions, each lasting about
4.5hrs (the “2x4hr” dataset). The field-of-view is centred on the mid-sagittal
slice of the corpus callosum (CC), where we assume coherently oriented CC
fibres are perpendicular to the image plane. There are nine 4mm-thick sagittal
slices, the image size is 64 x 64 and the in-plane resolution is 2mm x 2mm.

After manually registering all DW images to the unweighted image of the
b=1,202s/mm2 shell, using only image translations, we fit the DT to this b=1,202
shell to select a set of voxels with coherently oriented fibres. Voxels with FA>0.6
and principal eigenvector within η=2◦ of the assumed fibre direction are retained.
There are 24 voxels remaining, all in 2 slices close to the mid-sagittal plane, and
mostly in the genu. A similar procedure is performed with η=5◦, which leaves 66
voxels, and deviation 10◦ which leaves 99 voxels, in both cases across the genu
and mid-body.

Before fitting the models, the signal of each DW slice is normalised by the
b=0 images with the same echo time (TE). A single dataset is then created by
averaging the voxels selected above. Fig.1 shows the signal from the 2◦ dataset,
containing 1,536=32*(3+45) measurements.

2.3 Model Fitting and Selection

We use the open source Camino toolkit [10] to fit the models. Each model is fitted
250 times, using the Levenberg-Marquardt algorithm with a perturbed starting
point from initial estimates drawn from the DT, to extract the parameters that
produce the minimum objective function. The fitting uses an offset-Gaussian
noise model to construct the objective LSE =

∑N
i=1

1
σ2 (S̃i −

√
S2
i + σ2)2, where

N is the number of measurements, S̃i is the i-th measured signal, Si its prediction
from the model; σ2 is the signal variance, which we estimate a priori from the
b=0 images (this corresponds to an SNR of around 20). This objective function
accounts for bias introduced by the Rician noise inherent in the MRI data in
a way that is more numerically stable and computationally efficient than a full
Rician log-likelihood objective function.

For model selection, we use the BIC = −2 log(L) +K log(N) where L is the
likelihood of model parameters given the data,N is the number of measurements
and K is the number of free parameters. We evaluate the BIC for each fitted
model and then rank all models from lowest BIC (best) to highest (worst).
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Table 1. Various model parameters from different data sets of angular thresholds of 2◦,
5◦ and 10◦. The models are ordered top-down by the BIC score of 2◦ data set. Here, we
also include the estimates (shown in bold) from the best model of a previous ranking
of non-dispersive parametric models [9]. [Note: Zepp=Zeppelin; ZepT=Zeppelin with
tortuosity;Tens=Tensor; St=Stick; Bing=Bingham; Wat=Watson].
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Nr Models

10 Zepp.Bing.CSF. 513     380  359  0.56   0.59  0.60   0.29   0.30  0.31   0.15  0.11   0.09   2.0   1.9  1.9   0.5   0.6   0.7  6.9      7.1    6.5     
9 ZepT.Bing.CSF. 516     377  356  0.59   0.59  0.60   0.28   0.30  0.31   0.13  0.11   0.09   2.0   1.9  1.9   0.6   0.7   0.7  7.0      7.1    6.5     

12 Tens.Bing.CSF. 516     383  362  0.56   0.59  0.60   0.29   0.30  0.31   0.15  0.11   0.09   2.0   1.9  1.9   0.6   0.7   0.8  8.1      8.0    7.3     
10 Tens.Wat.CSF. 519     392  369  0.55   0.59  0.60   0.29   0.29  0.30   0.16  0.12   0.10   2.0   1.9  1.9   0.5   0.7   0.7  5.4      5.5    5.3     
8 Zepp.Wat.CSF. 531     401  373  0.56   0.59  0.60   0.29   0.30  0.31   0.15  0.11   0.09   2.0   1.9  1.9   0.5   0.6   0.7  5.6      5.6    5.4     
7 ZepT.Wat.CSF. 533     398  369  0.59   0.60  0.60   0.28   0.30  0.31   0.13  0.11   0.09   2.0   1.9  1.9   0.6   0.6   0.7  5.8      5.6    5.4     
9 ZepT.Bing.Dot 542     367  342  0.53   0.52  0.52   0.43   0.44  0.44   0.03  0.04   0.04   2.1   2.0  2.0   0.9   0.9   0.9  9.4      10.4  9.3     

