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Abstract. We propose an effective 4D image registration algorithm
for dynamic volumetric lung images. The registration will construct a
deforming 3D model with continuous trajectory and smooth spatial de-
formation, and the model interpolates the interested region in the 4D
(3D+T) CT images. The resultant non-rigid transformation is repre-
sented using two 4D B-spline functions, indicating a forward and an
inverse 4D parameterization respectively. The registration process solves
these two functions by minimizing an objective function that penalizes
intensity matching error, feature alignment error, spatial and temporal
non-smoothness, and inverse inconsistency. We test our algorithm for res-
piratory motion estimation on public benchmarks and on clinic lung CT
data. The experimental results demonstrate the efficacy of our algorithm.
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1 Introduction

Image registration is important in image-guided radiotherapy management. For
example, in lung cancer radiotherapy, it can establish the correspondences among
the 4D (sequential volume) CT images. This correspondence can be used to
build a motion estimation model that describes the movement and deformation
of organs during breathing cycles. We can generally classify the algorithms for
dynamic volumetric image registration into two categories.

Pairwise 3D Registration. Given a sequence of volume images, the conven-
tionally popular registration approach is through the pairwise 3D registration,
which computes a set of mapping functions f;; between image ¢ and image j.
These registrations {f;;} can be interpolated to obtain a deforming volumet-
ric model. 3D registration algorithms often approximate natural deformation
between two shapes through minimizing certain physical deformation energies
[Mor geometric smoothness [2J3]. Pairwise 3D registrations have two general lim-
itations. One is its sensitivity to the selection of the reference frame, especially
when describing a motion sequence undergoing large deformations. More impor-
tantly, the second limitation of 3D piecewise registration is its lack of control
on the smoothness of the resultant motion trajectory. High quality 3D image
registration may provide accurate inter-image matching, but in the temporal
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dimension, the motion/deformation composed from the individually computed
3D matching is often not smooth and thus less physically natural.

4D Registration. Registration across sequential images can be solved in a 4D
space directly. This can avoid the bias caused by the selection of a predetermined
reference frame, and can directly enforce both spatial and temporal smoothness
of the transformation to indicate more physically natural deformations. This ap-
proach, called the 4D Registration [2/4[5], attracts a lot of attentions recently.
Metz et al. [2] solved a 4D registration by reducing intensity matching errors
on a common domain; their algorithm minimizes a non-linear and non-smooth
optimization with many local minima, which requires a good initial guess to get
desirable matching. Geometric information such as feature correspondence can
guide the optimization to avoid many undesirable local minima. Wu et al. [4]
suggested a 4D registration framework utilizing both image intensity and fea-
ture guidance, and solve the registration on a refined implicit domain for lung
image data. They also proposed a groupwise registration scheme [6] by itera-
tively resolving feature correspondence and thin-plate spline deformation, which
demonstrates high matching accuracy for brain image registration. This method,
however, is relatively expensive. Xu and Li [7] also integrate feature guidance in
4D-image registration to improve the matching performance. To model the res-
piratory motion which is nearly periodic, the algorithms of [2I[7] use a geometric
constraint that enforces the average deformation to be identity. This constraint
assumes the inhale and exhale phases are symmetric and the temporal samplings
on these two phases are uniform, which are often not the case.

Main Contributions. This paper introduces a symmetric 4D registration model,
which represents the sequential transformations using two 4D spline functions.
The respiratory motion of the lung tumors/organs from the temporal CT scans
can be described by a continuously deforming parametric geometry. Our exper-
iments show that this algorithm results in significant performance improvement
from existing methods in matching accuracy and trajectory smoothness.

2 Algorithm

2.1 Problem Statement and Overview n n

(x,t1) (x,tz)  T(x,
Given sequential volume images Iy,Is,...,1Ip, H:\ ﬂ /:(/“

where each image I;(x) : £, — R,x € §; C R3

is a 3D intensity functio, we want to compute a

temporally deforming 3D model T'(x,t) : 2 x R — Fig. 1. Mapplng Model
R3, 2 C R? that correlates all the input images, as

illustrated in Figure [l A point x € (2; in I; is correlated with a point x’ in I;
by x’ = T(T~*(x,ti),t;). Then, a continuous 4D deforming image I(x,t) can be
constructed using the intensity function defined in the first image I;, namely,
I(Xv t) =1 (T(.’ﬂ, tl))'

