

A. Cuzzocrea et al. (Eds.): CD-ARES 2013, LNCS 8127, pp. 100–117, 2013.
© IFIP International Federation for Information Processing 2013

Proxy Service for Multi-tenant Database Access

Haitham Yaish1,2, Madhu Goyal1,2, and George Feuerlicht2,3

1 Centre for Quantum Computation & Intelligent Systems
2 Faculty of Engineering and Information Technology

University of Technology, Sydney
P.O. Box 123, Broadway NSW 2007, Australia

3 Faculty of Information Technology,
University of Economics, Prague, Czech Republic

haitham.yaish@student.uts.edu.au, madhu@it.uts.edu.au,
george.feuerlicht@uts.edu.au

Abstract. The database of multi-tenant Software as a Service (SaaS)
applications has challenges in designing and developing a relational database
for multi-tenant applications. In addition, combining relational tables and
virtual relational tables to make them work together and act as one database for
each single tenant is a hard and complex problem to solve. Based on our multi-
tenant Elastic Extension Tables (EET), we are proposing in this paper a multi-
tenant database proxy service to combine multi-tenant relational tables and
virtual relational tables, to make them act as one database for each single tenant.
This combined database is suitable to run with multi-tenant SaaS single instance
applications, which allow tenants designing their database and automatically
configuring its behavior during application runtime execution. In addition, these
applications allow retrieving tenants data by simply calling functions from this
service which spare tenants from spending money and efforts on writing SQL
queries and backend data management codes, and instead allowing them to
focus on their business and to create their web, mobile, and desktop
applications. The feasibility and effectiveness of the proposed service are
verified by using experimental data on some of this service functions.

Keywords: Software as a Service, SaaS, Multi-tenancy, Multi-tenant Database,
Relational Tables, Virtual Relational Tables, Elastic Extension Tables.

1 Introduction

Configuration is the main characteristic of multi-tenant applications that allow SaaS
vendors running a single instance application, which provides a means of
configuration for multi-tenant applications. This characteristic requires a multi-tenant
aware design with a single codebase and metadata capability. Multi-tenant aware
application allows each tenant to design different parts of the application, and
automatically adjust and configure its behavior during runtime execution without
redeploy the application [3]. Multi-tenant data has two types: shared data, and
tenant’s isolated data. By combining these data together tenants can have a complete
data which suits their business needs [5][11].

 Proxy Service for Multi-tenant Database Access 101

There are various models of multi-tenant database schema designs and techniques
which have been studied and implemented to overcome multi-tenant database
challenges [14]. Nevertheless, these techniques are still not overcoming multi-tenant
database challenges [1]. NoSQL stands for Not Only Structured Query Language, is a
non-relational database management system. This technique avoids join operations,
filtering on multiple properties, and filtering of data based on the results of a subqueris.
Therefore, the efficiency of NoSQL simple query is very high, but this is not the case
for complex queries [4][10][6]. Salesforce.com [13], the pioneer of SaaS Customer
Relationship Management (CRM) applications has developed a storage model to
manage its virtual database structure by using a set of metadata, universal data table,
and pivot tables. Also, it provides a special object-oriented procedural programming
language called Apex, and two special query languages: Sforce Object Query
Language (SOQL) and Sforce Object Search Language (SOSL) to configure, control,
and query the data from Salesforce.com storage model [9].

We have proposed a novel multi-tenant database schema design to create and
configure multi-tenant applications, by introducing an Elastic Extension Tables (EET)
which consists of Common Tenant Tables (CTT) and Virtual Extension Tables (VET) .
The database design of EET technique is shown in the Appendix. This technique
enables tenants creating and configuring their own virtual database schema including:
the required number of tables and columns, the virtual database relationships for any
of CTTs or VETs, and the suitable data types and constraints for a table columns
during multi-tenant application run-time execution [14]. In this paper, we are
proposing a multi-tenant database proxy service called Elastic Extension Tables Proxy
Service (EETPS) to combine, generate, and execute tenants’ queries by using a
codebase solution that converts multi-tenant queries into a normal database queries.

Our EETPS provides the following new advancements:

• Allowing tenants to choose from three database models. First, multi-tenant
relational database. Second, combined multi-tenant relational database and
virtual relational database. Third, virtual relational database.

• Avoiding tenants from spending money and efforts on writing SQL queries,
learning special programing languages, and writing backend data
management codes by simply calling functions from our service which
retrieves simple and complex queries including join operations, filtering on
multiple properties, and filtering of data based on subqueries results.

In our paper, we explored two sample algorithms for two functions of our service,
and we carried out four types of experiments to verify the practicability of our service.

