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Abstract. A conclusive mapping of myeloarchitecture (myelin patterns)
onto the cortical sheet and, thus, a corresponding mapping to cytoarchi-
tecture (cell configuration) does not exist today. In this paper we present
a generative model which can predict, on the basis of known cytoarchi-
tecture, myeloarchitecture in different primary and non-primary cortical
areas, resulting in simulated in-vivo quantitative T1 maps. The predicted
patterns can be used in brain parcellation. Our model is validated using a
similarity distance metric which enables quantitative comparison of the
results with empirical data measured using MRI. The work presented
may provide new perspectives for this line of research, both in imaging
and in modelling the relationship with myelo- and cytoarchitecture, thus
leading the way towards in-vivo histology using MRI.
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1 Introduction

The human brain is a highly convoluted organ with many folds and fissures. Cor-
tical activity and functional processing occur in a 2-4mm thin sheet, typically
consisting of six cellular layers. Over the 20th century, cortical cartographers in-
vestigated the number, arrangement, and internal organisation of anatomically
and functionally distinct areas of the cortex. Two major streams of research
evolved: the disciplines of cytoarchitecture and myeloarchitecture. Cytoarchi-
tecture deals with the cellular configuration within tissue. Brodmann pioneered
these studies and produced the first qualitative and quantitative measures in
layers in different cortical areas [1]. A decade later, von Economo and Koskinas
published a full set of tables for 40 cortical areas, taking into consideration the
absolute and relative values for different measures per layer. These include the
thickness, the cell density as well as the cell size [2]. In contrast to cytoarchitec-
ture, myeloarchitecture has been largely neglected. This discipline examines the
cortical structures and anatomical features associated with the myelin sheaths
of neuronal axons. Research in this field is incomplete, inconclusive [3] or even
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contradictory. From classical histology, we know that cyto- and myeloarchitec-
tonic images are projections of one and the same reality: the cortical architecture
[4]. It should not be surprising, that there is a relation between the two fields.
Hellwig [5] demonstrated in 14 cortical areas that a priori information of cytoar-
chitecture can be transformed into information regarding relative cortical myelin
density. Only recently, neuroscientists found that cortical myelin provides MRI
contrast, enabling segregation of primary areas based on cortical profiles running
perpendicular through the depth of the cortex [6,7,8]. The first successful parcel-
lations resulting in a classification of so-called Brodmann Areas (BA) have used
cortical folding patterns [9], however with consistency only in primary areas.

In this paper we present a generative model which can predict, on the ba-
sis of known cytoarchitecture, in-vivo quantitative maps of T1 measured using
MRI, to the extent that such maps represent myelin density. Our model parcel-
lates the cortex based on purely intracortical features observable in ultra-high
resolution structural MRI data, requiring accurate definition of profiles across
the cortical thickness. This histology-based T1 model is validated in the motor-
somatosensory region M1/S1 using a similarity distance metric, which enables
comparison of the results with empirical data, and is extendable to additional
cortical areas. The approach may provide novel insights regarding the corre-
spondence of cyto- and myeloarchitectonic boundaries, and help to bridge the
gap between macroanatomy and microanatomy, bringing MRI a step closer to
in-vivo histology.

2 Methods

In order to predict myelin patterns of T1 from cytoarchitecture, we developed a
two-step approach. The first step revisits the work of Hellwig [5], deriving myelin
density profiles from cellular components forming patterns specific to different
BAs (Fig. 1, top row). In the second step, to make these patterns relevant to MRI,
we normalize the profiles into the scale of values of T1 (in seconds) found with 7
Tesla (T) MRI in brain tissue (Fig. 1, bottom row). This entails a regridding step
that takes the MRI resolution and partial voluming effects into account. Finally,
we model the variation of T1 values of these MR adjusted profiles in each BA,
and build a probabilistic model with which we classify empirical profiles obtained
from in-vivo MRI.

2.1 Generating Cortical Myelin Density Profile Shapes

Firstly, we obtain from von Economo and Koskinas [2] the relative thickness,
mean cell size csize, and mean cell density cdensity for each cortical layer within
our regions of interest (ROI), here: BA 1, 2, 3b and 4 (Fig. 1 a). According to
Hellwig [5], myeloarchitecture is predictable from cytoarchitecture by assuming
that the quantity of myelin depends on cell size, following the sigmoidal function:

s(csize) = 1/(1 + exp (−r · (csize − l))) (1)
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Fig. 1. The pipeline shows our two-step approach: the top row follows the work of
Hellwig [5]. The second row transforms the myelin density profiles into generative
profiles of the T1 intracortical contrast observable in MRI.

in which l describes the location of maximum contribution and r the rate of
change (Fig. 1 b). Thus, we can obtain an estimate of myelin density (Fig. 1 c)
for each layer clayer as:

clayer = csize · cdensity · s(csize). (2)

The horizontal pattern of myelinated fibers in the cortex originates mainly from
axonal collaterals of pyramidal cells. To include these projections in our profile
shapes, we convolve the myelin density estimates clayer with a function a [10]
(Fig. 1 d) describing the number of axonal collaterals at each cortical depth d:

mBA(d) =

∫ 1

0

clayer(x) · a(d− x)dx. (3)

The profilesmBA (Fig. 1 e) give a qualitative indicator of myelin concentration in
the cortex and are comparable to myelin stained sections and myeloarchitecture
described by Vogt [3].