10 Zepp.Bing.Dot 544     366  340  0.50   0.48  0.48   0.45   0.47  0.47   0.04  0.05   0.05   2.1   2.0  2.0   0.9   0.8   0.8  10.3    12.0  11.0   
12 Tens.Bing.Dot 548     371  345  0.51   0.49  0.48   0.45   0.46  0.47   0.04  0.05   0.05   2.1   2.0  2.0   1.0   0.9   0.9  10.7    12.5  11.5   
10 Tens.Wat.Dot 557     385  355  0.49   0.47  0.47   0.46   0.48  0.48   0.04  0.05   0.05   2.1   2.0  2.0   1.0   0.9   0.9  8.1      8.7    8.2     
9 Zepp.Bing. 559     398  370  0.64   0.65  0.64   0.36   0.35  0.36   2.2   2.1  2.0   1.0   1.0   1.0  6.6      6.7    6.2     
7 ZepT.Wat.Dot 559     390  357  0.53   0.52  0.52   0.44   0.44  0.44   0.03  0.04   0.04   2.1   2.0  2.0   1.0   0.9   0.9  7.4      7.7    7.2     
8 Zepp.Wat.Dot 561     389  356  0.50   0.48  0.48   0.46   0.47  0.47   0.04  0.05   0.05   2.1   2.0  2.0   0.9   0.8   0.8  8.0      8.6    8.2     
11 Tens.Bing. 561     399  372  0.65   0.65  0.65   0.35   0.35  0.35   2.2   2.1  2.1   1.2   1.1   1.1  7.2      7.4    6.8     
9 Tens.Wat. 575     418  384  0.64   0.65  0.65   0.36   0.35  0.35   2.2   2.1  2.1   1.1   1.1   1.0  5.5      5.5    5.3     
8 ZepT.Bing. 576     416  385  0.62   0.62  0.62   0.38   0.38  0.38   2.2   2.1  2.1   0.8   0.8   0.8  6.5      6.5    6.0     
7 Zepp.Wat. 576     419  383  0.64   0.65  0.65   0.36   0.35  0.35   2.2   2.1  2.1   1.0   1.0   1.0  5.6      5.5    5.3     
6 ZepT.Wat. 593     437  398  0.62   0.63  0.63   0.38   0.37  0.37   2.2   2.1  2.1   0.8   0.8   0.8  5.4      5.3    5.1     

12 Tens.St.St.Dot 652     464  439  0.23   0.22  0.21   0.56   0.56  0.56   0.07  0.07   0.08   2.0   1.9  1.9   0.8   0.8   0.8  
10 Zepp.St.St.Dot 658     464  437  0.23   0.22  0.21   0.56   0.56  0.56   0.07  0.07   0.08   2.0   1.9  1.9   0.8   0.7   0.7  
12 Tens.St.St.CSF. 674     562  557  0.22   0.24  0.23   0.41   0.41  0.42   0.21  0.18   0.17   1.5   1.5  1.4   0.5   0.5   0.5  
10 Zepp.St.St.CSF. 692     570  565  0.23   0.25  0.24   0.41   0.41  0.42   0.21  0.18   0.17   1.5   1.4  1.4   0.4   0.4   0.5  
8 Ball.Bing. 729     590  583  0.72   0.71  0.71   0.28   0.29  0.29   2.2   2.1  2.1   6.0      6.2    5.9     
9 Ball.Bing.Dot 732     593  586  0.72   0.71  0.71   0.28   0.29  0.29   0.00  0.00   0.00   2.2   2.1  2.1   6.0      6.2    5.9     
9 Ball.Bing.CSF. 732     593  586  0.72   0.71  0.71   0.28   0.29  0.29   0.00  0.00   0.00   2.2   2.1  2.1   6.0      6.2    5.9     
6 Ball.Wat. 745     610  596  0.72   0.72  0.71   0.28   0.28  0.29   2.2   2.1  2.1   5.2      5.3    5.2     
7 Ball.Wat.CSF. 748     613  599  0.72   0.72  0.71   0.28   0.28  0.29   0.00  0.00   0.00   2.2   2.1  2.1   5.2      5.3    5.2     
7 Ball.Wat.Dot 748     613  599  0.72   0.72  0.71   0.28   0.28  0.29   0.00  0.00   0.00   2.2   2.1  2.1   5.2      5.3    5.2     
7 Zepp.St.Dot 784     597  570  0.29   0.30  0.29   0.62   0.62  0.62   0.09  0.09   0.09   1.9   1.9  1.8   0.7   0.7   0.7  

10 Tens.Cyl.CSF. 832     735  739  0.29   0.31  0.31   0.47   0.47  0.48   0.24  0.22   0.21   1.3   1.3  1.3   0.3   0.4   0.4  
9 ZepT.St.St.Dot 843     652  640  0.33   0.33  0.32   0.50   0.50  0.50   0.05  0.05   0.05   1.8   1.7  1.7   1.1   1.1   1.1  
11 Tens.St.St. 859     687  666  0.28   0.28  0.27   0.52   0.51  0.52   1.7   1.6  1.6   0.9   0.9   0.9  
9 Zepp.St.St. 874     695  674  0.29   0.28  0.27   0.52   0.51  0.52   1.6   1.6  1.6   0.8   0.8   0.8  
9 ZepT.St.St.CSF. 881     718  712  0.35   0.35  0.34   0.39   0.41  0.43   0.12  0.10   0.08   1.5   1.5  1.4   0.9   0.9   0.9  
8 ZepT.St.St. 895     713  696  0.32   0.31  0.30   0.50   0.49  0.50   1.6   1.6  1.5   1.0   1.0   1.0  
8 Ball.St.St. 1,161  978  965  0.28   0.27  0.27   0.46   0.46  0.46   1.5   1.5  1.5   
9 Ball.St.St.Dot 1,162  977  965  0.24   0.26  0.25   0.47   0.46  0.47   0.02  0.02   0.02   1.6   1.5  1.5   
9 Ball.St.St.CSF. 1,164  981  969  0.28   0.27  0.26   0.46   0.46  0.46   0.00  0.00   0.00   1.5   1.5  1.5   

