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Abstract. 4D computed tomography (CT) has been widely used for treatment 
planning of thoracic and abdominal cancer radiotherapy. Current 4D-CT lung 
image reconstruction methods rely on respiratory gating to rearrange the large 
number of axial images into different phases, which may be subject to external 
surrogate errors due to poor reproducibility of breathing cycles. New image-
matching-based reconstruction works better for the cine mode of 4D-CT acqui-
sition than the helical mode because the table position of each axial image is 
different in helical mode and image matching might suffer from bigger errors. 
In helical mode, not only the phases but also the un-uniform table positions of 
images need to be considered. We propose a Bayesian method for automated 
4D-CT lung image reconstruction in helical mode 4D scans. Each axial image is 
assigned to a respiratory phase based on the Bayesian framework that ensures 
spatial and temporal smoothness of surfaces of anatomical structures. Iterative 
optimization is used to reconstruct a series of 3D-CT images for subjects un-
dergoing 4D scans. In experiments, we compared visually and quantitatively the 
results of the proposed Bayesian 4D-CT reconstruction algorithm with the res-
piratory surrogate and the image matching-based method. The results showed 
that the proposed algorithm yielded better 4D-CT for helical scans. 
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1 Introduction 

4D-CT has been widely used for radiation therapy planning of lung cancer for defin-
ing the clinical target volume (CTV) and planning target volume (PTV) to ensure that 
the radiation dose covers CTV, is within PTV, and does not damage neighboring crit-
ical tissues during respiratory cycles [1, 2]. 4D-CT scanning captures a large number 
of axial images during multiple breathing cycles using cine or helical modes, and 
reconstructs them to a series of 3D-CT images [3]. The cine mode captures multiple 
axial images in respiratory cycles at each table position; while the helical mode per-
forms the scans when the table is slowly and continuously moving.  

Efforts have been made to either using respiratory sensors such as gating and opti-
cal tracking to capture detailed respiratory motion patterns or using image computing 
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methods to retrospectively improve the image sorting. Traditionally, using surrogate 
respiratory signals from a chest height marker, a strain gauge or a spirometer [4], 
respiratory cycles are detected and divided into a number of respiratory phases. Then, 
the synchronized axial images are rearranged to reconstruct the serial 3D images. 
However, because of the lack of reproducibility of breathe cycles, such gating signals 
appear to be not exactly periodical and may miss group some axial images, resulting 
discontinuity of anatomical structures in the images [5-7]. Recent studies have  
attempted to reconstruct 4D-CT through image computing in the cine mode [8-11]. 
For helical mode, since each axial image has a different table position, such additional 
variable should be considered in the reconstruction, and few works have been  
reported in the literature. As more helical 4D scans are being used in radiotherapy 
planning, it is highly desirable to study the methods for its image reconstruction.  

This paper proposes an automated 4D-CT reconstruction algorithm for helical 
scanning based on the Bayesian framework, referred to as Bayesian 4D-CT recon-
struction. The objective for lung 4D-CT image reconstruction is to preserve the ana-
tomical structures at each time-point, while the image sequence reflects underlying 
respiratory motion. Spatial and temporal smoothness of certain surfaces of anatomical 
structures can be used as constraints in the reconstruction. In the Bayesian 4D-CT 
reconstruction algorithm, image sorting is jointly estimated with an underlying ideal 
image sequence whose surface’s spatial-temporal properties are subject to such 
smoothness constraints. A novel energy function is designed and formulated in the 
Bayesian framework, and the optimization is achieved by iteratively assigning axial 
images to their best phase, and at the same time, enforcing spatial-temporal surface 
smoothness. Finally, due to the nature of helical 4D scanning, the image and surface 
matching also takes into account the unequal inter-slice distances of axial images in 
each respiratory phase, and the final reconstructed images are generated using a cubic 
B-Spline-based interpolation. 

In experiments, we used the images from thirty nine patients undergoing radiothe-
rapy planning to validate the algorithm. The final reconstructed images were com-
pared visually and quantitatively with the external surrogate-based reconstruction and 
the image matching-based method [10] that are currently used in radiotherapy plan-
ning. For quantitative comparison, we compared the spatial and temporal smoothness 
of the surfaces extracted from all the results. The results indicated that our method 
outperformed both methods: visualization of the CT images showed less artifacts, 
particularly in the regions close to the diaphragm; and quantitative results showed that 
the surfaces extracted from the resultant images were smoother, so there was less 
sudden bumps along the image boundaries. 