The rest of the paper is organized as follows: section 2 reviews related work.
Section 3 describes Elastic Extension Tables Proxy Service, section 4 describes two
sample algorithms of the Elastic Extension Tables Proxy Service, section 5 gives our
experimental results and section 6 concludes this paper and descries the future work.

2 Related Work

There are various models of multi-tenant database schema designs and techniques
which have been studied and implemented to overcome multi-tenant database

102 H. Yaish, M. Goyal, and G. Feuerlicht

challenges like Private Tables, Extension Tables, Universal Table, Pivot Tables,
Chunk Table, Chunk Folding, and XML [1][2][7][8][14]. Nevertheless, these
techniques are still not overcoming multi-tenant database challenges [1].
Salesforce.com, the pioneer of SaaS CRM applications has designed and developed a
storage model to manage its virtual database structure by using a set of metadata,
universal data table, and pivot tables which get converted to objects that the Universal
Data Dictionary (UDD) keeps track of them, their fields and relationships, and other
object definition characteristics. Also, it provides a special object-oriented procedural
programming language called Apex which does the following. First, declare program
variables, constants, and execute traditional flow control statements. Second, declare
data manipulation operations. Third, declare the transaction control operations. Then
Salesforce.com compiles Apex code and stores it as metadata in the UDD [13]. In
addition, it has its own Query Languages, first, Sforce Object Query Language
(SOQL), which retrieve data from one object at a time. Second, Sforce Object Search
Language (SOSL), which retrieve data from multiple objects simultaneously [9] [13].
NOSQL is a non-relational database management system which designed to handle
storing and retrieving large quantities of data without defining relationships. It has
been used by cloud services like MongoDB, Cassandra, CouchDB, Google App
Engine Datastore, and others. This technique avoids join operations, filtering on
multiple properties, and filtering of data based on subqueries results. Therefore the
efficiency of its simple query is very high, but this is not the case for complex queries.
Moreover, unless configuring NoSQL consistency models in protective modes of
operation, NoSQL will not assure the data consistency and it might sacrifice data
performance and scalability [4][10]. Indrawan-Santiago [13] states that NoSQL
should be seen as a complimentary solution to relational databases in providing
enhanced data management capability, not as a replacement to them.

3 Elastic Extension Tables Proxy Service

In this paper, we are proposing a multi-tenant database proxy service to combine,
generate, and execute tenants’ queries by using a codebase solution which converts
multi-tenant queries into normal database queries. This service has two objectives,
first, to enable tenants' applications retrieve tuples from CTTs, retrieve combined
tuples from two or more tables of CTTs and VETs, or retrieve tuples from VETs.
Second, to spare tenants from spending money and efforts on writing SQL queries
and backend data management codes by simply calling functions from this service,
which retrieves simple and complex queries including join operations, union
operations, filtering on multiple properties, and filtering of data based on subqueries
results.

This service gives tenants the opportunity of satisfying their different business
needs and requirements by choosing from any of the following three database models
which are also shown in Fig.1.
• Multi-tenant relational database: This database model eligible tenants using a ready

relational database structure for a particular business domain database without any

 Proxy Service for Multi-tenant Database Access 103

need of extending on the existing database structure, and this business domain
database can be shared between multiple tenants and differentiate between them by
using a Tenant ID. This model can be applied to any business domain database
like: CRM, Accounting, Human Resource (HR), or any other business domains.

• Combined multi-tenant relational database and virtual relational database: This
database model eligible tenants using a ready relational database structure of a
particular business domain with the ability of extending on this relational database
by adding more virtual database tables, and combine these tables with the existing
database structure by creating virtual relationships between them.

• Multi-tenant virtual relational database: This database model eligible tenants using
their own configurable database through creating their virtual database structures
from the scratch, by creating virtual database tables, virtual database relationships
between the virtual tables, and other database constraints to satisfy their special
business requirements for their business domain applications.

Fig. 1. EETPS database models

The EETPS provides functions which allow tenants building their web, mobile,
and desktop applications without the need of writing SQL queries and backend data
management codes. Instead, retrieving their data by simply calling these functions,
which return a two dimensional array (Object [α] [β]), where α is the number of array
rows that represents a number of retrieved tuples, and β is the number of array
columns that represents a number of retrieved columns for a particular virtual table.
These functions were designed and built to retrieve tenants’ data from the following
tables:

• One table either a CTT or a VET.
• Two tables which have one-to-one, one-to-many, many-to-many, or self-

referencing relationships. These relationships can be between two VETs, two
CTTs, or one VET and one CTT.

• Two tables which may have or not have relationships between them, by using
different types of joins including: Left Join, Right Join, Inner Join, Outer Join, Left
Excluding Join, Right Excluding Join, and Outer Excluding Join. The Join
operation can be used between two VETs, two CTTs, or one VET and one CTT.

