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Abstract. Volumetric image segmentation methods often produce de-
lineations of anatomical structures and pathologies that require user
modifications. We present a new method for the correction of segmen-
tation errors. Given an initial geometrical mesh, our method semi auto-
matically identifies the mesh vertices in erroneous regions with min-cut
segmentation. It then deforms the mesh by correcting its vertex coordi-
nates with Laplace deformation based on local geometrical properties.
The key advantages of our method are that: 1) it supports fast user
interaction on a single surface rendered 2D view; 2) its parameters val-
ues are fixed to the same value for all cases; 3) it is independent of
the initial segmentation method, and; 4) it is applicable to a variety of
anatomical structures and pathologies. Experimental evaluation on 44
initial segmentations of kidney and kidney vessels from CT scans show
an improvement of 83% and 75% in the average surface distance and the
volume overlap error between the initial and the corrected segmentations
with respect to the ground-truth.

1 Introduction

Patient-specific models of anatomical structures and pathologies generated from
volumetric medical images play an increasingly central role in many clinical ap-
plications, including, among many others: 1) accurate volumetric radiological
measurements of healthy and diseased structures for diagnosis, treatment deter-
mination, and follow-up assessment; 2) treatment planning in radiation therapy;
3) preoperative surgery planning and intra-operative navigation, and; 4) surgery
rehearsal and training by simulation.

Medical image segmentation is the key step of patient-specific modeling. Nu-
merous segmentation methods have been developed in the past. However, most
are not used in clinical practice because they lack robustness, require extensive
physician input, and/or require technical assistance. Indeed, segmentation is a
very challenging task mostly due to: 1) wide imaging variability resulting from
different imaging modalities, scanning protocols, and scanners parameters; 2)
large intra- and inter- patient anatomical variability, and; 3) intensity values
overlap between structures tissues and their proximity.

As a result, medical image segmentations often contain errors and require user
modifications. Segmentation correction can be a tedious and time-consuming
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task: the user is required to examine the image slices with the delineation of
the structures superimposed on them and to correct them where needed. When
the segmentation results of a particular method frequently require corrections,
it will not be used in clinical practice. Hence an automatic or semi-automatic
method for segmentation correction with fast and intuitive user interaction is
essential for its clinical acceptance.

Several semi-automatic methods for segmentation correction have been pro-
posed in the past. Boykov et al. [I] describe an interactive algorithm for the
correction of segmentation errors. Their method corrects the segmentation with
min-cut energy minimization, using user-provided seeds for the corrections, where
the graph weights are being changed in each iteration according to the new seeds.
Grady et al. [2] use, in addition to user-provided seeds, the initial segmentation
as a soft prior for the correct segmentation. However, their method requires pre-
cise parameter tuning to balance two opposite factors — the initial segmentation
prior and the user provided-seeds. In addition, it requires tuning the locality of
the seeds influence, which may be different for each case. Heckel et al. [3] use
a live-wire based extrapolation of a user-provided 2D contour. In this method,
the processing is performed on each 2D slice separately by copying the corrected
contours of the adjacent slices and then adjusting them. This method requires
specific parameter tuning for the copy stopping criteria that may not be suitable
for complex structures such as vessel trees with bifurcations.

In this paper we present a new geometrical method for the correction of seg-
mentation errors. Given an initial segmentation, represented as a geometrical
mesh, we apply a three-step algorithm. The first step is the segmentation of
the mesh vertices to identify and correct the erroneous regions with curvature-
based min-cut segmentation. The second step is the modification of the erroneous
vertices to their correct coordinates with Laplace deformation, using the mesh
segmentation as boundary conditions. The third step is the identification of the
actual structure of interest and its final re-meshing.

Our method has the following advantages: 1) it is independent of the initial
segmentation method; 2) it supports an easy and intuitive 2D user interaction,
both in the image-space and on a single 2D surface-rendered view on the screen.
3) its internal parameters values are fixed to the same value for all cases; 4)
it is applicable to a variety of anatomies and pathologies, including complex
structures such as vessels trees, and; 5) its computational complexity depends
only on the size of the initial segmentation and is independent of the image size.
Our experimental evaluation on 44 initial segmentations of kidney and kidney
vessels from clinical CT scans shows a mean improvement of 83% and 75% in
the average surface distance and the volume overlap error between the initial
and the corrected segmentations with respect to the ground-truth.