! For sequential CT scans, their parametric domains 2; simply overlay in R>.
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To obtain this deforming parametric geometry and the deforming image, we
need to explicitly compute two 4D functions: (1) a forward 4D parameterization
T, spatially defined on a common parametric domain, 7' : 2 x R — R?, and (2)
its inverse mapping H = T~! : R? x R — (2 which maps coordinate space of the
deforming images £2;(C R?) x R to the common domain. To model the nonrigid
freeform deformations of human organs during respiratory cycles, we use 4D
B-spline functions to approximate these two transformations 7' and H, through
which both the spatial and temporal smoothness can be formulated easily. The
B-spline approximation for 7' can be formulated as:

T(y)=x+ Y mB(y -y, (1)
YrENy
where y = (x,t), yr is a knot on the parametric domain 2 x R; 87(-) is the
r-th order multidimensional B-spline polynomial (here we take r = 3); px € R3
are B-spline control points to be solved, and IV, denotes y’s neighboring local
support regions where the basis functions are nonzero. The knots y; are defined
on a 4D regular grid, uniformly overlaid the 4D image.

Because the inverse of B-spline transformation cannot be derived in close-
form, we explicitly approximate this inverse mapping using another B-spline
transformation H using a same formulation to eq ([Il). Then with T and H, a
transformation F'¥/ from any frames i to j can be composed as

Fii(x) = T(H(x,t;),t;),x € ;. 2)

The entire 4D registration problem is formulated as an optimization on T" and
H that minimizes an objective function:

E=FE;+aFEpr+ AEs + pEc, (3)

where F; measures the intensity matching error, Fr measures the feature align-
ment, E's measures the spatial and temporal smoothness of the deformation, Ex
measures the inverse consistency, and «, A, p are weighting factors.

Intensity Matching Error. With the assumption that the corresponded points
have the same intensity, the registration should minimize the intensity differ-
ences of corresponded points. We can derive the intensity difference between
corresponded points in any pair of images I; and I; taken in time ¢; and ¢;. For
any point x € (2; in time t;, its corresponding location in time t; can be com-
posed by H and T'. The accumulated difference between I;(x) and the intensity
of its corresponding coordinate in ¢; can be formulated as:

By = ‘SH IS 0,43)) — L)), (4)

t;€lt;€ XES;

where \S; is the sets of spatial voxel coordinates in each §2; and for Vi, |S| = | S;].
Simultaneously solving both T" and H is expensive. We first solve a forward
parameterization T', then iteratively, fix the parameterization in one direction
and optimize the other (see Section for the complete algorithm).
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To solve the initial forward parameterization T" without knowing H, we for-
mulate the reduction of intensity error by minimizing the intensity variance:

T = |5H |ZZIt —I(x))*, (5)

xeStel’

where I(x) is the average intensity value follows the forward parameterization:
I(x) = \ll”l > ier 1t(T(x,t)). S C §2 are the spatial voxel coordinates (e.g. coor-
dinates of all the pixels) and I" C R contains the temporal coordinates indexing
temporal sample images. After obtaining the initial T, we iteratively optimize
H and T by minimizing:

E]:TI+E~‘I~ (6)

Feature Alignment Error. The intensity term has many local minima. Ge-
ometric features can help effectively avoid many undesirable solutions. We ex-
tract feature points using a slightly modified 3D SIFT algorithm [], then com-
pute a set of consistently corresponded feature points {p;;} across the entire
sequence of images, where p;; indicates the i-th feature point on time ¢;, where
i=1,...,N,j=1,...,|).

Each consistently corresponded feature point has a parametric coordinate
m;,i = 1,..., N in {2, which is mapped to the feature p;; in image I; at time
t. The feature correspondence in the forward parameterization should penalize
the deviation of T'(m;,t) from ps:

ZZ |pzt mivt)HQv (7)

tEFz 1

For the inverse map H, the variance of H(p;;, ) should be minimized:

ZZHH Dit, t (pz*)” (8)

i=1tel’

where H(p;.) = \ll”l > ter H(pit,t) is the average coordinates of the i-th feature
pis- Finally, the entire feature alignment error is:

Er=Tr+ Hp. 9)

Deformation and Motion Smoothness. The transformation (hence both
parameterizations T' and H) should be spatially and temporally smooth. The
2nd-order derivatives of the B-spline transformation functions can be derived as
the smoothness energy to minimize:

Eg=Ts+ Hg;