• Two tables or more which may have or not have relationships between them, by
using the union operator that combines the result-set of these tables whether they
are CTTs or VETs.

104 H. Yaish, M. Goyal, and G. Feuerlicht

• Two or more tables which have relationships between them, by using filters on
multiple tables, or filtering data based on the results of subqueries.

Moreover, the EETPS functions have the capabilities of retrieving data from CTTs

or VETs by using the following query options: Logical Operators, Arithmetic
operators, Aggregate Functions, Mathematical functions, Using Single or Composite
Primary Keys, Specifying Query SELECT clauses, Specifying Query WHERE Clause,
Specifying Query Limit, and Retrieving BLOB and CLOB Values.

4 Sample Algorithms of the Elastic Extension Tables Proxy
Service

In this section, two sample algorithms will be explored, Single Table Algorithm, and
Union Tables Algorithm.

4.1 Single Table Algorithm

This algorithm retrieves tuples from a CTT or a VET. There are three different cases
in this algorithm, first, retrieving tuples from a VET by specifying certain primary
keys. Second, retrieving tuples from a VET by specifying certain table row IDs which
are stored in ‘table_row’ extension table. Third, retrieving all tuples of a CTT or a
VET. In this section we will explore the main algorithm and some of the subsidiary
algorithms of the Single Table Algorithm including: the algorithm of the second case
that mentioned in this paragraph, and Store Tuples in Array Algorithm. In addition,
we will explore an example for each of these algorithms.

Single Table Main Algorithm. This main algorithm is outlined in Program Listing 1.
The algorithm determines which of the three cases mentioned above will be applied
by checking the passed parameters, and based on these parameters one of a three
different query statement will be constructed, and then this query statement will be
passed to ‘getQuery’ algorithm which will return SQL query results from ‘table_row’,
‘table_row_blob’, and ‘table_row_clob’ extension tables and store these results in a
set. Then, this set will be passed to Store Tuples in Array Algorithm which will store
the results in a two dimensional array, where the number of array rows represents a
number of retrieved tuples, and the number of array columns represents a number of
retrieved columns for a particular table.

Definition 1 (Single Table Main Algorithm). T denotes a tenant ID, B denotes a
table name, λ denotes a set of table row IDs, Ω denotes a set of primary keys, S
denotes a string of the SELECT clause parameters, W denotes a string of the WHERE
clause, F denotes a first result number of a query limit, M denotes the maximum
amount of a query limit which will be retrieved, Q denotes the table type (CTT or
VET), I denotes a set of VET indexes, C denotes a set of retrieved tuples from a CTT,
V denotes a set of retrieved tuples from a VET, and Φ denotes a two dimensional
array that stores the retrieved tuples.

 Proxy Service for Multi-tenant Database Access 105

Input.T, B, λ, Ω, S, W, F, M and Q.
Output. Φ.
1. if Q = CTT then
2. C ← retrieve tuples from a CTT by using T, Ω,

S, W, F, and M to filter the query results
3. else
4. if Ω ≠ null then
5. V ← retrieve tuples from a VET by using T,

Ω, S, W, F, and M to filter the query
results

6. else if λ ≠ null then
7. /* This statement calls Table Row Query
Algorithm */
8. V ← retrieve tuples from a VET by using T,

λ, S, W, F, and M to filter the query
results

9. else
10. I ← retrieve the indexes of B by using

table_index extension table
11. end if
12. if B has I then
13. V ← retrieve tuples from a VET by using

T, I, S, W, F, and M to filter the query
results

14. else
15. V ← retrieve tuples from a VET by using

T, S, W, F, and M to filter the query
results

16. end if
17. end if
18. /* This statement calls Store Tuples in Array
Algorithm */
19. store C or V in Φ
20. Return Φ
1 The program listings of Single Table Algorithm.

Table Row Query Algorithm. This subsidiary query algorithm is used to retrieve
tuples for a tenant from a VET. The database query which is used in this algorithm
uses UNION operator keyword to combine the result-set of three SELECT statements
for three tables: table_row, table_row_blob, and table_row_clob if the VET only
contains BLOB and/or CLOB, however if the VET does not contain BLOB and
CLOB then the UNION operator will not be used in the query.

106 H. Yaish, M. Goyal, and G. Feuerlicht

Definition 2 (Table Row Query Algorithm). T denotes a tenant ID, B denotes a
table name, λ denotes a set of table row IDs, S denotes a string of the SELECT clause
parameters, W denotes a string of the WHERE clause, F denotes a first result number
of the query limit, M denotes the maximum amount of the query limit which will be
retrieved, Q denotes the table type (CTT or VET), and θ denotes a string of the select
statement.