2 Method 

2.1 Algorithm Formulation 

During the helical mode scanning, axial images are captured while the table is slowly 
and continuously moving. Depending on the slice thickness and the number of simul-
taneous slices the scanner can capture (e.g., multiple row detector CT), the table speed 
can be determined so that the axial images captured within a small position range 
cover an entire respiratory cycle. Using the synchronized surrogate respiratory signal 
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the axial images can be initially resorted to different respiratory phases, and each 3D 
image is formed by the axial images according to their table positions. The goal for 
the proposed Bayesian 4D-CT reconstruction algorithm is to assess such assignment 
and correct the miss grouped ones so that the 3D images at each phase preserve ana-
tomical structures, and the 4D data reflect respiratory motion well. Thus, spatial and 
temporal smoothness of surfaces act as the key for enforcing this requirement. We 
used the smoothness constraint of chest surface to ensure the quality of the recon-
structed images. The reason is that it is smoother compared to internal organs, and it 
is also possible to extend our algorithm to use computer vision-based method to track 
the chest surface. Suppose the set of all axial images is ܦ, the chest surfaces of an 
underlying ideal image sequences are Rൌ ሼܴଵ, ܴଶ, … , ܴ௄ሽ , and R and ܦ are indepen-
dent, the goal of our reconstruction algorithm is to jointly estimate a new image series ܵ ൌ ሼݏଵ, ,ଶݏ … , -௄ሽ and the ideal surfaces R by maximizing the following joint postݏ
erior distribution, where K is number of respiratory phases in one breathing cycle: ܲሺܵ, ሻܦ|ܴ ൌ ௉ሺ஽|ௌሻ௉ሺௌ,ோሻ௉ሺ஽ሻ .  (1) 

The joint probability of ܵ and ܴ can be expressed as, ܲሺܵ, ܴሻ ൌ ܲሺܵ|ܴሻܲሺܴሻ. (2) 

Combining Eq. (1) and Eq. (2), and assuming that the probability of the known axial 
image set ܦ is 1 (ܲሺܦሻ ൌ 1), ܵ and ܴ can be estimated by ሺܵכ, ሻכܴ ൌ argmaxሼܲሺܵ, ሻሽܦ|ܴ ൌ argmaxሼܲሺܦ|ܵሻܲሺܵ|ܴሻܲሺܴሻሽ. (3) 

When the probabilities are estimated using the Gibbs distribution, the maximization 
of the joint posterior distribution is equivalent to minimizing the energy function: ܧሺܵ, ܴሻ ൌ ሻܵ|ܦሺܧ ൅ ሺܵ|ܴሻܧߙ ൅ ߙ ሺܴሻ. (4)ܧߚ  and ߚ  are the weighting factors. The first term ܧሺܦ|ܵሻ  denotes the degree of 
matching between the serial image ܵ and the observed data ܦ, and it can be calcu-
lated by the normalized cross correlation (NCC) between the two image series: ܧሺܦ|ܵሻ ൌ ∑ െܰܥܥሺܦ௞, ܵ௞ሻ௄௞ୀଵ . (5) 

The second term ܧሺܵ|ܴሻ stands for the degree of matching between ܵ and ܴ, with ܴ 
as the underlying ideal surfaces. Here, ܧሺܵ|ܴሻ is defined by the distance between 
ideal surface ܴ and the surfaces extracted from ܵ, ܧሺܵ|ܴሻ ൌ ∑ distሺܩሺܵ௞ሻ, ܴ௞ሻ௄௞ୀଵ , (6) 

where the distance distሺሻ is calculated according to [12]. ܩሺܵ௞ሻ represents the surface 
extracted from ܵ௞. The third term of Eq. (4) represents the prior shape constraints of ܴ. In this case, it consists of the spatial and temporal smoothness constraints of the 
chest surface series. Because it is not necessary to constrain the surface within each 
axial plane, we only need to consider the smoothness in z-direction as well as in the 
time-domain (between neighboring phases). Thus, ܧሺܴሻ is calculated as: ܧሺܴሻ ൌ భ಼ ∑ భ|೾| ∑ ൫ങೃೖሺܞሻങ೥ ൯ଶܞ௄௞ୀଵ ൅ ߣ భ಼షభ∑ భ|೾| ∑ ൫܎௞ାଵሺܞ ൅ ሻሻܞ௞ሺ܎ െ ௄ିଵ௞ୀଵܞሻ൯ଶܞ௞ሺ܎ , (7) 

where the first term is the average of the squared surface gradients along z-direction 
by considering the unequal slice distances, and the second term calculates the average 
of the temporal smoothness of the deformation field ܎௞, ݇ ൌ 1,… , ܭ െ 1  across the 



36 T. He et al. 

 

image sequence. ߣ is the tradeoff between them, and ߗ is the surface point set of the 
lung image in phase ݇. 

