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Abstract. For automatic segmentation of optic disc and cup from color fundus
photograph, we describe a fairly general energy function that can naturally fit
into a global optimization framework with graph cut. Distinguished from most
previous work, our energy function includes priors on the shape & location of
disc & cup, the rim thickness and the geometric interaction of “disc contains
cup”. These priors together with the effective optimization of graph cut enable
our algorithm to generate reliable and robust solutions. Our approach is able to
outperform several state-of-the-art segmentation methods, as shown by a set of
experimental comparisons with manual delineations and a series of results of
correlations with the assessments of a merchant-provided software from Optical
Coherence Tomography (OCT) regarding several cup and disc parameters.

1 Introduction

As the second leading cause of blindness in the United States, glaucoma is characterized
by progressive optic nerve damage and defects in retinal sensitivity leading to loss of
visual function. Early diagnosis and optimal treatment have been shown to minimize
the risk of visual loss due to glaucoma. The hallmark of glaucomatous progression is
optic disc cupping, a phenomenon of enlargement of cup which is a small crater-like
depression seen at the front of the optic nerve head (ONH), as shown in Fig. 1. Cupping
is caused by little nerve fibers wiped out along the rim of the optic nerve in glaucoma.

Ocular imaging instruments provide clinically useful quantitative assessment of optic
disc cupping. However, fully automated ONH quantification techniques are still lacking
and it is still a clinical standard to perform subjective optic disc assessment using disc
photographs. Conventional ONH evaluations include subjective assessment by observ-
ing the pair of stereo fundus photographs and computerized planimetry which allows
for generating several disc parameters based on manual labeling of disc and cup mar-
gins [1]. However, these conventional methods are time consuming, labor intensive and
prone to high intra/inter-observer variabilities.

Automatic segmentation of optic disc and cup can help to eliminate the disadvan-
tages of the conventional ONH evaluation methods; nevertheless, it is surprisingly dif-
ficult. There have been efforts to automatically segment optic disc and cup from color
fundus photographs, which can be classified as techniques based on template matching
[2], machine learning [3], active contour model [4], level sets [5,6] and Hough trans-
form [7]. Our experiments showed that most of these existing techniques are incapable
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of generating accuracy and robustness enough for evaluating ONH in clinical practice.
The deteriorations of these algorithms first come from the challenges of the involved
task, caused by the blurry and faint boundaries of optic disc and cup, large inter-subject
variability in ONH appearance, interference of blood vessel and confounding bright
pathologies, as shown in Fig. 1. Moreover, most of these existing techniques segment
optic disc and cup independently and the strong shape and location priors of neuroreti-
nal rim (as shown in Fig. 1) cannot be fully used. Finally, most of them try to eliminate
the interference of blood vessel with an image preprocess of vessel removal which
turned out to be a very hard task in practice.

Fig. 1. A glaucomatous patient with progressed optic nerve cupping as shown by the color fundus
images of optic nerve head (ONH) taken at an early time (left picture) and a late time (middle
picture) after about 53 months. The right picture shows the annotation of main ONH landmarks.
Neuroretinal rim, defined as the region between optic disc and cup boundaries, manifest as a
“lantern ring” around the optic disc center.

To deal with the above-mentioned challenges of automatic segmentation of optic disc
and cup, we propose to address this task by introducing graph cut which is an effective
combinatorial optimization technique [8] and incorporating priors not only on shape,
location and geometric interactions of optic disc and cup, but also on rim thickness.
Our algorithm is reliable and robust not only because graph cut offers a globally optimal
solution but also due to the incorporated priors which can effectively reduce the search
space of feasible segmentations. Different from previous work, the interference of blood
vessel can be accounted for in the segmentation process by modeling the vessel intensity
information instead of removing vessels with a preprocess.

We describe a fairly general energy function which integrates a set of model-specific
visual cues, contextual information and topological constraints to include a wide range
of priors. First, boundaries of both “cup” and “disc” are nearly circular around optic
disc center and their radii can be a prior approximated. Second, “cup” is contained in
“disc”. Third, the minimum rim thickness can also be a prior estimated for the given
data set. Our energy function is submodular and can therefore be formulated as a s-t cut
problem and minimized efficiently via graph cut (min-cut/max-flow algorithm) [8].