Input. T, B, λ, Ω, S, W, F, M and Q.
Output. θ.
1. θ = SELECT tr.table_column_name, tr.value,
tr.table_row_id, tr.serial_id FROM table_row tr
WHERE tr.tenant_id = T AND tr.db_table_id = B AND
tr.table_row_id IN (λ) AND table_column_id in (S)
AND W
UNION
SELECT trb.table_column_name, trb.value,
trb.table_row_blob_id,trb.serial_id FROM
table_row_blob trb WHERE trb.tenant_id = T AND
trb.db_table_id = B AND trb.table_row_blob_id IN
(λ)
UNION
SELECT trc.table_column_name, trc.value,
trc.table_row_clob_id, trc.serial_id FROM
table_row_clob trc WHERE trc.tenant_id = T AND
trc.db_table_id = B AND trc.table_row_clob_id IN
(λ)
ORDER BY 3, 4 LIMIT M OFFSET F
2. Return θ
2 The program listings of Table Row Query Algorithm.

Store Tuples in Array Algorithm. This subsidiary algorithm is used to store the
retrieved data from a CTT or a VET into a two dimensional array, the number of array
rows represents a number of retrieved tuples, and the number of array columns
represents a number of retrieved columns for a table. The column names get stored in
the first element of this two dimensional array, and the data in these columns get
stored in the rest elements of the array.

Definitions 3 (Store Tuples in Array Algorithm). T denotes a tenant ID, B denotes
a table name, μ denotes a set of retrieved tuples from a CTT or a VET where each of
these tuples is presented as τ and each column of τ is presented as χ , which means τ is
a set of χ where τ = { χ1, χ2, …, χn}. δ denotes a set of column names of a CTT or a
VET, Φ denotes a two dimensional array to store the retrieved tuples, and τ n (χ m)
denotes a value stored in χ m of τ n.

 Proxy Service for Multi-tenant Database Access 107

Input. T, B, and μ.
Output. Φ.
1. δ ← retrieve the column names of B from

table_column extension table by using T to
filter the query results

2. Initialize Φ [size of μ] [size of δ]
3. i ← 0
4. For all column names δ Do
5. Φ [0][i] = δi
6. i ← i + 1
7. end for
8. n ← 0
9. for all τ μ Do
10. m ← 0
11. For all column names δ Do
12. Φ [n+1][m] = τ n(χ m)
13. m ← m + 1
14. end for
15. n ← n + 1
16.end for
17.Return Φ
3 The program listings of Store Tuples in Array Algorithm.

Example. This example explores how the Single Table Algorithm retrieves virtual
tuples from one VET. There are three cases that this algorithm is handling which
mentioned above in this section. In this example we will explore the case where we
pass a certain table Row ID to the algorithm. In this example we will pass the
following five input parameters:

1. A tenant ID value, which equals 100.
2. A table ID value, which equals 7.
3. A table row ID value, which equals 2.
4. The SELECT clause parameter (S) is empty, this means that the query will retrieve

all the columns of the ‘store’ VET.
5. The WHERE clause (W) is empty, this means that the query is not filtered by the

WHERE clause.

Fig. 2 (a) shows the ‘store’ VET which we will retrieve tuples from. The query in
Program Listing 4 is generated by using the Single Table Algorithm to retrieve a
virtual tuple from the ‘store’ VET based on the passed parameters. Fig. 2 (b) shows
the result of the virtual tuples that retrieved from table_row extension table by using
this query listed in Program Listing 4. This virtual tuple is divided into three physical
tuples, each of these physical tuples stores a column name and its value, and all of
these tuples are sharing one ‘table_row_id’ which equals 2. The query in Program

108 H. Yaish, M. Goyal, and G. Feuerlicht

Listing 4 does not contain the UNION part of the query to retrieve BLOB and CLOB
values because the ‘store’ VET structure does not contain any of them.

The two dimensional array that is shown in Fig. 2 (c) illustrates how the previous
result which is shown in Fig. 2 (b) is stored in a well structured two dimensional
array. The column names are stored in the first row elements, and the first tuple is
stored in the second row elements of the array. Compared with the previous results of
the tuples that is shown in Fig. 2 (b), this two dimensional array stores the virtual
tuple in a structure which is very similar to any physical tuple that is structured in any
physical database table, which in return will facilitate accessing virtual tuples from
anyVET.