2.2 Normalization to MR Intensities and Limiting Effects

Geyer et al. [7] demonstrated that quantitative T1 maps obtained with 7 Tesla
(T) MRI reveal local differences of cortical structure reflecting the boundaries of
functional areas. Glasser and Van Essen [8] showed that similar features could be
observed at 3T, using another method of emphasizing T1 contrast. In order to
apply the present model to such data, the convolved myelin density graph needs
to be normalized into the scale of quantitative T1 maps, individually defined
for each subject by the mean and standard deviation of T1 at the boundaries
of white matter (WM)/gray matter (GM) and GM/cerebrospinal fluid (CSF).
Besides inter-individual differences, further variability in the scale of T1 values
originates from the comparatively coarse resolution available with in-vivo MRI
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even at 7T, leading to partial voluming effects. These effects become more severe
when neighboring tissues such as GM and CSF have a large difference in T1
values. Thus, profiles of the cortex have usually greater variance at the GM/CSF
interface than at the WM/GM interface. In order to model myelin density profiles
more realistically, we have to take account of this variability in the normalization
step. First, we define an intensity scale IBA = [Iwm

BA
, Icsf

BA
] for each individual BA

which is defined by the cortex average intensity μgm and standard deviation σgm

at the WM/GM and CSF/GM interfaces as:

Iwm
BA

= μ
wm,gm

− ê
wm,BA

σ
wm,gm

and Icsf
BA

= μ
csf,gm

− ê
csf,BA

σ
csf,gm

. (4)

The varying underlying myeloarchitectonic patterns in different areas result in
differing cortical profiles within the spread of T1 times of the cortex (Fig. 1 f,
left). ê

wm
and ê

csf
are the estimators of this variation which we found empirically.

These estimates allow us to normalize the profiles given in mBA(d) into the T1
contrast of GM in given cortical depths d as:

T1BA(d) = Iwm
BA

+
(Icsf

BA
− Iwm

BA
)(mBA(d) −min(mBA(d)))

max(mBA(d))−min(mBA(d))
(5)

in which min() and max() define the minimum and maximum of function
mBA(d), respectively. Afterwards, we assign T1 values taken from [11] to WM
and CSF outside the GM of the profile (Fig. 1 f, middle). At this point, our mod-
elled T1 profiles are still continuous and resolution-free. To match the discrete
limited MR resolution and to account for partial voluming at interfacing tissues,
we convolved T1BA with a Lorentzian kernel (Fig. 1 f, right) to adjust resolution
effects:

T̃1BA(d) =

∫ 1

0

T1BA(x)
σMR

((d − x)− μMR)
2 + σ2

MR

dx (6)

in which μ
MR

corresponds to the MR resolution used and σ
MR

describes the
overlapping ratio between MR resolution and the cortical thickness in individual
BAs given in [2]. T̃1BA is now a defined function of myelin density in MR space
and can be modelled from known cytoarchitecture in individual BAs (Fig. 1 h).

2.3 Probabilistic Modelling of Profiles

Given the limitations of MR, two questions remain: first, do individual empirical
profiles derived from our data fit well into the model? Secondly, does this model
actually allow segregation of different functional cortical areas in living subjects?
In order to allow quantitative analysis, we need to estimate the expected variance
of our modelled profiles. This variance also models uncertainties in the location
of the profiles and is the dominant source of noise in our model. We defined
σmodMR

BA
as the range of uncertainty by linearly interpolating empirical estimates

of plausible deviations in individual Brodmann areas. Under the assumption that
our T1 values, independently of their cortical depth, are normally distributed,
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we can define the probability P (pemp ∈ BA) of a single profile pemp to belong
to a certain BA as an adaptation of a Gaussian process:

P (pemp ∈ BA) � exp

(
1

2
∫ 1

0 wBA(x)dx

∫ 1

0

(pemp(x)− pmodMR
BA

(x))2

σmodMR
BA

(x)2
w

BA
(x)dx

)
.(7)

We compare empirical profiles pemp to MR adjusted profiles pmodMR
BA

∈ T̃1BA

according to their cortical depth d. We added a weighting function wBA to (7)
as:

wBA(d) = 1− exp

(
1

2

(pctx(d)− pmod
BA

(d))2

σctx(d)2

)
. (8)

In (8), the cortex average profile pctx is put into relation to the unsmoothed
profile pmod

BA
∈ T1BA in order to decrease the impact of partial voluming within

the profiles at the boundaries with WM and CSF. To allow quantitative compar-
isons, we compute in all subjects the probability P for all single profiles pemp of
the whole cortex based on given modelled profiles. Distribution of probabilities
in one given ROI vary due to different models. In plausible locations, proba-
bilities are expected to be high and the distribution curve slanted towards 1,
whereas in other regions the probabilities are expected to be lower and distribu-
tions slanted towards 0. We compute subject-wise in each ROI the mode of the
distribution of the probabilities and the variance as Full-Width-Half-Maximum.
This approach allows a quantitative individual and group-wise comparison of
average probabilities P̄ between different BAs based on a given model.