Radial Diff. KappaBIC Intra.1 Vol.Fr. Axial Diff.Extra. Vol.Fr. CSF/Dot Vol.Fr.

3 Results

Table 1 lists main parameter estimates across all three datasets (with η=2◦,
5◦ and 10◦). We have also included the best model from a previous ranking of
non-dispersive parametric models [9], and a similar model with CSF instead of
Dot. Four groups can be distinguished:

i) all combinations that include an anisotropic extracellular compartment and
a Bingham/Watson intracellular compartment;

ii) models similar to (i) but instead using two-Sticks for their intracellular
compartment, excluding models that use tortuosity or those without a spherically
restricted compartment;

iii) all models incorporating an isotropic extracellular compartment with a
Bingham/Watson intracellular compartment; and

iv) all exceptions to two-Sticks models in (ii).
The models that include a Bingham/Watson distribution outperform two-Sticks
ones not simply because of their good quality of fit to the data but also reduced
complexity.
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Fig. 2. A comparison of raw vs. predicted/synthesised signal from six representative
models. The models are ordered in decreasing ranking left-right, top-bottom.

Within group (i), CSF models perform best for η=2◦ but, as η increases, Dot
models are best. In this group, models using tortuosity produce similar estimates
to those of the unconstrained Zeppelin, suggesting that meaningful constraints
on the model parameters simplify the problem at little cost to fitting quality.

Across angular thresholds, the axial diffusivity is about 2x10−9 mm2/s, and
the radial diffusivity is around one-quarter of this in models with CSF, but
one-half in others; this is to be expected as the CSF compartment has a fixed
diffusivity of 3x10−9 mm2/s and higher volume fraction than Dot.

As η increases from 2◦ to 5◦, all models reflect the signal improvement from
averaging across more voxels (24 vs. 66, resp.) through decreasing BIC and
increasing fibre incoherence κ; however, at 10◦ (with 99 voxels averaged), the
fitting improves slightly, but κ reflects the increased fibre coherence through
decreasing κ.
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Fig. 3. LEFT: Positional variance diagrams over 100 bootstraps from the 2◦ data sets.
The frequency of x-axis ranking is given by the shade of grey.
RIGHT: The accuracy of predicting unseen quarters of the protocol using parameters
fitted to data from the remaining three-quarters. The ranking is as in Table 1.

Fig.2 shows the fit of some representative models to the data, to illustrate the
difference between the actual signal and that generated from the model.

Fig.3 shows on the left the positional variance diagram for the BIC ranking
through classical bootstrap. Each bootstrap data set is constructed through a
random selection in each shell of the same number of data points, with replace-
ment. The group structure remains unchanged, though there are minor variations
within each group.

On the right of Fig.3, the relative performance of each model in reproducing
unseen parts of the dataset is shown. We divide the data into four quarters, by
randomly assigning low and high Δs into four groups. Then, we choose signal
coming from three-quarters of the dataset to fit our models to and, from the
parameter estimates drawn from these quarters, synthesise signal for the missing
part. Next, we evaluate the sum of squared differences LSE compared to that
unseen quarter. This provides an alternative model selection routine, to confirm
and validate the ranking by BIC and, broadly speaking, the trends in both
techniques agree.
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4 Discussion

In this preliminary work, we have shown the advantage of dispersion models in
describing data even in a homogeneous region of the brain such the CC.
In such structure, where a multitude of function specific fibre tracts bundle to-
gether, there is inhomogeneity that can produce a dispersion pattern, which is
something that these models may reflect. In particular, the single mode orienta-
tion distributions (Watson/Bingham) outperform two discrete orientations (two-
Sticks). As in previous work, an anisotropic extracellular compartment benefits
the fitting, as does the addition of an isotropically restricted compartment.

We acknowledge that averaging voxels across parts of the CC and minor mis-
alignments during image registration may exaggerate the dispersion, so this will
be our future work. Testing the models voxel-by-voxel will help us see how con-
sistent the model selection is within regions. We also intend to extend the inves-
tigation to other white matter structures that have greater dispersion.
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