SELECT tr.table_column_name, tr.value,
tr.table_row_id, tr.serial_id FROM table_row tr WHERE
tr.tenant_id = 100 AND tr.db_table_id = 7 AND
trb.table_row_id IN (2)

4 The Program Listing of the query generated by using the Single Table Algorithm.

Fig. 2. The ‘store’ VET and some tuples retrieved from it and stored in an array

4.2 Union Tables Algorithm

In this section, we will explore the union function, which retrieves a combined result-
set of two or more tables whether they are CTTs or VETs, and stores the result-set in
an array. In addition, we will explore an example of this algorithm. The input
parameters of this algorithm will determine a tenant, a set of CTTs and/or VETs that
the union function needs to retrieve data from, SELECT clauses, and WHERE clauses
which are required for each table. Program Listing 5 is showing the detailed
algorithm. This algorithm will store the retrieved tuples in an array by using the
subsidiary algorithm that mentioned in the Program Listings 3.

Definition 4 (Union Tables Algorithm). T denotes a tenant ID, Π denotes a set of
CTTs and VET names, where each of these tables has got one or more tuples (Π = { τ
1, τ 2, …, τ m}), each tuple is presented as τ and each column of τ is presented as χ,

 Proxy Service for Multi-tenant Database Access 109

which means τ is a set of χ where τ = { χ1, χ2, …, χn}. υ denotes a set of table
columns which are related to the set Π and the columns are ordered according to the
table orders, W denotes a set of WHERE clauses which are related to the set Π and
the columns are ordered according to the table orders of Π, F denotes a first result
number of a query limit, M denotes a maximum amount of a query limit which will
be retrieved, Q denotes the table type (CTT or VET), C denotes a set of retrieved
tuples from CTT, V denotes a set of retrieved tuples from VET, Φ denotes a two
dimensional array which stores the retrieved tuples, and τ n (χ m) denotes a value
stored in χ m of τ n.

Input. T, Π, υ, W, F, and M.
Output. Φ.
1. i ← 0
2. For all tables Π Do
3. if Q = CTT then
4. C ← retrieve τ from a CTT by using υ, W, F,

and M to filter the query results
5. else
6. V ← retrieve tuples from a VET by using υ,

W, F, and (M * size of υ) to filter the
query results

7. end if
8. n ← 0
9. for all τ Πi Do
10. m ← 0
11. For all column names τ Do
12. Φ[n+1][m] = τ n(χ m)
13. m ← m + 1
14. end for
15. n ← n + 1
16. end for
17. i ← i + 1
18.end for
19.Return Φ
5 The program listings of Union Tables Algorithm.

Example. This example explores how the Union Table Algorithm retrieves tuples
from two tables, the first one CTT and the second one VET. In this example we will
pass to the algorithm the following six input parameters:

1. A tenant ID value, which equals 1000.
2. A set of table IDs (Π) which equals {product, 17} where ‘product’ is a CTT that

is shown in Fig. 3(a) and the ID 17 is the ID which represents the ‘sales_fact’
VET that is shown in Fig. 3 (b).

110 H. Yaish, M. Goyal, and G. Feuerlicht

3. A set of table columns (υ), which equals {{shr_product_id, price}, {58,61}},
where this set contains two other sets, the first one contains the columns of
‘product’ CTT, and the second one contains the IDs of ‘sales_fact’ VET. ID 58
represents the virtual ‘product_id’ column and ID 61 represents the virtual
‘unit_price’ column.

4. The set of WHERE clauses of the tables (W) are empty, because this example has
not got any WHERE clauses parameter passed to the function to filter the tables
queries.

5. The first number of the query limits (F), which equals 0.
6. The maximum amount of the query limits (M), which equals 1.

After we passed the parameters to the function, the function iterated the set of

tables (Π) , the first table in the set was ‘product_id’ CTT, the function executed the
query which is shown in Program Listing 6 to retrieve the tuples of this table, and the
results of this query are shown in Fig. 3 (c). The second table in the set was the
‘sales_fact’ VET with ID equals 17, the function executed the query in Program
Listing 7 and 8. The query in Program Listing 7 was used to retrieve the indexes of
the ‘sales_fact’ VET from ‘table_index’ extension table, and the query in Program
Listing 8 was used to retrieve the virtual tuples from ‘sales_fact’ VET by using the
passed parameters and the ‘table_row_id’ which were retrieved from the query that
shown in Program Listing 7. The results of the two queries of Program Listing 7 and 8
are shown in Fig. 3 (d) and (e).

Finally, the output of the queries of the CTT and the VET that mentioned above are
stored in two dimensional array as shown in Fig. 3 (f), the two elements [0] [0] and
[0] [1] represent the column names, the Union functions shows generic names like
column1, and column 2, however the other functions which our service provides show
column names of CTT and VET. The two elements [1] [0] and [1] [1] represent the
column’s values of the CTT, and the two elements [2] [0] and [2] [1] represent the
column’s values of the VET.