Compared to the maximizing a posteriori (MAP) formulation, the major difference 
of the proposed algorithm is that an intermediate ideal surface R is jointly estimated 
together with ܵ. This helps facilitate the additional spatial and temporal anatomical 
constraints to the reconstructed 4D-CT images. Finally, after assigning each axial 
image into their phase by minimizing the energy function defined in Eq. (4), the slices 
of each phase are arranged according to their table positions. Because of the unequal 
slice distances, we then use a cubic B-Spline-based interpolation tool to resample 
them and reconstruct the 3D image sequences with equal slice distance. 

2.2 Implementation 

The optimization of the energy function in Eq. (4) can be implemented by alternative-
ly calculating ܴ and ܵ. Given a series of ܰ axial images (for lung imaging, ܰ  is 
more than 1000), we can first sort them into ܭ (typically 10) phases based on the 
surrogate signals, which gives the current data observation ܦ. We use ܦ as the initia-
lization of S and iteratively perform the following two optimization steps: 

Step 1. Optimize the ideal serial surfaces ܴ by fixing ܵ. By extracting the surfaces 
from the images of ܵ and performing longitudinal surface registration [13], we obtain 
the current surface series ܴ, and their longitudinal deformations ܎௞, ݇ ൌ 1,… , ܭ െ 1. 
Then, ܴ can be optimized using the finite gradient descent method: ܴ ՚ ܴ െ ,ሺܵܧ߲ߦ ܴሻ/߲ܴ, (8) 

where ߦ is the updating step. 

Step 2. Optimize the image sequences ܵ by fixing ܴ. We iterate all the axial images 
and re-assign each to the ݅th phase that gives the minimal energy function: ݅ ൌ argmin௞൫ܧሺܵ, ܴሻ൯ ൌ argmin௞൫ܧሺܦ|ܵሻ ൅  ሺܵ|ܴሻ൯. (9)ܧߙ

 

 

Fig. 1. The framework of the 4D-CT reconstruction algorithm 
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Notice that because of the nature of helical mode scanning, the distances between 
neighboring slices within each 3D CT image ܵ௞ are different. The surface registration 
method we used can register two surfaces with different meshes, and thus it can han-
dle this issue. The optimization algorithm stops until the number of phase re-
assignment is smaller than a prescribed number (5 in our case), and the algorithm 
generally stops after 3-4 iterations. Fig. 1 summarizes the process of the algorithm.  

3 Results 

The datasets of thirty nine patients were used in the experiments. The data were col-
lected using Philips Pinnacle³ in helical mode. The number of slices per scan is 
around 1330. Slice thickness is 3.0 mm, and pixel spacing in the X and Y directions is 1.17݉݉ ൈ 1.17݉݉. Elastic belt was used for monitoring the breath. Initial respiratory 
gating-based 4D-CT reconstruction was performed on the Pinnacle machine, which 
was used as the initialization of our algorithm. The datasets were then transferred to 
our workstation from PACS, and the proposed Bayesian 4D-CT reconstruction was 
applied to refine the results using a workstation running Microsoft Windows 7 profes-
sional with an Intel i7 CPU (2.30GHz) and 8.00 GB of RAM.  

We compared the reconstruction results with two other methods. The first is the 
one reconstructed by the Pinnacle machine based on respiratory belt gating, and the 
second is the image matching-based image reconstruction proposed by Carnes et al. 
[10]. The Carnes algorithm first assigns manually the initial axial images into differ-
ent respiratory phases and then uses slice-by-slice matching to sort the rest axial im-
ages. NCC is used as the image similarity measure. To automate this procedure, we 
used the assignment results of the first 20 axial images from the Pinnacle machine as 
the initialization of the Carnes algorithm. For our method, ߙ and ߚ were selected as 
0.5 divided by the mean value of the corresponding energy functions. ߣ was selected 
so that the weight for temporal smoothness was half of the spatial smoothness. After 
reconstruction, we first visually assessed all the data. For the surrogate method, the 
artifacts of miss-assignment appeared more frequently, and we can also notice some 
 