2 Method

Our method focuses on correcting segmentation errors of an initial segmentation
S that has the same topology as the ground truth GT', but may be different with
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Fig. 1. Tllustration of the algorithm steps: meshes of kidney vessels (top) and kidney
contour (bottom) superimposed on volume-rendered kidney images. (a) initial seg-
mentation with leaks; (b) user defined scribbles (red and light brown); (¢) minimum
principal curvature — warm colors indicate lower curvature values; (d) min-cut mesh
segmentation to correct (blue) and leak (red) regions; (e) final meshes after correction.

respect to the ground truth geometry. i.e. with respect to its surface coordinates
location. This is justified by the empirical observation that the vast majority of
segmentation errors belong to this class.

We distinguish between two types of segmentation geometrical errors: outer
leaks and inner leaks. Segmentation outer leaks occur when the segmentation
volume expands outside the target volume into neighboring structures, mostly
due to low contrast between the neighboring structures. Segmentation inner leaks
occur when the segmentation stops in the interior of the target volume, mostly
due to the existence of strong gradients in the interior of the target structure.
Our segmentation errors correction method deals with both types of errors.

The algorithm consists of three steps: 1) segmentation of the correct vs. in-
correct regions of the segmentation surface by geometry-based min-cut mesh
segmentation; 2) deformation of the incorrect segmentation regions to their cor-
rect location by Laplace-Poisson deformation based on local geometrical criteria,
and; 3) structure component identification and remeshing. We describe next the
algorithm inputs and these three steps in detail.

2.1 Algorithm Inputs

The two inputs to the algorithm are: 1) an initial mesh S = {V, E'} with vertices
V = {v;} and edges E = {e;}. The mesh S may be obtained with any seg-
mentation method — e.g., with the marching-cubes algorithm and binary image
classification (Fig. 1a), and; 2) user-defined ”scribbles” on the mesh surface to
indicate the parts that do/do not belong to the structure of interest. We use
the scribble information as seeds to classify the mesh regions and to correct the
segmentation leaks (Fig. 1b).
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We distinguish between three types of scribbles in V': 1) vertices that the user
marks as lying on the true surface of the target structure, Seed orrect; 2) vertices
that the user marks as segmentation outer leaks, Seedyy:, and; 3) vertices that
the user mark as segmentation inner leaks, Seed;,.

The user defines these scribbles by interaction on a single 2D surface ren-
dering of S. Note that this kind of interaction is faster and far more intuitive
then defining them on numerous 2D contours overlaid on the CT scan as it is
customary in existing methods. The scribbles are projected onto the 3D model
surface. Note that our method also supports interaction on the CT slices if they
are preferred by the user.

2.2 Segmentation Errors Detection by Min-cut Mesh Segmentation

This step assigns a label [ to each vertex v; € V, such that I(v;) € {non leak,
outer leak,inner leak}, where non leak label the vertices that lie on the true
surface of the target structure and outer leak and inner leak label the leak
vertices, respectively.

The segmentation is based on the observation that the interface between the
true surface and the outer leaks is usually concave, while the interface between
the true surface and the inner leaks is usually convex. We model the degree
of concavity and convexity of a mesh vertex with the minimal and maximal
principal curvature of the mesh vertex as follows.

Let k7" and "% be the minimal and maximal principal curvature of vertex
v; as defined in [4]. Lower values of "™ indicate vertices that may be part of
the interface between the correct and the outer leaks regions; higher values of
k7% indicate vertices that may be part of the interface between the correct and
the inner leaks regions. Fig. 1c shows an example of displaying the minimum
principal curvature on top of the input mesh.

Since the exact values of the interface curvatures are unknown and may be
different for each case, a simple curvature thresholding is not an appropriate so-
lution. Instead, we compute the mesh segmentation by minimizing energy func-
tions that incorporate both the vertex curvature and the location of the user
seeds from the scribbles. We define two energy functions, one for the segmenta-
tion of the outer leaks and one for the segmentation of the inner leaks. We define
our first energy function Fo,.(s) as follows:

Eout(s) - Z fout('vi) + Z Z gm""i"(uiavi) (1)

v, €V UiEVuiEN(Ui,)

where N (v;) are the neighbor vertices of v; in S. The first term is:

v; € Seedyyr and [°“(v;) = outer leaks

v; € Seedyyr and 1°%(v;) # outer leaks

v; € Seedeorrect and 144 (v;) = outer leaks (2)
v; € Seedeorrect and 17t (v;) # outer leaks

5 otherwise
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where [°“(v;) labels v; as outer leak or one of the other two labels. This term
guarantees that the seeds will always have the correct label.
The second term is:

3)

g (s, v7) {1/6‘1(”37"*”&7‘%)/”2 u; and v; has different labels
wmin (Usg, V;) =

0 u; and v; has the same label

for positive constant parameters a and o. This term guarantees that edges with
lower vertex curvature will have lower cost.

Similarly, we define a second energy function, F;,(s), to account for the sep-
aration of the inner leaks from the other labels. We use the same formulation
as we used for E,,(s) in Equation (), replacing in Equation (2) Seed,,: with
Seed;y, label outer leaks with label inner leaks, and replacing in Equation
(3) the minimal principal curvature x™" with the maximal principal curvature
k™% and the constant parameter a with the opposite of the same parameter in
the first energy equation.

We then perform an independent global minimization for each energy function
with the min-cut algorithm [5]. The results are the corresponding labeling 1°%¢(v;)
and 1" (v;) that minimize each of the two energy functions defined above (Fig.
1d).

Finally, we compute the final mesh labeling i(v;) € {leak, non leak} by
labeling each label as leak if it is labeled by FE,.: as outer leak or by E;, as
inner — leak, otherwise it is labeled as non leak. Formally:

) = {leak 1°ut(v;) = outer leak V 1" (v;) = inner leak @
non leak else

2.3 Errors Correction by Laplace-Poisson Mesh Deformation

Once the classification has been performed, we compute the new coordinates
of the leak vertices based on the local smoothness properties of anatomical
structures. To obtain the smoothest surface, we use Laplace interpolation with
Dirichlet boundary conditions, which minimizes the sum of the squared vertex
gradients. The Laplace interpolation is formulated as:

V3 (v;) = Z (vi —uj) =0, Vo : l(v;) = leak
uj; €N (v;) (5)

subject to:  uj = u;

Vu; @ l(u;) = non leak

where v; = (1,9, 2;) are the new vertex coordinates, V2v; is the discrete graph
Laplacian operator [6], u; are the neighbors of v;, and uy are the known coordi-
nates of the non-leak boundary vertices. We solve the resulting sparse system of
linear equations three times, one for each coordinate, by LU decomposition [7],
thereby obtaining the corrected new coordinates of the leak vertices.
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Fig. 2. Illustration of the experimental results: (a,c) initial and (b,d) final segmentation
after corrections of the kidney contour and the kidney vessels overlaid on a sample CT
slice. The red contours are the initial and final segmentations after corrections; the
blue contours are the ground-truth segmentations.

2.4 Structure Component Identification and Remeshing

We obtain the final image segmentation from the initial segmentation by sepa-
rating it into connected components, where the computed deformed mesh serves
as the separator. We then select the component that is connected to the user
provided non-leak scribbles. The final mesh is obtained by applying a suitable
meshing algorithm, such as the marching cubes algorithm on the resulting binary
classification of the image voxels (Fig. 1e).

3 Experimental Results

We designed and conducted an experimental study to quantify our method qual-
ity, and to evaluate its scope. We retrospectively selected from the hospital
database 22 CT clinical scans of two different structures, the kidney outer surface
and the kidney vessels. Note that these structures have substantial differences
in their shape. For the kidney contour study, we used 12 clinical CT datasets
without contrast agent, of size 512 x 512 x 350 — 500 voxels, 0.5—1.0 x 0.5 —1.0 x
1.0 — 1.5mm?3, from a Brilliance 64-row CT scanner (Phillips Healthcare, Cleve-
land, OH). For the kidney vessels study, we used 10 clinical arterial-phase CTA
datasets of size 512 x 512 x 500 voxels, 0.7 — 1.2 x 0.7 — 1.2 x 0.7 — 1.2mm? from
the same scanner. Ground-truth segmentations were obtained for both anatomies
from the manual segmentation of an expert radiologist.