SELECT product_id, price FROM product WHERE tenant_id =
1000 LIMIT 1;

6 The program listing of the query which retrieved the tuples of the ‘product’ CTT.

SELECT table_row_id FROM table_index WHERE
tenant_id=1000 AND db_table_id=17 AND (table_column_id=61
OR table_column_id=58) LIMIT 1

7 The program listing of the query which retrieved the indexes of the ‘sales_fact’ VET from
‘table_index’ extension table.

SELECT tr.table_column_id ,tr.value ,tr.table_row_id,
tr.serial_id FROM table_row tr WHERE tr.tenant_id =1000
AND tr.db_table_id = 17 AND tr.table_row_id IN (352871)
AND tr.table_column_id in (58,61)
ORDER BY 3,4 LIMIT 2 OFFSET 0

8 The program listing of the query which retrieved the tuples of the ‘sales_fact’ VET.

 Proxy Service for Multi-tenant Database Access 111

Fig. 3. The ‘product’ CTT and the ‘sales_fact’ VET data structures

5 Performance Evaluation

After developing the EETPS, we carried out four types of experiments to verify the
practicability of our service. These experiments were classified according to the
complexities of the queries which used in these experiments including: simple,
simple-to-medium, medium, and complex. The four experiments show comparisons
between the response time of retrieving data from CTTs, VETs, or both CTTs and
VETs. We have evaluated the response time through accessing the EETPS which
converts multi-tenant queries into normal database queries, instead of accessing the
database directly.

5.1 Experimental Data Set

The EETPS has designed and developed to serve multi-tenants in one instance
application. However, in this paper the aim of the experiments is to evaluate the
performance differences between retrieving the data of CTTs, VETs, or both CTTs
and VETs together for one tenant. In our experiment settings we used one machine
and we ran the following four types of experiments:

• Simple query experiment (Exp. 1): In this experiment we called a function which
retrieved data from a CTT by executing Query 1 (Q1), and retrieved the same data
from a VET by executing Query 2 (Q2).

• Simple-to-medium query experiment (Exp. 2): In this experiment we called a
function which retrieved data from two CTTs by executing Query 3 (Q3), two VETs
by executing Query 4 (Q4), and CTT-and-VET by executing Query 5 (Q5). Each of
these two tables combination has got one-to-many relationship between them.

• Medium query experiment (Exp. 3): In this experiment we called a function which
retrieved data from two tables by using a union operator for two CTTs by
executing Query 6 (Q6), for two VETs by executing Query 7 (Q7), and for CTT-
and-VET by executing Query 8 (Q8).

112 H. Yaish, M. Goyal, and G. Feuerlicht

• Complex query experiment (Exp. 4): In this experiment we called a function which
uses a left join operator that joined two CTTs by executing Query 9 (Q9), two
VETs by executing Query 10 (Q10), and CTT-and-VET by Query 11 (Q11).

In these four experiments we ran the test on eleven queries twice, the first test was
to retrieve only 1 tuple, and the second test was to retrieve a 100 of tuples by using
the same queries. The queries that we ran on CTTs are the same queries we ran on
VETs, and CTT-and-VET in order to have accurate comparisons. The structures of
these queries are shown in Fig. 4. We recorded the execution time of these queries
experiments based on six data sets for all the four types of experiments that we ran.
The first data set contained 500 tuples, the second data set contained 5,000 tuples, the
third data set contained 10,000 tuples, the fourth data set contained 50,000 tuples, the
fifth data set contained 100,000 tuples, and the last data set contained 200,000 tuples.
All of these data sets were for one tenant.

Fig. 4. The structures of the queries executed in our experiments

5.2 Experimental Setup

Our EETPS was implemented in Java 1.6.0, Hibernate 4.0, and Spring 3.1.0. The
database is PostgreSQL 8.4 and the application server is Jboss-5.0.0.CR2. Both of
database and application server is deployed on the same PC. The operating system is
windows 7 Home Premium, CPU is Intel Core i5 2.40GHz, the memory is 8GB, and
the hard disk is 500G.

5.3 Experimental Results

In all the experimental diagrams we provided in this section the vertical axes which are
the execution time in seconds, and the horizontal axes which are the total number of

 Proxy Service for Multi-tenant Database Access 113

tuples that stored in a tenant’s tables. Each of the four experiments retrieves 1 tuple and
100 of tuples, and we will show in this section the average execution time of the six data
sets of these tuples which are related to CTTs, VETs, and CTTs and VETs, and show
the differences between them. These experimental diagrams are shown in Fig 5-12.

