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Abstract. Piece in Hand method is a security enhancement method
for Multivariate Public Key Cryptosystems (MPKCs). Since 2004, many
types of this method have been proposed. In this paper, we consider
the 2-layer nonlinear Piece in Hand method as proposed by Tsuji et
al. in 2009. The key point of this method is to introduce an invertible
quadratic polynomial map on the plaintext variables to construct per-
turbation of the original MPKC. Through our analysis, we find that the
security of the enhanced scheme is mainly relying on the quadratic poly-
nomials of this auxiliary map. The two examples proposed by Tsuji et
al. for this map can not resist the Linearization Equation attack. Given
a valid ciphertext, we can easily get a public key which is equivalent to
the original MPKC. If there is an algorithm that can recover the plain-
text corresponding to a valid ciphertext of the original MPKC, we can
construct an algorithm that can recover the plaintext corresponding to
a valid ciphertext of the enhanced MPKC.

Keywords: Multivariate Cryptography, Quadratic Polynomial, Alge-
braic Cryptanalysis, Linearization Equation, Piece in Hand.

1 Introduction

Multivariate Public Key Cryptosystems (MPKCs) are promising candidates to
resist the quantum computer attack [1]. The security of these schemes is based
on the difficulty of solving systems of multivariate quadratic (MQ) equations
over a finite field, which is an NP-hard problem in general.

Since 1988, many MPKCs have been proposed, such as MI [15], HFE [20],
MFE [26], TTM [16], Rainbow [5], MQQ [13]etc. However, many of these schemes
have shown to be insecure [19, 11, 6, 17, 2, 14]. In order to enhance the security of
MPKCs, many enhancement methods were proposed. There are plus/minus [22,
21], internal perturbation [3, 4], Extended Multivariate public key Cryptosystems
(EMC) [27] etc. All of these methods are subjected to different levels of attacks
[12, 7, 9, 8, 18].
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Piece in Hand (PH) method is another security enhancement method intro-
duced and studied in a series of papers [23, 24, 10, 25]. In [25], Tsuji et al. pro-
posed the 2-layer nonlinear Piece in Hand method. For this, they introduced two
vectors of polynomials: an auxiliary polynomial vector and a perturbation poly-
nomial vector. The perturbation polynomial vector is used to add perturbation to
the underlying MPKC, whereas the auxiliary polynomial vector is constructed to
be efficiently invertible which will be used during the decryption process.

Since the information of the auxiliary polynomial vector is part of the public
key, the security of the whole scheme relies on the structure of this vector. In
their paper [25], the authors gave two examples for this vector, called H1 and
H2.

In this paper we show that both H1 and H2 satisfy Linearization Equations
(LEs) of the form

∑
aij · xi · yj +

∑
bi · xi +

∑
cj · yj + d = 0, (1)

where xi are the plaintext variables and yj are the ciphertext variables.
After finding all the LEs and substituting a valid ciphertext into these equa-

tions, we can get a system of linear equations in the plaintext variables. By
solving this system, we can represent some of the plaintext variables by linear
combinations of the other plaintext variables. Hence, we can do elimination on
the public key. And we can perform a similar analysis on the eliminated pub-
lic key to check if there are Linearization Equations satisfied by the simplified
public key.

In the case of H1, given a valid ciphertext, we can, after two eliminations
on the public key, find a public key equivalent to that of the original MPKC.
In the case of H2, given a valid ciphertext, we can achieve the same goal using
three eliminations on the public key. This means that Piece in Hand method
using these two auxiliary polynomial vectors can not enhance the security of the
underlying MPKC. So, we must be very careful when designing the auxiliary
polynomial vector of PH method.

The rest of this paper is organized as follows. In Section 2 we give a brief
description of MPKCs and Linearization Equations. Section 3 introduces the 2-
layer nonlinear Piece in Hand method. In Section 4, we present our cryptanalysis
of the enhanced scheme and present the results of our computer experiments.
Finally, in Section 5, we conclude the paper.

2 Preliminaries

2.1 Multivariate Public Key Cryptography

To build a multivariate public key cryptosystem (MPKC), one starts with an
easily invertible map F : Fn → F

m (central map). To hide the structure of F in
the public key, one combines it with two invertible affine maps T : Fm → F

m

and U : Fn → F
n. Therefore the public key has the form

E : Fn → F
m, y = (y1, . . . , ym) = E(x1, . . . , xn) = T ◦ F ◦ U(x1, . . . , xn). (2)
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The private key consists out of the three maps T ,F and U and therefore allows
to invert the public key.