3 Experiments

We scanned 10 human subjects on a 7T MR system with the MP2RAGE se-
quence [12,13] to obtain a whole-brain quantitative T1 map at 0.7mm isotropic
resolution (TI1/TI2=900/2750ms, TR=5 s, TE=2.45ms) and maps of each
hemisphere separately at 0.5mm isotropic resolution. The three maps were co-
registered into a standard anatomical (Montreal Neurological Institute, MNI)
reference space at 0.4mm isotropic resolution and fused to generate a whole-
brain map from the two hemispheric 0.5mm maps. The cortex was extracted
using in-house software based on the CRUISE algorithm [14]. The boundaries
ϕGW between GM and WM and ϕGC between GM and CSF were used to es-
timate a set of N=20 level set surfaces {ϕd}d=1,...,N based on a novel volume-
preserving approach which parallels cortical layers in areas of curvature [15].
Orthogonal profile curves can be easily generated based on the level set rep-
resentation. From the 0.5mm data we computed profiles covering the cortical
depth to allow quantitative comparison between modelled and empirical profiles.
Fig. 2 gives an impression of our data processing in detail. ROIs in the left hemi-
spheric 0.5mm map have been defined and manually labeled guided by accepted
macro-anatomical landmarks [16]. Our ROIs correspond to BA 1, 2, 3b and 4
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Fig. 2. MR data processing in detail: (A) 0.5 mm T1 maps with visible intracortical
contrast (blue arrows) in BAs at the central sulcus (ce). (B) is the surface at WM/GM
boundary with 3D profile curves at precentral (gpre) and postcentral gyrus (gpoc). (C)
Mean empirical profiles derived from the data in ROIs.

and consist of 2500 up to 9500 voxels. Table 1 displays the empirically found
estimates ê

wm
and ê

csf
and σmodMR

BA
at WM/GM and GM/CSF interfaces for

the individual BA. Fig. 3 is highlighting all results for one subject. In the first
row, the modelled (magenta, dashed) and MR adjusted (red, solid) profiles are
illustrated in comparison to mean empirical profiles (blue, solid) derived from
the data at given labels in the ROIs. The lighter bands represent the modelled
and measured standard deviations. The final models correspond well to empir-
ical profiles. In standard view, we demonstrate that probabilities computed in
ROIs are always higher when model and respective BA are matching (Fig. 3,
mid row). The last row in Fig. 3 gives a general impression of the distribution
of the probabilities on the cortical surface. The focus is on our chosen ROIs.
BA 4, 3b and 1 show particularly good results. The surfaces show inconsistent
patterns when BA and model do not match which is noticable on the surfaces
for BA 4 and 3b. Table 2 displays the quantitative comparison between modelled
profiles in all ROIs on a group average and the single subject presented in Fig. 3.
The variance is given in brackets. The diagonal describes the average probability
P̄ of a given model in its corresponding location and anatomically neighboring
areas are highlighted in yellow. In both tables the probabilities are very high in
plausible locations on average and the variance remains small. If a model and
BA are not matching, probabilities decrease and variance increases.

4 Conclusion

Following Hellwig [5], we established a generative histology-based model of
quantitative T1 contrast, which assists observer-independent in-vivo cortical par-
cellation of high-resolution 7T brain MR images. For the first time, we have
differentiated closely related cortical functional areas using solely quantitative

Table 1. The estimates ê and σmodMR
BA

(in ms) for defining our modelled profiles

êBA 4 êBA 3b êBA 1 êBA 2 σmodMR
BA 4

σmodMR
BA 3b

σmodMR
BA 1

σmodMR
BA 2

WM 0.25 0.25 0.25 0.25 45 55 55 60
CSF 0.459 -0.444 0.053 0.130 170 170 170 140
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Fig. 3. Results of a single subject: the profiles (left) correspond well with the profiles
derived from empirical data. Probabilities (middle row: standard view, bottom row: on
the surface) are higher (coded yellow) in plausible locations.

Table 2. Quantitative results of P̄ on group and single subject basis

measurements of intra-cortical contrast. We have validated our model using real
data, and have provided quantitative comparisons. Although the averaged global
data still lacks some overall consistency, results on individual subjects can be
much more accurate. Small motion and imaging artefacts may strongly affect
these results, and methods for removing motion artifact, such as prospective
motion correction, are likely to increase reproducibility. Another limitation of
our model is the current resolution of 0.5mm constrained by the scan dura-
tion. Below a cortical thickness of 1.5mm, the empirical profiles carry only a
small amount of information compared with our modelled profiles. The approach
presented offers completely new perspectives for this line of research, both in
imaging and in modelling the relationship between myelo- and cytoarchitecture.
In combination with these, our approach leads the way towards in-vivo histol-
ogy, in the context of the increasing interest in new advanced methods in brain
segmentation and cortical architectural studies.
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