We found in our experimental results that the average performance of the CTT and
the VET for Exp.1 can be considered the same, and the VETs, the CTTs and the CTT-
and-VET for Exp. 2 can be considered the same as well. In addition, we found that the
average performance for Exp. 3 for the VETs, and the CTT-and-VET can be
considered slightly higher than the CTTs, but the average performance of the VETs is
the highest difference between the three types of tables. The average performance
difference between the CTTs and the VETs for retrieving 1 tuple is 280 milliseconds,
and for retrieving 100 tuples is 396 milliseconds. In the last experimental results Exp.
4 we found that the average performance for the CTT-and- VET can be considered
higher than the CTTs by approximately 1.2 seconds, and for the VETs can be
considered higher than the CTTs by approximately 1.5 seconds. The details of the
experimental results summary are shown in Table 1 and 2.

Table 1. This table shows the experimental results of retrieving 1 tuple in milliseconds

Retrieving
1 Tuple

CTT VET CTT-and-
VET

Difference
Between
CTT–and-VET

Difference Between
CTT and CTT-and-VET

Exp. 1 Q 1 Q 2
44

 117 161

Exp. 2 Q 3 Q 4 Q 5
9

3 146 155 149

Exp. 3 Q 6 Q 7 Q 8
280

109 231 511 340

Exp. 4 Q 9 Q 10 Q 11
1527

1229 403 1930 1632

Table 2. This table shows the experimental results of retrieving 100 tuples in milliseconds

Retrieving
100 Tuples

CTT VET CTT-and-
VET

Difference
Between
CTT–and-VET

Difference Between
CTT and CTT-and-VET

Exp. 1 Q 1 Q 2
2

 204 206

Exp. 2 Q 3 Q 4 Q 5
24

12 331 355 343

Exp. 3 Q 6 Q 7 Q 8
396

143 245 641 388

Exp. 4 Q 9 Q 10 Q 11
 1552

 1296 560 2112 1856

114 H. Yaish, M. Goyal, and G. Feuerlicht

T
im

e
(S

ec
) 0

0.1
0.2
0.3
0.4

CTT (Q1)

VET (Q2)

Number of Tenant’s Tuples

Fig. 5. Single Table 1 Tuple
T

im
e

(S
ec

) 0
0.1
0.2
0.3
0.4

CTT (Q1)

VET (Q2)

Number of Tenant’s Tuples

Fig. 6. Single Table 100 Tuples

T
im

e
(S

ec
)

0
0.1
0.2
0.3
0.4

CTT (Q3)

VET (Q4)

CTT & VET
(Q5)

Number of Tenant’s Tuples

Fig. 7. 1-to-M 1 Tuple

T
im

e
(S

ec
)

0
0.1
0.2
0.3
0.4

CTT (Q3)

VET (Q4)

CTT & VET
(Q5)

Number of Tenant’s Tuples

Fig. 8. 1-to-M 100 Tuples

T
im

e
(S

ec
)

0
0.5

1
1.5

2
CTT (Q6)

VET (Q7)

CTT & VET
(Q8)

Number of Tenant’s Tuples

Fig. 9. Union 1 Tuple

T
im

e
(S

ec
)

0
0.5

1
1.5

2
CTT (Q6)

VET (Q7)

CTT & VET
(Q8)

Number of Tenant’s Tuples

Fig. 10. Union 100 Tuples

 Proxy Service for Multi-tenant Database Access 115

 T
im

e
(S

ec
) 0

2
4
6
8 CTT (Q9)

VET (Q10)

CTT & VET
(Q11)

Number of Tenant’s Tuples

Fig. 11. Left Join 1 Tuple

 T
im

e
(S

ec
)

0
2
4
6
8 CTT (Q9)

VET (Q10)

CTT & VET
(Q11)

Number of Tenant’s Tuples

Fig. 12. Left Join 100 Tuples

6 Conclusion

In this paper, we are proposing a multi-tenant proxy service for the EET to combine,
generate, and execute tenants’ queries by using a codebase solution that converts a
multi-tenant query into a normal database query. This service has two objectives, first,
allowing tenants to choose from three database models: multi-tenant relational
database, combined multi-tenant relational database and virtual relational database,
and virtual relational database. Second, sparing tenants from spending money and
efforts on writing SQL queries and backend data management codes by calling our
service functions which retrieve simple and complex queries including join
operations, filtering on multiple properties, and filtering of data based on subqueries
results. In our paper, we explored two sample algorithms for two functions, and we
carried out four types of experiments to verify the practicability of our service. These
experiments were classified according to the complexities of the queries which used
in these experiments including: simple, simple-to-medium, medium, and complex.
The four experiments show comparisons between the response time of retrieving data
from CTTs, VETs, or both CTTs and VETs. In our experimental results we found that
the average performance of CTTs, VETs, and CTT- and-VET for the simple queries
and the simple-to-medium queries are considered almost the same. Also, we found
that the average performance of the medium queries for VETs, and CTT-and-VET is
considered slightly higher than CTTs, but VET are the highest between the three
types of tables. In the last experimental results of complex query we found that the
average performance for CTT-and-VET is considered higher than CTTs by
approximately 1.2 seconds, and for VETs is considered higher than CTTs by
approximately 1.5 seconds. The cost of complex query is acceptable in favor of
obtaining a combined relational database and virtual relational database for multi-
tenant applications, which in return these combined databases provide a means of
configuration for multi-tenant applications, reduce the Total Cost of Ownership
(TCO) on the tenants, and reduce the ongoing operational costs on the service
providers.