2.2 Linearization Equations

For MPKCs, a Linearization Equation (LE) is an equation in the n+m plain-
text/ciphertext variables x1, x2, . . . , xn, y1, y2, . . . , ym of the form

n∑

i=1

t∑

j=1

aij · xi · gj(y1, y2, . . . , ym) +

l∑

j=1

cj · fj(y1, y2, . . . , ym) + d = 0. (3)

where fj (1 ≤ j ≤ l), gj (1 ≤ j ≤ l), are polynomial functions in the ciphertext
variables. The highest degree of gj , 1 ≤ j ≤ l is called the order of the LE.

For example, a First Order Linearization Equation (FOLE) looks like

n∑

i=1

m∑

j=1

aij · xi · yj +
n∑

i=1

bi · xi +

m∑

j=1

cj · yj + d = 0. (4)

Note that, given a valid ciphertext y′ = (y′1, y
′
2, . . . , y

′
m), we can substitute it

into equation (3) to get a linear equation in the plaintext variables. By finding
all these equations we get a linear system which can be solved by Gaussian
Elimination. After having found a solution, we can do elimination on the public
key.

3 2-Layer Piece in Hand Method

We use the same notation as in [25].
Let E : Fn → F

m be the public map of a multivariate public key encryption
scheme with {x1, . . . , xn} and {y1, . . . , ym} being the plaintext and ciphertext
variables repectively and l be a positive integer.

To enhance the security of the MPKC, the inventors of the 2-layer nonlin-
ear Piece in Hand method introduced an auxiliary polynomial vector H of l
components and a perturbation polynomial vector J . The elements of the aux-
iliary polynomial vector H are products of two random linear polynomials hi

and hj , where the functions hi are given by hi =
∑n

j=1 sij · xj (i = 1, . . . , l)
with sij ∈R F. The perturbation polynomial vector J is a vector with l(l− 1)/2
components constructed from the polynomials hi · hj (1 ≤ i < j ≤ l). Note that
the polynomial components of the vector H are designed to be easily invertible
for decryption. Therefore, one can use the vector H to compute the values of hi

(i = 1, . . . , l) and sequentially calculate the value of the vector J . By the above
construction, one gets an enhanced public key Ẽ : Fn → F

m+l of the form

Ẽ(x1, . . . , xn) = B

(
E(x1, . . . , xn) +DJ

CH

)
(5)
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where B is an (m + l) × (m + l) invertible matrix over F, D is an m × l·(l−1)
2

matrix over F, and C is an l × l invertible matrix over F.

Secret Key: The secret key includes

– the secret key of the underlying MPKC
– the matrices B,C and D
– the auxiliary polynomial vector H and
– the perturbation polynomial vector J .

Public Key: The m+ l components of the function Ẽ .
Encryption: Given a plaintext x′ = (x′

1, . . . , x
′
n), compute

y ′ = (y′1, . . . , y
′
m+l) = Ẽ(x′

1, . . . , x
′
n).

Decryption: Given a valid ciphertext y ′ = (y′1, . . . , y′m+l), decryption includes
the following steps:

1. Compute v ′ = (v′1, . . . , v
′
m+l) = B−1(y′1, . . . , y

′
m+l)

T ;

2. Compute H = C−1(v′m+1, . . . , v
′
m+l)

T and get the values of hi (i = 1, . . . , l);
3. Compute the value of J by substituting the values of hi (i = 1, . . . , l) into

its components;
4. Compute x′ = (x′

1, . . . , x
′
n) = E−1(v′1 − dj1, . . . , v

′
m − djm), where (dj1, . . . ,

djm)T = DJ.