2 2
s = 5} Sxes Ser (IBEIE HIGLI + 21250105 (0
2
Hs = 1sh 1 Toes, Seer(I0E 12 + 1158112 + 201 55 110).
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Inverse Consistency means the matching between two frames I; and I;
should be symmetric and bijective. Namely, the matching from I; to I; (com-
posed by T and H) is one-to-one and also consistent with that from I; to I;. In
3D pairwise registration, inverse consistency also means the selection of refer-
ence doesn’t affect the matching result [9]. This consistency can be achieved by
making the composition of T' and H to be as near-identity as possible:

Fe= | gir 2 S ITGHO0.0 —xl+ o 57 S IHT60,0 -,

xeS; tel’ xeStel’
(11)

2.2 Solving the Optimization

Simultaneously solving T" and H reduces to a very expensive optimization prob-
lem. We develop an iterative algorithm to seek for the optimal solution. During
each iteration, T' (or H) is solved using a gradient-based optimization method
algorithm proposed in [2], which uses a stochastic sampling strategy to reduce
the computational cost. With the B-spline representation we derive the deriva-
tives of Ep, Eg, Ec explicitly, and we use the finite difference approximation to
get the derivatives of Fj.

We first solve a forward parameterization T by minimizing £ = Tr+aTp+pTs
from equations (BIIM), then with T fixed, we solve its inverse parameterization
H by minimizing the entire objective function F in equation[Bl Then iteratively,
we fix one parameterization and revise its inverse parameterization, until the
energy reduction is smaller than a threshold. This optimization algorithm is
formulated as follows.

1) Compute an initial forward parameterization T' by minimizing Tr+aTr+pTs;
2)
3) Fix H, and solve T' by minimizing FE;

4) If E converges, STOP; otherwise GOTO 2).

Fix T, and solve H by minimizing F;

3 Experimental Results

We implement our registration model via a multi-resolution strategy and use
linear interpolation in the spatial domain for the derivation of intensity values
for any point not on a grid. Our algorithm was implemented in C++ using an
Intel Xeon X5570 @2.93 GHz, 8GB RAM. In our experiments, we set the weight
factors in eq-@3) as « = 0.1, A = 0.5, p = 0.5.

3.1 Experiments Using Public Datasets

We perform 4D registration using our algorithm on two public benchmark
datasets: POPI [10] and DIR-lab [11]. The dataset from POPI has one 4D CT
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series including ten 3D volume images (482 x 360 x 141 pixels) representing ten
different phases of one breathing cycle. We also select five datasets from the
DIR-lab dataset (Case-1 to Case-5) where lardmarks are available. Each dataset
contains 6 sequential volume images. This CT pixel unit can be converted to real
physical space units millimeter by multiplying a scaling factor (recorded in the
image header file). Consistent landmarks are also available in the benchmark to
measure the accuracy of the registration. Denoting the landmarks on frame-t¢ as
Qi ={qt,1,q,2, - - -, q,n}, the registration accuracy with respect to frame-r can
be measured by a Mean Target Registration Error (MTRE):

]' T
Dr=ip 2 2 IFani) = auall (12)

tel qr i €Qr

where F™ is the transformation between frames r and ¢, composed by the forward
and inverse parameterizations following equation (2]).
Unlike existing 4D parameterization methods

—POPI data (0-9)

that solve mappings in two directions separately, —POPI ¢ata 01,36)

0.16 Clinic Lung/Tumor data

our model uses a symmetric objective function
that can be optimized with guaranteed conver-
gence. Fig. 2 shows the convergence of the en-
ergy E (eq-@)) when parameterizing the POPI
dataset. Our algorithm converges in 4 iterations. 1 ; . ; ;
We compared our registration results with Iteration Number

existing 3D pairwise registration [2] and 4D regis-  Fig. 2. Convergence of F
tration [2lf7] algorithms using the benchmark data

from POPI and DIR-lab. The results are documented in Table [[] and Table 21
On the POPI dataset, we evaluated the registration using the matching error
of the consistent 40 landmarks. On each of DIR-lab datasets, both maximum
inhale and exhale phases possess 300 landmarks, whose matching errors were
used to evaluate the registration accuracy.

Energy Value

Table 1. The landmark predication erroriDi and its standard deviation o; (in mm)
of i'" time frame on the POPI-data [I0]. D is the average MTRE.