We evaluate the performance of our algorithm not only by comparing with man-
ual delineations of optic disc and cup on a rigorous pixel-by-pixel basis, but also by
comparing the algorithm’s assessments on a set of ONH parameters from color fundus
photograph against the corresponding evaluations generated by the merchant-provided
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software in the Optical Coherence Tomography (OCT) machine. Our results show that
the proposed algorithm outperforms two state-of-the-art segmentation methods and
demonstrates strong correlations with the merchant-provided software in OCT
imaging.

2 Method

Upon the location of optic disc center is known, our segmentation task amounts to
searching regions of optic disc and cup which boundaries are circle-like, around the
optic center and with radii that can be a priori approximated.

2.1 Simultaneous Segmentation of Optic Disc and Cup

Our optic disc and cup segmentation framework divides a rectangle region around the
optic disc center into parts of cup, disc and background. It relies on the powerful graph
cut algorithm [8] and allows for spatial interaction of those segmented parts and the
incorporation of priors on location and shape of and distance between disc and cup
boundaries. Our framework results in a submodular energy minimization problem and
can therefore generate a global optimization.

Let P be the set of pixel indices and L be the set of region indices. We set L = {c, d}
where the set elements denote “cup” and “disc”, respectively. We then define binary
variables xl

p ∈ B
L×P where l ∈ L and p ∈ P index x, B = {0, 1} and xp is a binary

vector of all variables corresponding to p. Obviously, xp is in length of |L| where | · |
denotes the number of elements in a set. If pixel p is in region l, then we have xl

p = 1.
If xp = 0, pixel p is in the region of “background”.

The proposed energy function to be minimized via graph cut is defined as
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∑

components contain data terms, smoothness terms and region inter-
action terms [9], respectively, and are to be defined in the following.

2.2 Data Terms

The data term Dp(xp) in Eq. (1) is constructed from the probability of each pixel p
belonging to any of the regions r ∈ {“cup”, “disc”, “background”}. For each region,
we train a Gaussian Mixture Model (GMM) and use it to decide a posterior probability
with the following equation

P (r|Ip) = P (Ip|Θr)P (Θr)

P (Ip)
≈

K∑

k=1

αr
kG(I;μr

k, Σ
r
k) (2)

In Eq. (2), P (Ip|Θr) is the probability density function of each region r, P (Θr) is the
prior probability, and P (Ip) is merely a scaling signatures factor and can be neglected.
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Table 1. Definition of data term Dp(xp) and region interaction term W c,d
p,q
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)
in Eq. (1)
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Ip is the fundus color vector of pixel p ∈ P . Region r is assumed to contain K (empir-
ically set to 4) components and G(I;μr

k, Σ
r
k) is the Gaussian probability function with

mean value μr
k and covariance matrix Σr

k. αk are positive weights of the component k
and

∑K
k=1 αk = 1. The parameter list Θr = {α1, μ1, Σ1, · · · , αK , μK , ΣK} defines a

particular GMM probability function. The parameters in Θr are estimated with the Ex-
pectation Maximization (EM) algorithm (an iterative method for calculating maximum
likelihood distribution parameters) and a set of manually labeled color fundus ONH
photographs.

With the posterior probability of Eq. (2), Dp(xp) in Eq. (1) is defined in Table. 1,
which is apparently submodular [8] considering the fact that
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More importantly, the ∞ value in Table. 1 is specified in order to prohibit the corre-
sponding configuration (i.e. a “cup” pixel is not in “disc” region) of xp. In other words,
this defination can help to guarantee the truth that “cup” region is contained in the “disc”
region.