Examples for the auxiliary vector H and the perturbation vector J

In [25], the authors gave two examples for the choice of the auxiliary vector
H, denoted by H1 and H2, respectively.
For arbitrary l, the vector H1 is given by

H1 = (u1, . . . , ul)
T =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1h2 + α1

h2h3 + α2

h3h1 + α3

h1h4 + α4

h1h5 + α5

...
h1hl−1 + αl−1

h1hl + αl

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

with α1, . . . , αl ∈R F. For our experiments (see Subsection 4.3) we use the value
l = 8.
Apparently, given the value of the vector (u1, . . . , ul), we can get from the first
three equations of (6)

h1 =

(
(u1 − α1)(u3 − α3)

(u2 − α2)

) 1
2

(7)

and then get the values of h2, h3, . . . , hl in turn.
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For the auxiliary map H2, the value l is fixed to 15. We have

H2 = (u1, . . . , u15)
T =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1h2 + α1

h2h3 + α2

h3h4 + α3

h4h5 + α4

h5h1 + α5

h2
6 + h1h3 + α6

h2
7 + h3h5 + α7

h2
8 + h5h2 + α8

h2
9 + h2h4 + α9

h2
10 + h4h1 + α10

h1h10 + h6h11 + α11

h2h9 + h7h12 + α12

h3h8 + h8h13 + α13

h4h7 + h9h14 + α14

h5h6 + h10h15 + α15

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8)

where αi∈RF (i = 1, . . . , l). Similarly to H1, H2 can be easily inverted.
The perturbation vector J used in [25] is given as follows:

J = (j1, j2, . . . , jl(l−1)/2) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1h2 + β1

h1h3 + β2

...
h1hl + βl−1

h2h3 + βl

...
h2hl + β2l−3

h3h4 + β2l−2

...
hl−1hl + βl(l−1)/2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9)

where βi∈RF (i = 1, . . . , l(l − 1)/2).

4 Cryptanalysis of the 2-Layer PH Method

Although the perturbation map J can hide the weak point of the underlying
MPKC scheme, the security of the enhanced scheme depends mainly on the
design of the auxiliary map H. Bad design of the vector H will bring some
new security problems to the scheme. Both vectors H1 and H2 of [25] are not
properly chosen to enhance the security of the underlying scheme, since they
satisfy Linearization Equations.

In this section, we present our cryptanalysis of the 2-layer PH method with
auxiliary polynomial vector H1 and H2, respectively. Given a valid ciphertext
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y ′ = (y′1, . . . , y
′
m+l)

T , our goal is to find the corresponding plaintext. Namely,
we have to solve the system

⎧
⎪⎨

⎪⎩

y′1 = Ẽ1(x1, . . . , xn)
...

y′m+l = Ẽm+l(x1, . . . , xn)

. (10)

4.1 Case of H1

Through theoretical analysis, we find that the system Ẽ satisfies Linearization
Equations, which are brought in by the vector H1. Given a valid ciphertext we
can, after finding all FOLEs, recover the corresponding plaintext easily.

Linearization Equations

In the expression of the polynomial vector H1 (see (6)), we have

u1 = h1h2 + α1 and u2 = h2h3 + α2.

Hence we get
h3(u1 − α1) = h1(u2 − α2). (11)

Since the matrices B and C are invertible, the elements ui (i = 1, . . . , l) can be

expressed by linear equations in the ciphertext variables, namely ui =
∑m+l

j=1 tij ·
yj (i = 1, . . . , l). Analogously we get hi =

∑n
j=1 sij · xj (i = 1, . . . , l). Hence

equation (11) implies that the plaintext variables {x1, . . . , xn} and ciphertext
variables {y1, . . . , ym+l} satisfy an equation of the form:

n∑

i=1

m+l∑

j=1

aij · xi · yj +
n∑

i=1

bi · xi +

m+l∑

j=1

cj · yj + d = 0. (12)

This equation is exactly a FOLE. Similarly, from each of the pairs hj(ui−αi) =
hi(uj − αj) (1 ≤ i < j ≤ l, i �= 2) and the pair h1(u2 − α2) = h2(u3 − α3), we
can get an additional FOLE. Hence there exist at least (l− 2)(l− 1)/2+1 linear
independent Linearization Equations of type (12).

To find these FOLEs, we randomly generate D1 ≥ n(m+ l) + n+m + l + 1
plaintext/ciphertext pairs and substitute them into equation (12). By doing so,
we get a system of D1 linear equations in the n(m+ l)+n+m+ l+1 unknowns
aij , bi, cj and d which can be solved by Gaussian Elimination. We denote
the solution space by V and its dimension by D. Hence, we derive D linearly
independent equations of type (12) in the plaintext and ciphertext variables.

The work above depends only on the public key and can be done once for a
given public key.
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By substituting the given ciphertext y′ = (y′1, . . . , y
′
m+l) into the Linearization

Equations found above we get D linear equations in the plaintext variables. Let’s
assume that t1 of these equations are linearly independent.