V]

Di(e1) D2(e2) D3(93) Da(osq) Ds(os) Dgl(og) Dr(o7) Dgl(og) Dg(og) Do(oq)
3D Reg.[2] 3.6(2.3) 2.3(1.8) 2.1(1.7) 2.2(2.0) 2.4(2.3) 2.9(2.4) 2.8(2.3) 2.1(1.7) 2.1(1.5) 2.7(2.1) 2.5
4D Reg.[2] 3.8(2.3) 2.6(2.0) 2.2(1.8) 2.2(2.0) 2.5(2.2) 2.9(2.3) 2.8(2.3) 2.2(1.8) 2.2(1.5) 2.8(2.2) 2.6
4D Reg.[7] 2.1(1.6) 1.8(1.5) 1.6(1.3) 1.6(1.2) 2.1(1.4) 2.4(1.7) 2.1(1.6) 1.7(1.0) 1.6(1.2) 1.9(1.6) 1.9
Our 17 jter. 1.9(1.4) 1.6(1.2) 1.6(1.3) 1.8(1.5) 2.0(1.7) 2.0(1.7) 2.0(1.6) 1.6(1.2) 1.7(1.1) 2.2(1.6) 1.9
Our 2t7 jter. 1.1(0.8) 1.2(0.9) 1.3(0.9) 1.2(0.8) 1.5(0.9) 1.5(1.0) 1.4(1.1) 1.1(0.6) 1.2(0.8) 1.2(0.8) 1.3

Our 3t iter. 1.1(0.8) 1.2(0.9) 1.3(0.9) 1.2(0.8) 1.5(0.9) 1.5(1.0) 1.4(1.1) 1.1(0.6) 1.2(0.8) 1.2(0.8) 1.3

Our algorithm results in significantly smaller MTRE errors, i.e., better land-
marks prediction accuracy. Furthermore, in practice, the breathing cycles are
often sampled in a non-perfectly uniform manner: the exhale is longer than the
inhale. In this case, the geometric constraints adopted in [2] and [7], which en-
forces the average movement of each point during the entire cycle to be identity,
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Table 2. The landmark predication error and its standard deviation D;(c;) (in mm)
for the registration of DIR-LAB 4D dataset: i = 1 to 5 for Case-1 to Case-5

Method/Results: Di(o1) D (02) Ds3(os3) Da(os) Ds(os)
3D Reg[2]  2.03(1.09) 0.72(0.44) 0.99(0.71) 1.14(0.81) 1.64(1.70)
AD ReglZl  2.12(1.09) 0.92(0.61) 1.39(0.93) 1.44(0.96) 1.85(1.69)
4D Regff]  1.58(0.99) 0.70(0.57) 0.79(0.55) 0.91(0.75) 1.41(1.36)
Our Reg  1.28(0.76) 0.56(0.34) 0.59(0.43) 0.69(0.49) 1.10(0.94)

will not be correct. The geometric smoothness cost (eqn [I0]) suggested in our
framework is a more robust description against this non-uniformity.

3.2 Motion Modeling of Our Clinical Lung Tumor Scans

We also build a 4D parameterization to describe the lung/tumor deformation
from clinic CT scans. We first perform image segmentation and construct finite
element mesh models [12], then use the 4D mapping to compute its deformation.
Fig. Blillustrates a few snapshots of this tracking. (a) shows the surface contour
segmented from frame-1 and (b) shows the deformed contour on frame-6; (c)
and (d) show the color-encoded displacement fields of our deformable model; (e)
illustrates the matching error measured by Hausdorff distance. This illustrated
matching, between the maximum inhalation (/) and maximum exhalation status
(I1) which undergoes a largest deformation, infers the maximum matching errors
during the respiratory cycles. See our video for better visualization.

x
- / A%

(a)S1 from Iy (b) F(S1) on Ig (c) I1 (d) d(F"(I1), I) (e) H(F“®(I1), Is)

Fig. 3. Lung/Tumor Tracking via a Deforming Surface Geometry. (a, b) show the
alignment of iso-contours and the scanned images. (d) shows the color-coded displace-
ment field of F%(I;) from I in (c); (e) visualizes the Hausdorff distance from the
deformable model to the scan.

4 Conclusion

We propose an effective 4D registration algorithm for dynamic volume images.
The 4D parameterization is represented using two coupled B-spline functions
and solved by minimizing an objective function E measuring intensity match-
ing, feature alignment, spatial and temporal smoothness, and transitive inverse-
consistency. Compared with existing 3D and 4D registration models, this al-
gorithm has unique advantages in matching dynamic volume image sequences
that undergo relatively big nonrigid deformation and/or are non-uniform in the
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temporal dimension. To minimize E, we alternatively optimize the forward and
inverse parameterizations T and H, which iteratively refines each other in a sym-
metric manner. Our experimental results demonstrate that this computational
model greatly improves the registration accuracy of existing methods.
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