2.3 Smoothness Terms

The smoothness terms in Eq. (1) are enforced only on neighboring pixels which are
defined on a nearest neighbor grid connectivity Nν (e.g. 4-connectivity in a 2D space).
Specifically, for each l ∈ L, this pairwise term is defined as a Pott’s-like model:
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(4)

is a Kronecker delta function and Bp,q comprises the “boundary” properties of “cup”
and “disc”. We define Bp,q as

Bp,q ∝ exp

(

−‖Ip − Iq‖2
2σ2

)

· |Rp,q −Rl|
|Rp,q −Rl|+ ε

(5)

where σ is an adjusting parameter (empirically set to 4), Rp,q denotes the average value
of distances of pixels p and q to the optical center, Rl represents a radius value a priori
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approximated based on our knowledge of ONH anatomy and the photograph resolution
(we empirically set Rc = 210 pixels and Rd = 345 pixels), and ε is an adjusting
parameter (empirically set to 0.4). In Eq. (5), the left term is large when the pixels p and
q are similar in their color and close to zero when the two are very different, resulting
in a lot penalization for label discontinuities between pixels of similar colors. The right
term encourages the detected boundary to appear in the vicinity of a circle with an
a priori known radius of “cup” or “disc”. Parameter ε controls how far the detected
boundary can appear away from the a priori known boundary.

2.4 Region Interaction Terms

The region interaction terms W c,d
p,q

(
xc
p,x

d
q

)
in Eq. (1) are employed on all pairs (de-

noted by No) of pixels between which the distance is below a a priori known value.
This value is assigned to the thinnest rim thickness (empirically set to 15 pixels) in
our experiments. As defined in Table. 1, these region interaction terms can help to en-
force two constraints that the “disc” region contains the “cup” region and that the rim
thickness is above the a priori known value. Inclusion of this region containment and
a hard uniform margin (between “cup” and “disc” boundaries) into graph cut are also
explained in [9].

2.5 Optimization

As defined in Table. 1 and Eq. (3), the energy function E(x) in Eq. (1) is obviously
submodular [8] and therefore can be formulated as a s-t cut problem and minimized ef-
ficiently via graph cut (min-cut/max-flow algorithm) [8]. A local minimum lying within
a multiplicative factor of the global minimum can be obtained with the α-expansion al-
gorithm [8].

2.6 Detection of Optic Disc Center

Detection of optic disc center is necessary because the shape and location priors applied
to our segmentation scheme require the location of optic disc center. We employ an
automatic method based on template matching followed by a false positive removal
with a directional matched filtering similar to [6], which are based on the fact that
optic disc appears in the fundus image as a brighter circular area and that the main
vessels originate from the optic disc center, respectively. Technical details are omitted
for economy. In our experiments, manual adjustments were applied to the obviously
wrong detections.

3 Results

3.1 Data

Stereoscopic ONH photographs, taken by a simultaneous stereo fundus camera (Zeiss
30◦), of bilateral eyes of 30 progressed glaucoma subjects and 32 control subjects were
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Table 2. Statistics of average distance between the subjectively assessed optic cup and disc mar-
gins and the automatically detected margins by our algorithm (OUR), the active contour model
(ACM) [4] and graph cut (GC) [8] from photos of 16 normal controls and 15 glaucoma subjects.
∗ indicates the best performance value.

Mean±STD
Normal Glaucoma

OUR ACM GC OUR ACM GC

Cup ∗8.2 ± 6.1 42.9 ± 28.5 31.3 ± 22.9 ∗10.5 ± 7.7 55.6 ± 34.4 48.1 ± 29.6

Disc ∗14.5 ± 12.4 46.2 ± 20.0 50.7 ± 28.3 ∗16.9 ± 12.8 60.8 ± 44.0 59.2 ± 30.7

ONH manual OUR ACM GC

Fig. 2. ONH images (only a rectangle region around optic disc is shown) and margins of cup
(blue) and disc (black) manually assessed and automatically detected by our algorithm (OUR),
the active contour model (ACM) [4] and graph cut (GC) [8]

used (totally 248 color fundus photographs), with size of 2392 × 2042 pixels and res-
olution of 2.6 × 2.6μm2. HD-OCT (Cirrus; Carl Zeiss Meditec. Inc.,) scans were also
acquired with the ONH parameters of disc area, rim area, cup area and cup-to-disc (C/D)
area ratio generated by the Cirrus HD-OCT software (version 5.0). Optic cup and disc
margins were manually delineated by a trained rater with the stereo disc photographs
of randomly chosen 15 glaucoma subjects and 16 control subjects.

