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Abstract. Recent progress in diffusion imaging has lead to in-vivo ac-
quisitions of fiber orientation data in the beating heart. Current methods
are however limited in resolution to a few short-axis slices. For this par-
ticular application and others where the diffusion volume is subsampled,
partial or even damaged, the reconstruction of a complete volume can
be challenging. To address this problem, we present two complementary
methods for fiber reconstruction from sparse orientation measurements,
both of which derive from second-order properties related to fiber cur-
vature as described by Maurer-Cartan connection forms. The first is an
extrinsic partial volume reconstruction method based on principal com-
ponent analysis of the connection forms and is best put to use when
dealing with highly damaged or sparse data. The second is an intrin-
sic method based on curvilinear interpolation of the connection forms
on ellipsoidal shells and is advantageous when more slice data becomes
available. Using a database of 8 cardiac rat diffusion tensor images we
demonstrate that both methods are able to reconstruct complete volumes
to good accuracy and lead to low reconstruction errors.

1 Introduction

Diffusion Tensor Imaging (DTI) of ex-vivo hearts has been studied extensively
across many species, including the human [1], dog [2], goat [3], rat [4] and the
pig [5]. These studies demonstrate salient and consistent local and global pat-
terns in mammalian cardiac fiber architecture. These patterns are supported by
histological measurements [1] and include [6] an inner to outer wall turning of
the cardiac fibers in a smooth and regular fashion undergoing a total change of
about 110◦, and the helical wrapping of fibers around the left ventricle. Such
patterns in the left ventricle of the heart relate to its biological function as an
efficient pump [7]. The study of cardiac fibers thus plays an important role in
characterising healthy cardiac function.

As higher resolutions are achieved in ex-vivo diffusion imaging, the contractile
nature of cardiac fibers remains to be fully explored. Recent advances in in-vivo
DTI have made it possible to measure fiber geometry at different times during a
beat cycle. However, current approaches are limited in their resolution, typically
providing a few short-axis slices only [8]. In order to generate a complete volume,
cardiac fiber directions need to be interpolated from these sparse measurements.
Moreover, even with the advent of higher spatial resolutions, (4D) temporal
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imaging could also benefit from a method that can reconstruct intermediate
geometry from sparse temporal samples.

Different methods exist for interpolating sparse orientation fields. In [9], a
binary mask of the left ventricle is mapped to a prolate spheroid and diffusion
tensors are interpolated in the curvilinear coordinates of the surface. Other meth-
ods [10–12] carry out PCA on fiber fields and reconstruct fibers by projecting
measurements onto the principal components. Diffusion tensors are positive def-
inite symmetric matrices ∈ R

3×3 and their eigenvalues have meaningful physical
properties, i.e., they measure water diffusion along three orthogonal directions.
The interpolation of diffusion tensors must therefore be done carefully in order to
produce physically plausible results, for example using log-euclidean metrics [13].

It is well accepted that in the heart wall the principal direction of diffusion
correlates strongly with the underlying cardiac fiber direction [1], and that it
varies smoothly in the neighborhood of a voxel, but there is much greater vari-
ability in the directions of the second and third eigenvectors. For these reasons
we choose to work directly with the principal eigenvector of the diffusion tensor.
Motivated by recent work on the differential geometry of heart wall fibers [7],
a framework to estimate fiber curvatures was developed in [14] by considering
the rotation of a local frame field attached to the fiber direction, using the asso-
ciated Maurer-Cartan forms. In the present article we extend this approach to
reconstruct cardiac fibers from partial measurements.

The methods we develop are based on 1) principal component analysis (PCA)
and 2) curvilinear interpolation of the differential structure of a cardiac frame
field which is defined from the principal eigenvector of diffusion and from the
heart wall normal. By projecting a partial volume onto the differential PCA
basis, the differential structure of the frame field can be recovered even when the
acquired data is very sparse. For volumes sampled more densely, we also suggest
a curvilinear differential interpolation that performs significantly better than the
interpolation of the principal eigenvector of diffusion. In Section 2 we describe
the natural cardiac coordinate system, the differential descriptors on which we
perform PCA and interpolation, and the resulting reconstruction framework.
In Section 3 we compare our results with other reconstruction methods. We
conclude with a discussion of these results in Section 4.