 

 

Fig. 2. Visual comparison of 4D-CT reconstruction results. Top: surrogate method; middle: 
Carnes algorithm; and bottom: the proposed Bayesian 4D-CT reconstruction. 
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similar discontinuity of the anatomical structures for the Carnes algorithm. Overall, 
the proposed Bayesian 4D-CT reconstruction preserved the anatomical structure in 
each 3D CT image much better. Fig. 2 illustrates some examples of the results. The 
top row shows the results of surrogate method, the middle row shows those of the 
Carnes algorithm, and the bottom row gives the reconstruction results of the proposed 
algorithm. Because the areas close to the diaphragm are subject to larger motion, we 
can notice the artifacts easily for the methods compared, and such motion artifacts 
have been corrected using the Bayesian 4D-CT reconstruction.  

For quantitative comparison, we calculated the spatial and temporal smoothness 
about the chest surfaces and the lung field surfaces (extracted from the resultant CT 
images using [14]). Similar to Eq. (7), the spatial smoothness ܯ௦ of each subject is 
defined by the average absolute values of the surface gradients along z-direction, ܯ௦ ൌ భ಼ ∑ భ|೾| ∑ |߲ܴ௞ሺܞሻאܞఆ ௄௞ୀଵ|ݖ߲/ . (10) 

The temporal smoothness ்ܯ is calculated from the longitudinal deformation fields 
of the serial surfaces extracted: ்ܯ ൌ భ಼షభ∑ భ|೾| ∑ ܞ௞ାଵሺ܎| ൅ ሻሻܞ௞ሺ܎ െ ఆ௄ିଵ௞ୀଵאܞ|ሻܞ௞ሺ܎ . (11) 

 

Fig. 3. Comparison of spatial and temporal smoothness of chest surfaces 

Fig. 3 is the boxplot of the spatial and temporal smoothness of the chest surfaces 
for all 39 subjects in the experimental dataset. It can be seen that the proposed Baye-
sian 4D-CT reconstruction algorithm yielded more spatially and temporally smoother 
chest surfaces. Because we did not change the original axial images (only cubic B-
Spline-interpolation was used), larger average smoothness value may indicate that 
there are more slices with artifacts in the reconstructed data. Therefore, the quantita-
tive results indicate that there are less sudden jumps of the surfaces or less artifacts as 
compared to other methods. We also calculated the spatial and temporal smoothness 
of the lung fields extracted from the experimental results, and similar conclusion can 
be drawn from the boxplot shown in Fig. 4. It is worth noting that the spatial smooth-
ness for lung field is bigger than that of the chest surface. This may indicate that chest 
surface is smoother and is suitable for applying the smoothness constraints.  

Notice that the chest surface smoothness might be biased because it is also used in 
the energy function. Since the lung field surfaces were not used in the algorithm, the  
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Fig. 4. Comparison of spatial and temporal smoothness of lung field surfaces 

spatial and temporal smoothness metrics for the lung field surfaces extracted from the 
reconstructed images would be more appropriate. Due to the lack of ground truth of 
the 4D-reconstructed patient data, it is hard to conceive other relevant quantitative 
metrics at this point. In the future, we would like to further validate the quality of 
reconstruction using simulated images with known 4D-CT deformation patterns. 

To further validate the results, all the reconstructed images were visually evaluated 
by two expert radiologists. Each image was visually assessed and the number of slices 
with artifacts (namely with noticeable sudden anatomical jumps) was counted. Fig. 5 
illustrates the box plots of such numbers of slices with artifacts. The results confirmed 
the superiority of the proposed method as compared to others. 

 

 

Fig. 5. Average numbers of slices with artifacts of 39 subjects 

4 Conclusion 

We proposed a Bayesian 4D-CT reconstruction algorithm for helical mode lung scan-
ning. To preserve anatomical structures a joint Bayesian estimation is designed to 
ensure spatial and temporal smoothness of surfaces in the reconstructed 4D-CT im-
ages. Using clinical datasets for patients undergoing radiotherapy planning, we visual-
ly and quantitatively compared the performance of the proposed algorithm with the 
current surrogate and image-matching-based methods. The results showed that the 
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proposed algorithm yielded much less artifacts. In the future, we plan to incorporate 
vision-based chest surface monitoring devices in the framework for 4D-CT recon-
struction on the fly. 
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