First Elimination

By substituting the t1 equations found above into the public key Ẽ of the 2-layer
nonlinear PH scheme, we can eliminate t1 equations from Ẽ . By doing so, we get
a simplified public key Ẽ ′ of the form

{
y′j = Ẽ ′

j(w1, . . . , wn−t1)
1 ≤ j ≤ m+ l

. (13)

Second Elimination

In the practical setting of [25], the characteristic of the underlying field F was
chosen to be 2. Using this property, we can find another type of Linearization
Equations satisfied by the simplified public key Ẽ ′.

We denote by u′
i (i = 1, . . . , l) the value of ui corresponding to the given ci-

phertext y′ = (y′1, . . . , y
′
m+l). Such we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′
1 = h1h2 + α1

u′
2 = h2h3 + α2

u′
3 = h3h1 + α3

u′
4 = h1h4 + α4

u′
5 = h1h5 + α5

...
u′
l−1 = h1hl−1 + αl−1

u′
l = h1hl + αl

. (14)

According to FOLEs similar to equation (11), we find

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h2 =
u′
2−α2

u′
3−α3

h1

h3 =
u′
2−α2

u′
1−α1

h1

h4 =
u′
4−α4

u′
1−α1

· u′
2−α2

u′
3−α3

h1

h5 =
u′
5−α5

u′
1−α1

· u′
2−α2

u′
3−α3

h1

...

hl =
u′
l−αl

u′
1−α1

· u′
2−α2

u′
3−α3

h1

. (15)
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By substituting (15) into (6), we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1 =
u′
2−α2

u′
3−α3

h2
1 + α1

u2 =
u′
2−α2

u′
1−α1

· u′
2−α2

u′
3−α3

h2
1 + α2

u3 =
u′
2−α2

u′
1−α1

h2
1 + α3

u4 =
u′
4−α4

u′
1−α1

· u′
2−α2

u′
3−α3

h2
1 + α4

u5 =
u′
5−α5

u′
1−α1

· u′
2−α2

u′
3−α3

h2
1 + α5

...

ul =
u′
l−αl

u′
1−α1

· u′
2−α2

u′
3−α3

h2
1 + αl

. (16)

Due to ui =
∑m+l

j=1 tij · yj (i = 1, . . . , l) and hi =
∑n

j=1 sij · xj (i = 1, . . . , l) and
using the fact that squaring is a linear operation on a field of characteristic 2,
we have at least one equation satisfied by ciphertext variables and the remaining
plaintext variables of the form

{∑m+l
j=1 ãj · y′j +

∑n−t1
i=1 b̃i · w2

i + c̃ = 0

∀w1, . . . , wn−t1 ∈ F
. (17)

It is easy to solve the above linear system for the ãi, b̃j and c̃. Let {ã(ρ)1 , · · · , ã(ρ)m+l,

b̃
(ρ)
1 , · · · , b̃(ρ)n−t1 , c̃

(ρ), 1 ≤ ρ ≤ r} be a basis of the solution space of the system
(17). Set ⎧

⎨

⎩

n−t1∑
j=1

(b̃
(ρ)
j )1/2 · wj + (

m+l∑
i=1

ãi
(ρ) · y′i + c̃(ρ))1/2 = 0

1 ≤ ρ ≤ r

. (18)

For any vector w = (w1, . . . wn−t1), w and the corresponding ciphertext (y1, . . . ,
ym+l) = Ẽ ′(w) satisfy equation (18). Therefore we can represent at least one
variable of the set {w1, . . . , wn−t1} as a linear equation in the remaining vari-
ables. Denote the remaining variables by v1, . . . , vn−t1−1.
Substituting this linear expression into the system (13), we can get a new public
key with (n− t1 − 1) unknowns, denoted as

{
y′j = Ẽ ′′

j (v1, . . . , vn−t1−1)
1 ≤ j ≤ m+ l

. (19)

Eliminating Perturbation

Furthermore, after two eliminations, the vector J becomes a constant vector,
namely, the perturbation of Piece in Hand method is eliminated. The reason for
this is shown as follows. From (16), we get

h1 =

(
(u′

1 − α1)(u
′
3 − α3)

u′
2 − α2

)1/2

. (20)
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Substituting (20) and (15) into (9), the vector J becomes a constant vector on
F. For example,

j1 = h1h2 + β1 = u′
1 − α1 + β1,

jl+1 = h2h4 + βl+1 =

(
(u′

2 − α2)(u
′
4 − α4)

u′
3 − α3

)
+ βl+1.