2 Methods

We now discuss the potential of differential geometric studies of cardiac fibers
based on the connection forms of [14]. This section proposes two methods that
employ this approach to interpolate the sparse diffusion data that is typically
found in-vivo cardiac diffusion imaging. In Section 2.2, the connection forms are
embedded into a partial PCA reconstruction framework. In Section 2.3, an inter-
polation method based on the natural curvilinear coordinates of the cardiac wall
is developed on the connection forms. The experimental results presented in this
paper use the publicly available DT-MRI rat dataset of [7]. Our computations
require a common reference space in order to establish correspondences between
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hearts when comparing the reconstruction results and in computing the PCA
basis. An atlas is built using the methods described in [15], and we work with
the warped diffusion tensor fields.

2.1 Measuring Fiber Variation via Connection Forms

In [14] a framework was introduced to analyze the second-order variability of
fiber directions from diffusion data. This framework allows measurements of
commonly used cardiac fiber metrics, including the helix and transverse angles,
but offers a richer description of the geometry of fiber bundles. This framework
requires the existence of a cardiac frame field defined at every voxel in the
volume. The principal eigenvector of diffusion can be used to fully define a cardiac
orthonormal frame field, which we will refer to as F 1,F 2,F 3 ∈ R

3. At a voxel
point x0, F 1 is taken as the direction of the principal eigenvector measured
using DT-MRI, F 3 is the orthogonal component to F 1 of the gradient B̂ of the

shortest distance to epicardium i.e. F 2 =
(
B̂ − (B̂ · F 1)F 1

)
/||B̂−(B̂ ·F 1)F 1||

and F 2 = F 3 × F 1. The local frame
[
F 1 F 2 F 3

]
is then assembled, with the

coordinate axes F 1 and F 2 forming a local tangent plane to the heart wall.

Computing Connection Forms. Given a cardiac orthonormal frame field
F 1,F 2,F 3 ∈ R

3, the action of this frame on the cartesian frame e1, e2, e3 is
stored in the rotation matrix R where

[
F 1 F 2 F 3

]
= R

[
e1 e2 e3

]
. The differ-

ential geometry of the frame field is fully characterized by this transformation.
R can be used (see e.g. [16] for more details) to express the rate of change of
the frame field in an arbitrary direction v in terms of its own coordinate axes:⎡

⎣
∇vF 1

∇vF 2

∇vF 3

⎤
⎦ = (dR)R−1

⎡
⎣
F 1

F 2

F 3

⎤
⎦ = ω

⎡
⎣
F 1

F 2

F 3

⎤
⎦, (1)

where ∇v is the differential operator, R−1 = RT , and ω = (dR)R−1 is a
skew symmetric matrix with 3 degrees of freedom formed by the one-forms ω12,
ω13, and ω23, called the Maurer-Cartan matrix of connection forms. In order to
characterize the change of the principal principal direction of diffusion F 1 in
the direction of the other basis vectors F 2,F 3, we study the six contractions
ωijk ≡ ωij〈F k〉, where i = 1, j ∈ (2, 3), and k ∈ (1, 2, 3). Each connection form
can be computed using

ω1jk =
[
Fj1 Fj2 Fj3

]
⎡
⎣
∂xF11 ∂yF11 ∂zF11

∂xF12 ∂yF12 ∂zF12

∂xF13 ∂yF13 ∂zF13

⎤
⎦
⎡
⎣
Fk1

Fk2

Fk3

⎤
⎦ , (2)

where frame vectors are expressed as F i = (Fi1, Fi2, Fi3) and partial derivatives
are computed using a first order central differentiation scheme. For notational
simplicity, we will sometimes label the connection forms ωp where p = 1, ..., 6,
enumerated as ω121, ω122, ω123, ω131, ω132, ω133. For the rat dataset of [7], we
obtain corresponding values of 0±0.04,0.01±0.05,−0.19±0.13,−0.03±0.03,0.01±
0.03,−0.01± 0.04, which is in accordance with values reported in [7, 14, 17].
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Fig. 1. Connection forms measure the variation of the frames F 1,F 2,F 3. Colors range
from −0.1 (blue) to 0.1 (red) for ω131, ω122, ω133 and −0.5 (blue) to 0.5 (red) for ω123.
ω123 and ω131 respectively measure outer to inner wall turning of fibers (the rate of
change of the helix angle) and ω131 measures the turning of fibers towards the inner
wall (the rate of change of the transverse angle).