3.2 Experiments

We first compared the optic disc and cup segmentation of our algorithm with the active
contour model [4] and the original graph cut algorithm [8]. For the original graph cut
algorithm, we removed all location and shape priors of optic cup and disc and only kept
its original smoothness term. Mean±STD values of the average distance between the
automatically detected cup and disc margins and the subjective assessed margins (of the
15 glaucoma subjects and 16 control subjects) were computed and listed in Table 2. We
also put the segmentation results for two example images in Fig. 2.

From the results in Table 2 and Fig. 2, we had several findings. First, our algorithm
outperformed the active contour model and the original graph cut for segmentation of
both optic cup and disc. Second, all automatic algorithms performed better on nor-
mal controls than glaucoma subjects. Third, graph cut was comparable with the active
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contour model regarding optic disc segmentation but superior in sense of optic cup seg-
mentation.

Failure of the automatic algorithms to detect the cup and disc margins properly was
defined as when the average distance between the automatically detected margin and the
subjective assessed margin was larger than 34 pixels (5% of the average disc diameter).
We found that our algorithm failed only for one glaucoma subject, and in contrast, the
active contour model failed for 10 glaucoma subjects and 9 normal controls while graph
cut failed for 8 glaucoma subjects and 6 normal controls.

Table 3. Comparison of ONH measurements generated by the merchant-provided software of
the OCT machine and our algorithm regarding area (mm2) of disc, rim and cup and C/D ratio.
∗Mean ± STD; †Pearson correlation.

Parameter
Normal Glaucoma

OCT∗ Algorithm∗ r† p† OCT∗ Algorithm∗ r† p†
Disc area (mm2) 2.50± 0.54 2.41± 0.39 0.88 0 2.97± 0.88 2.94 ± 0.86 0.86 4e-13
Rim area (mm2) 1.71± 0.69 1.64± 0.67 0.86 2e-12 1.45± 0.75 1.46 ± 0.78 0.82 7e-8
Cup area (mm2) 0.78± 0.51 0.77± 0.63 0.85 3e-19 1.52± 0.82 1.48 ± 0.79 0.80 9e-5

C/D Ratio 0.31± 0.14 0.32± 0.23 0.85 5e-17 0.51± 0.20 0.50 ± 0.34 0.81 3e-6

The results of the ONH parameters (including the subject defined as failure) gen-
erated by our algorithm were compared with the results produced by the merchant-
provided software of the OCT machine. The corresponding Mean±STD values of each
parameter and the correlation coefficient (r) and p-value (p) of Pearson correlation be-
tween our algorithm and the OCT machine were listed in Table. 3. We can see that all
ONH measurements based on OCT machine-defined margins showed a high correla-
tion with our algorithm which uses fundus photographs. For each eye, the average of
our algorithm’s evaluations on the stereoscopic pair was used as the final result.

4 Conclusion and Future Work

Inspired by recent image segmentation methods that can combine certain shape priors
or region/boundary interactions [9], we propose a fairly general energy function that can
naturally fit into a global optimization framework with graph cut for the automatic seg-
mentation of optic cup and disc from color fundus photographs. Our main contribution
lies in the introduction of a set of priors obtained from the fundus anatomical character-
istics of optic nerve head, which include the location and shape priors of optic cup and
disc, the thinnest thickness of rim and the fact that “disc” contains “cup”. These priors
can help to greatly reduce the search space of feasible solutions, and together with the
effective optimization of graph cut, generate reliable and robust segmentation results.

Our approach incorporates shape priors in a different fashion from several exist-
ing techniques which are based on shape statistics (e.g. the deformable segmentation
[10,11] and the Active Shape Model [12]). Shape statistics are mostly obtained from a
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set of training images. In contrast, our approach encodes the prior knowledge (on con-
textual information or geometric interactions) in the algorithm directly and is free from
any training process.

Our future work would include tests on a larger data set and more evaluations on the
automatic detection of optic disc center.
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