Hence, the public key Ẽ ′′ of equation (19) is equivalent to the public key of the
underlying MPKC scheme.

If there exists an algorithm which recovers the plaintext corresponding to a
valid ciphertext for the underlying MPKC scheme, we can therefore find the
values of the variables v1, . . . , vn−t1−1 corresponding to the valid ciphertext y′.
Using the linear equations found during the two eliminations above, we can
recover the values of the remaining plaintexts variables.

4.2 Case of H2

Let y′ = (y′1, . . . , y
′
m+15) be a valid ciphertext of the Piece in Hand MPKC

with auxiliary map H2. Again we want to find the corresponding plaintext x′ =
(x′

1, . . . , x
′
n) by solving the system (10).

Similarly to the case of H1, from the first five equations in (8), we can get
five FOLEs between ui and hi (1 ≤ i ≤ 5) by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

h3(u1 − α1) = h1(u2 − α2)
h4(u2 − α2) = h2(u3 − α3)
h5(u3 − α3) = h3(u4 − α4)
h1(u4 − α4) = h4(u5 − α5)
h2(u5 − α5) = h5(u1 − α1)

.

Apparently, these five equations are linearly independent. Hence, we can get at
least five Linearization Equations satisfied by plain- and ciphertext variables of
the form (12).

Using the same method as in Subsection 4.1, we do the first elimination on
the system (10). Suppose we eliminated t1 ≥ 4 variables in the system. Denote
the remaining plaintext variables by w1, . . . , wn−t1 and let

{
y′j = Ẽ ′

j(w1, . . . , wn−t1)
1 ≤ j ≤ m+ 15

(21)

be the simplified public key.
Using a similar method as in Subsection 4.1, we can perform two additional

eliminations on the system (21). Due to the limitation of paper size, we omit the
details of this part here. We will present them in the full version of this paper.
But we should point out the following facts.

For the public key Ẽ ′
j(w1, . . . , wn−t1), plain- and ciphertext variables satisfy

equations of the form

m+l∑

j=1

ãj · yj +
n−t1∑

i=1

b̃i · w2
i + c̃ = 0. (22)
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By substituting the ciphertext y′ into these equations and using the fact that
squaring is a linear function over fields of characteristic 2, we can find t2 ≥ 6
linear equations in the plaintext variables. We can therefore eliminate t2 variables
from the public key. After this elimination, the simplified public key has the form

{
y′j = Ẽ ′′

j (v1, . . . , vn−t1−t2)
1 ≤ j ≤ m+ 15

. (23)

The public key Ẽ ′′ satisfies equations of the form

m+15∑

j=1

˜̃aj · yj +
n−t1−t2∑

i=1

˜̃bi · vi + ˜̃c = 0. (24)

By substituting the ciphertext y′ into these equations, we can find t3 ≥ 5 lin-
ear equations in the variables v1, . . . , vn−t1−t2 . Therefore, we can eliminate t3
variables from the system (23) and get a new public key Ẽ ′′′ of the form

{
y′j = Ẽ ′′′

j (u1, . . . , un−t1−t2−t3)
1 ≤ j ≤ m+ 15

. (25)

For the public key Ẽ ′′′, the perturbation vector J becomes a constant vector.
Hence, Ẽ ′′′ is equivalent to the public key of the underlying MPKC.

Analogously to Subsection 4.1 we can therefore, under the assumption that
there exists an algorithm which, for the underlying MPKC, finds for a given
ciphertext the corresponding plaintext, construct an algorithm which, for any
given ciphertext y′ = (y′1, . . . , y

′
m+15), recovers the corresponding plaintext x′ =

(x′
1, . . . , x

′
n).

4.3 Complexity and Experimental Verification

In our concrete attack scenario we set F = GF (256) and m = n = 25. As
the underlying MPKC we used the C� scheme of Matsumoto and Imai. We
implemented the Piece in Hand cryptosystem in two different ways using H1

(with l = 8) and H2 as auxiliary matrix respectively. For our attack we chose
randomly a valid ciphertext y′ = (y′1, . . . , y

′
m+l) ∈ F

m+l. Our goal was to find
the corresponding plaintext x′ = (x′

1, . . . , x
′
n) ∈ F

n.