For each case we obtained two initial segmentations as follows. For the kid-
ney contour segmentation, we used intensity-based min-cut segmentation with a
weak shape prior generated manually with a coarse square brush inside the kid-
ney volume. For the kidney vessel, we used the geodesic active contour level-set
ITK-SNAP interactive tool [8]. The segmentation input consisted of user-defined
seeds inside the target structure and parameter settings for the level-set differ-
ential equation terms. The user manually stopped the segmentation when the
entire target volume was segmented. All the resulting segmentations contained
segmentation leaks. We then applied our leaks correction algorithm and com-
puted the segmentation quality improvement relative to the initial segmentation.
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Table 1. Summary of evaluation metrics for the kidney and kidney vessels segmenta-
tion studies. The metrics are the Absolute Volume Difference (AVD) from the ground-
truth in %, Average Symmetric Surface Distance (ASSD) in mm, the Maximal Sym-
metric Surface Distance (MSSD) in mm, and the Volumetric Overlap Error (VOE)
in %. The first (fifth) and second (sixth) are the initial and corrected segmentation
measures; the third (seventh) row is the initial corrected difference; the fourth (eighth)
row is the relative improvement in %.

AVD (%) ASSD (mm) MSSD (mm) VOE (%)

Structure Type mean std mean  std mean  std mean std
initial 49.2 21.3 3.1 0.7 19.7 3.3 35.1 9.2
Kidney corrected 4.0 44 0.8 0.3 11.4 2.6 11.5 4.3

contour improvement(A) 45.1 17.0 2.3 0.3 8.3 0.6 23.7 49
improvement(%) 91.8 79.3 73.2 514 42.2 19.2 67.3 53.2

initial 334.2 188.7 54 24 24.3 8.4 72.4 13.8

Kidney corrected 54 23 028 0.08 11.6 3.7 12.2 3.1
vessels improvement(A) 328.9 185.7 5.1 24 127 47 60.2 10.7
improvement(%) 98.4 98.4 948 96.7 524 56.2 83.2 77.5

The mean user interaction time was 36 secs (std=16). The mean running
time of the correction algorithm was 9.59 secs (std=1.57) on a 64-bit quad-
core 2.80GHz processors and 6.0GB memory PC. The graph edges weights in
Equation (3) were fixed to a = 13 and o = 1 for all cases.

We evaluated our method with both volumetric and surface based metrics.
Table 1 shows the results. Note that in all the evaluation metrics, our method
significantly improves both the mean quality and its variability. The improve-
ment for the kidney contour is 73.2% (std=10.5%) and 67.3% (std=12.3%) in
the average surface distance and in the volume overlap error between the initial
and the corrected segmentations with respect to the ground truth. The improve-
ment for the kidney vessels is 94.8% (std=1.5%) and 83.2% (std=4.28%) with
respect to the same metrics. Note also that these stds are the standard devia-
tions of the segmentation quality improvement, while those in Table 1 indicate
the improvement of the segmentation quality standard deviations. Fig. 2 shows
representative examples.

4 Conclusion

Segmentation errors are common and pervasive in all types of segmentation
methods. While their nature and prevalence varies among methods, their cor-
rection is mandatory and often requires extensive manual user interaction.

To address this issue, we have developed a new three-step method for the
correction of segmentation geometrical errors. Given an initial mesh, the first
step is the segmentation of the mesh vertices to identify and correct the erroneous
regions based on curvature based min-cut segmentation. The second step is the
deformation of the erroneous vertices to their correct coordinates with Laplace
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deformation. The third step is the identification of the actual structure of interest
and its final re-meshing.

The novelty of our method is in the use of user-defined scribbles on a single
2D surface rendering of the mesh surface to indicate the parts that do/do not
belong to the structure of interest. This is more intuitive and faster that the
commonly used method of correcting the contours on 2D slices of the original
scan, as corrections in the image domain require scrolling hundreds of slices.
In addition, our method is independent of the initial segmentation method and
does not require internal parameters values fine-tuning. It can be applied to
a variety of anatomies and pathologies, including complex structures such as
vessels trees. Its computational complexity depends only on the size of the initial
segmentation and is independent of the image size. Experimental evaluation on
44 initial segmentations of kidney and kidney vessels from CT scans show an
average improvement of 83% and 75% in the average surface distance and the
volume overlap error between the initial and the corrected segmentations with
respect to the ground-truth.

Future work includes testing our method on more anatomical structures, and
further expanding the proposed framework.
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