116 H. Yaish, M. Goyal, and G. Feuerlicht

Our future work will focus on optimizing virtual data retrieval from our EET for
simple and complex queries by using a highly-optimized executing query plans and
logic, and add more functions to insert, updated, delete tuples from CTT and VET.

References

1. Aulbach, S., Grust, T., Jacobs, D., Kemper, A., Seibold, M.: A Comparison of Flexible
Schemas for Software as a Service. In: Proceedings of the 35th SIGMOD International
Conference on Management of Data, pp. 881–888. ACM, Rhode Island (2009)

2. Aulbach, S., Grust, T., Jacobs, D., Kemper, A., Rittinger, J.: Multitenant Databases for
Software as a Service: Schema Mapping Techniques. In: Proceedings of the 34th
SIGMOD International Conference on Management of Data, pp. 1195–1206. ACM,
Vancouver (2008)

3. Bezemer, C., Zaidman, A.: Multi-Tenant SaaS Applications: Maintenance Dream or
Nightmare? In: Proceedings of the Joint Workshop on Software Evolution and
International Workshop on Principles of Software Evolution, pp. 88–92. ACM, Antwerp
(2010)

4. Bobrowski, S.: Optimal Multitenant Designs for Cloud Apps. In: 4th International
Conference on Cloud Computing, pp. 654–659. IEEE Press, Washington (2012)

5. Domingo, E.J., Nino, J.T., Lemos, A.L., Lemos, M.L., Palacios, R.C., Berbís, J.M.G.:
CLOUDIO: A Cloud Computing-Oriented Multi-tenant Architecture for Business
Information Systems. In: 3rd International Conference on Cloud Computing, pp. 532–533.
IEEE Press, Madrid (2010)

6. Dimovski, D.: Database management as a cloud-based service for small and medium
organizations. Master Thesis, Masaryk University Brno (2013)

7. Du, J., Wen, H.Y., Yang, Z.J.: Research on Data Layer Structure of Multi-tenant E-
commerce System. In: IEEE 17th International Conference on Industrial Engineering and
Engineering Management, Xiamen, pp. 362–365 (2010)

8. Foping, F.S., Dokas, I.M., Feehan, J., Imran, S.: A New Hybrid Schema-sharing
Technique for Multitenant Applications. In: Fourth International Conference on Digital
Information Management, pp. 1–6. IEEE Press, Michigan (2009)

9. Force.com, http://www.salesforce.com/us/developer/docs/
soql_sosl/salesforce_soql_sosl.pdf

10. Google Developers,
https://developers.google.com/appengine/docs/python/
datastore/overview#Comparison_with_Traditional_Databases

11. Guoling, L.: Research on Independent SaaS Platform. In: The 2nd IEEE International
Conference on Information Management and Engineering, pp. 110–113. IEEE Press,
Chengdu (2010)

12. Indrawan-Santiago, M.: Database Research: Are We at a Crossroad? Reflection on
NoSQL. In: 15th International Conference on Network-Based Information Systems,
pp. 45–51. IEEE Press, Melbourne (2012)

13. Weissman, C.D., Bobrowski, S.: The design of the force.com multitenant internet
application development platform. In: Proceedings of the 35th SIGMOD International
Conference on Management of Data, pp. 889–896. ACM, Rhode Island (2009)

14. Yaish, H., Goyal, M., Feuerlicht, G.: An Elastic Multi-tenant Database Schema for
Software as a Service. In: Ninth IEEE International Conference on Dependable,
Autonomic and Secure Computing, pp. 737–743. IEEE Press, Sydney (2011)

 Proxy Service for Multi-tenant Database Access 117

Appendix: Elastic Extension Tables (EET)

	Proxy Service for Multi-tenant Database Access
	1 Introduction
	2 Related Work
	3 Elastic Extension Tables Proxy Service
	4 Sample Algorithms of the Elastic Extension Tables Proxy Service
	4.1 Single Table Algorithm
	4.2 Union Tables Algorithm

	5 Performance Evaluation
	5.1 Experimental Data Set
	5.2 Experimental Setup
	5.3 Experimental Results

	6 Conclusion
	References