Case of H1. In the first step we computed 900 (> n(m+l)+n+m+l+1 = 884)
plaintext/ciphertext pairs and substituted them into the Linearization Equation
of type (12). We did Gaussian Elimination on this linear system and found a
basis of all FOLEs. The complexity of the Gaussian Elimination is equal to
(n(m+ l) + n+m+ l+ 1)3 operations on the finite field F. In our experiments,

(n(m+ l) + n+m+ l+ 1)3 = 8843 ≤ 230.

We found that the dimension of the space spanned by all FOLEs is D = (l −
2)(l − 1)/2 = 22.
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Computing the plaintext/ciphertext pairs and solving this large linear system
proved to be the most time-consuming step of our attack. In our experiments,
it took about 70 seconds, where it took about 68 seconds on generating the
plaintext/ciphertext pairs and about 2 seconds on the Gaussian Elimination.
This step is independent of the given ciphertext y′ and has to be done for a
given public key only once.

After substituting the ciphertext y′ into these equations we obtained 7 linear
equations in the plaintext variables.

In the second step we computed 100 plaintext/ciphertext pairs and substituted
them into the Linearization Equation of type (17). By doing so, we got 15 linearly
independent equations of the form (17). By evaluating equation (18), we got 1
linear equation in the plaintext variables.

We substituted the 8 linear equations found in the previous steps into the
public key and obtained a new public key Ẽ ′′ of 33 equations in 17 variables,
which proved to be of the form of a C� public key (i.e. the perturbation was
eliminated).

In the last step of the attack, we attacked the new public key Ẽ ′′ with
the Linearization Equation attack of Patarin [19]. We computed 500 plain-
text/ciphertext pairs and substituted them into the Linearization Equation of
type (12). By doing so, we got 25 linear independent equations of type (12). After
substituting the ciphertext y′ we obtained 17 linear equations in the plaintext
variables which enabled us to reconstruct the plaintext x′.

The running time of the whole attack was about 90 seconds.

Case of H2. In the first step we computed 1100 (> (n(m+15)+n+m+15+1) =
1066) plaintext/ciphertext pairs and substituted them into the Linearization
Equation of type (12). We solved the resulting linear system for the variables
aij , bi, cj and d to find a basis of all FOLEs. By doing so, we found 5 linear
independent Linearization Equations. After substituting the ciphertext y′ into
these equations we obtained 4 linear equations in the plaintext variables. The
complexity of this step is equal to 10663 ≤ 231. It took about 104 seconds
in our experiments, where it took about 102 seconds on generating the plain-
text/ciphertext pairs and about 2 second on the Gaussian Elimination. This step
has to be performed for each public key only once.

In the second step we computed 100 plaintext/ciphertext pairs and substituted
them into the Linearization Equation of type (22). By doing so, we got 14 linear
independent equations of form (22). After substituting the ciphertext y′, we got
6 linear equations in the plaintext variables.

In the third step we computed again 100 plaintext/ciphertext pairs and sub-
stituted them into the Linearization Equation of type (24). We obtained 25 linear
independent equations. By substituting the ciphertext y′ into these equations,
we got 5 linear equations in the plaintext variables.

We substituted the 15 linear equations found in the previous steps into the
public key and obtained a new public key Ẽ ′′′ of 40 equations in 10 variables,
which proved to be of the form of a C� public key (i.e. the perturbation was
eliminated).
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In the last step of the attack, we attacked the new key Ẽ ′′′ with the Lineariza-
tion Equation attack of Patarin [19]. We computed 500 plaintext/ciphertext
pairs and substituted them into the Linearization Equation of type (12). By
doing so, we obtained 25 linear independent equations. After substituting the
ciphertext y′ we got 10 linear equations in the plaintext variables which enabled
us to reconstruct the plaintext x′.

The running time of the whole attack was about 127 seconds.
All experiments were performed on a server with 24 AMD Opteron processors

and 128 GB RAM. However, for our experiments we used only a single core. The
attack was programmed in Magma code and required about 120 MB of memory.

5 Conclusion

In this paper, we presented the cryptanalysis of two examples of the 2-layer
nonlinear Piece in Hand method. As we showed, both examples do not enhance
the security of the underlying MPKC because they can not resist Linearization
Equation attacks. From this paper, we find that the security of the 2-layer non-
linear Piece in Hand method depends mainly on the construction of the auxiliary
polynomial vectorH. We should therefore design the auxiliary polynomial vector
H in such a way that it resists existing attacks.
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