Understanding Connection Forms. The connection forms ωp have a distinc-
tive profile across different hearts. Fig. 1 shows the distribution of a selection of
connection forms for the average rat dataset and illustrates their action. The con-
nection form ω123 is particularly smooth across the population while the others
can be more disorganized due to the small scale behavior they represent com-
pared to the underlying DTI resolution and noise. Varying degrees of errors are
therefore expected in their reconstruction. Each ωp can be described as follows.

1. The rotations of F 1 towards F 2, ω12k, describe the manner in which fibers
rotate in the tangent plane of the heart. More precisely, ω121 describes ge-
ometrical curvature, ω122 describes splaying in the tangent plane, and ω123

describes turning from outer to inner wall. The rotation ω123 measures the
rate of change of a salient cardiac feature called the helix angle that has been
extensively studied in the cardiac literature.

2. The rotations of F 1 towards F 3, ω13k, express the turning of the fibers
away from the tangent plane. ω131 measures the local topological curvature
of the heart, ω132 describes the rate of change of the transverse angle, ω133

measures the fanning of the local fiber population away from the tangent
plane and towards the inner wall.

3. The rotations of F 2 towards F 3, ω23k, are a measure of the variability of
the local tangent plane itself.
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2.2 PCA Reconstruction of Connection Forms

Following the standard approach to principal component analysis (PCA) and its
application to low-dimensional projections [18], we compute PCA on the field
of connection forms. The m training measurements ψpi ∈ R

n are represented
as vectorized matrices, where the subscript i runs over the n voxels contained
in the 3D volume, obtained for each ωp using (2). The mean measurement is
defined as x̄p = 1

m

∑
iψpi, and is subtracted from each data vector, xpi =

ψpi − x̄p, i = 1, ...,m to form the data matrix Xp = [xp1, ...,xpm] which
is analyzed via PCA. The principal components of each connection form are
the eigenvectors of the covariance matrix of Xp, Cp = 1

mXpX
T
p . Given the

large number of voxels contained in DT-MRI volumes, it is more efficient to
compute the eigenvectors of XT

pXp. The eigenvectors of Cp can then be found
as Cpwpi = λiwpi, where wpi ≡ Xvpi, and where vpi and λi are respectively

the eigenvectors and eigenvalues of XT
pXp.

Partial volumes can then be projected onto the basis (wpi, λi). Given a partial
volume ω̃p of connection forms which is a subset of the complete volume ωp via
a linear map ω̃p = Lωp, we want to obtain the partial projection weights γpi
onto the PCA eigenbasis that minimizes the following error:

Ep = ||(ω̃p − x̄p)−
∑
i

γpiwi||2 (3)

= ||ω̂p − Γ pW p||2 (4)

where ω̂p = ω̃p − x̄p and W p = [wp1, ...,wp,m−1]. The solution is found to be

Γ p =W+
p ω̂p, (5)

where W+
p denotes the pseudoinverse of W p and can be obtained using e.g.

singular value decomposition. This solution is optimal in the least-squares sense.
The resulting partial projection is then found to be

ωp = x̄p +W
+
p (ω̃p − ω̄p)W p. (6)

Using (2) and (6), and denoting JF̃ 1
as the Jacobian of F̃ 1, the following ex-

pression is then obtained for projecting a partial cardiac frame measurement
F̃ 1, F̃ 2, F̃ 3 onto the eigenbasis W p of the connection form ω1jk:

ω1jk = x̄1jk +W+
1jk(F̃

T

j JF̃ 1
F̃ k − ω̄1jk)W 1jk. (7)

2.3 Reconstruction from Maurer-Cartan Interpolation

We now introduce the curvilinear radial basis function (RBF) interpolation
scheme. Corresponding points in the volume are enforced to lie on a thin shell
defined as isolevels of the distance transform to the cardiac outer wall. This
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is supported by observations in [14] that fibers are locally constrained in thin
ellipsoidal shells. The interpolation problem can be formulated as follows:

ωp(x) =
∑
xi∈ζ

φi(x,xi)ω̃p(xi), xi ∈ ζ ∩ Ω̃,x ∈ ζ ∩Ω, ∀ζ (8)

where ωp(x) is the connection form volume reconstructed at interpolation points

x from the partial measurements ω̃p, ζ is the thin shell domain, Ω̃ is the inter-
polation domain, xi are the interpolants contained in the partial measurement
domain Ω, and φ is a radial basis function. We use curvilinear interpolation such
that φ(x,xi) = |x−xi|. The interpolation is then carried out iteratively for each
thin shell ζ, using standard methods for solving the RBF weight matrix [19].

3 Results

The temporal and dynamic nature of in-vivo imaging limits the resolution of the
DTI volume acquisition and typically only a few short-axis slices are available.
We simulate this effect by subsampling the diffusion volumes along the long-axis
at regular intervals, as shown in Fig. 2. By varying the number of interval slices,
we are able to measure the performance of each method in reconstructing partial
diffusion volumes. Equations (7) and (8) offer two complimentary approaches to
reconstruct a partial volume of cardiac fiber connection form measurements.
These methods are compared against the direct curvilinear interpolation of the
eigenvector F 1 and its PCA reconstruction, followed by connection form mea-
surements using (2). Fig. 2 shows an example of the reconstruction of a ω123

volume consisting of only five short-axis slices. Figure Fig. 3 shows a compari-
son of the four methods for increasing number of short-axis slices, with the full
volume consisting of 50 slices. The connection form interpolation consistently
yields lower errors and performs significantly better than both F 1- and PCA-
based approaches when the volume is more densely sampled. On the other hand,
although error curves are comparable for few slices, the interpolation cannot
capture the finer details that are better reconstructed by considering extrinsic
information content drawn from the population and stored in the PCA basis.
The PCA curves stabilize fast, indicating the projection soon converges to a par-
ticular weighting of the PCA eigenvectors. More training data in the PCA basis
would be required in order to make the reconstruction more subject-specific.

4 Conclusion

We proposed two complementary methods for reconstructing partial cardiac fiber
volumes using a framework based on the Maurer-Cartan connection forms of the
cardiac frame field. The first (extrinsic) method is a partial volume reconstruc-
tion using a PCA of connection forms. This method is more appropriate when
facing highly sparse and irregular data. One limitation of this approach is in
the number of sample points required in constructing the PCA basis. Given
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(a) Original (b) F 1 interpolation (c) ω-interpolation (d) ω-PCA

Fig. 2. Reconstruction of the connection form ω123 for one specimen. From left to right:
original ω123 volume and axial subsamples (overlaid in gray), F 1 interpolation method,
connection form interpolation method, connection form PCA method. ω123 has average
magnitude 0.2376 and the total errors are respectively 0.1446, 0.1063, 0.1275.
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Fig. 3. Reconstruction error of three selected connection forms using different interpo-
lation schemes. Proposed methods are shown in red and blue.

the stability of the cardiac frame field across different subjects, collecting more
exemplar data would result in a PCA basis that captures a larger amount of
the variability found in the population and consequently provide a more robust
reconstruction. Another drawback of this method is that interpolants are not
reconstructed exactly due to the projection step of the PCA. The second (in-
trinsic) method is a ellipsoidal curvilinear interpolation of the connection forms
following thin shells of the cardiac wall. This method yields lower errors as more
reconstruction slices are available and goes exactly through interpolants. One
drawback of using RBF interpolation is that basis functions become less mean-
ingful if interpolants are spatially distant, which can happen with highly sparse
diffusion volumes. Moreover, salient small-scale patterns located in-between in-
terpolants cannot be reconstructed without a priori information. In that case
the problem would be better expressed via PCA reconstruction.

There are a number of directions for future investigation including the de-
velopment of partial differential equation solvers for reconstructing frame fields
from connection form measurements, the use of connection forms for temporal
interpolation and superresolution of diffusion volumes, and the combination of
intrinsic and extrinsic data into a united PCA-interpolation framework.
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