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Abstract. The calculation of the Tate pairing on ordinary curves in-
volves two major steps: the Miller Loop (ML) followed by the Final
Exponentiation (FE). The first step for achieving a full pairing inversion
would be to invert this FE, which in itself is a mathematically diffi-
cult problem. To our best knowledge, most fault attack schemes pro-
posed against pairing algorithms have mainly focussed on the ML. They
solved, if at all, the inversion of the FE in some special ‘easy’ cases or
even showed that the complexity of the FE is an intrinsic countermeasure
against a successful full fault attack on the Tate pairing. In this paper,
we present a fault attack on the FE whereby the inversion of the final
exponentiation becomes feasible using 3 independent faults.

Keywords: Tate pairing, Ate pairing, final exponentiation, fault at-
tacks.

1 Introduction

Pairing-Based Cryptography (PBC) uses bilinear mappings (or pairings) to con-
struct cryptographic schemes. Identity-Based Encryption (IBE) [1], anonymous
IBE, one round Diffie-Hellman key exchanges or searchable encryption [2] con-
stitute the scope of promising applications of PBC, accentuating the need for
secure implementations. An exhaustive literature is currently available on the
choice of curves and associated parameters for secure efficient PBC implemen-
tations as well as analyses covering the issues linked to the resistance of such
implementations against side channel and fault attacks [3, 4]. A pairing calcu-
lation consists of two major steps namely the Miller Loop (ML) and the Final
Exponentiation (FE). Most of the existing work covering fault attacks against
pairing calculations focuses on the ML [5–7], even stating in some cases that
in practice the presence of the complex FE after the ML reduces the practical
significance of such fault attacks [6, 7].

In this paper, we propose a scheme where a fault attack, using only three
faulty outputs and a correct one, is used to calculate the input to the “complex”
final exponentiation despite the fact that the FE inversion has been defined as
a mathematical hard problem [8]. To our best knowledge, this is the first pub-
lished fault attack on the FE which allows to “un-nest” the complex calculations
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involved in this second part of a pairing calculation, thus opening the way to the
future building of complete fault attack schemes against Tate-like pairings over
ordinary curves.

We first begin by laying some of the basic notations and concepts used to
describe PBC. We then detail the structure of the Tate pairing before reviewing
existing fault attack schemes in order to understand how our scheme comple-
ments them. After that we explain our attack, review some of the limitations that
we have identified (up to now), discuss its practical feasibility before proposing
countermeasures and concluding the paper.

2 Pairing Based Cryptography

Detailed descriptions of the ins and outs of a pairing implementation can be
found in [9]. Below we shall introduce the notations and concepts required to
understand the proposed fault attack scheme against the Tate pairing on ordi-
nary curves.

Let p be a big prime number and E(Fp) an ordinary elliptic curve over Fp.
Let r be a prime divisor of card (E(Fp)). We define the embedding degree k of E
with respect to r as the smallest integer such that r|pk−1. Additionally, r|Φk(p),
with Φk the k-th cyclotomic polynomial [10, 11].

A pairing maps two points over subgroups of order r of an elliptic curve
E
(
Fpk

)
to the multiplicative field F

∗
pk . As an example, the Tate pairing is defined

as

〈., .〉r : E(Fp)[r]× E(Fpk)/([r]E(Fpk )) → F
∗
pk/

(
F
∗
pk

)r

In order to work with actual values rather than equivalence classes (i.e. guarantee
the uniqueness of the pairing result), the output of the Tate pairing is mapped to
μr with a final exponentiation to the power of pk−1

r . The group μr is formed by
the r-th roots of unity in Fpk : μr = {x ∈ F

∗
pk |xr = 1}. All Tate pairing outputs

in the same equivalence class are mapped to a unique value in μr. The reduced
Tate pairing is then defined as

tr : E(Fp)[r]× E(Fpk)/([r]E(Fpk )) → μr

(P,Q) �→ 〈P,Q〉 pk−1
r

r

The evaluation of 〈P,Q〉r is called the Miller Loop (ML) and the exponentiation
to the power pk−1

r is the Final Exponentiation (FE). Several other pairings on
ordinary curves derived from the Tate pairing, such as the Ate pairing [12] or
the Optimal Ate pairing [13], have this final exponentiation step, meaning that
our attack also works on such alternative implementations.
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3 The Security of PBC from a Fault Attack Perspective

In a practical case, like in Boneh & Franklin’s IBE [1], the decryption scheme in-
volves the calculation of a pairing between a ‘public’ point and a ‘secret’ one. The
attacker’s aim in this case is to recover the secret point in order to impersonate
the legitimate owner of the secret key. The security of a pairing implementa-
tion is usually measured by the ability for an attacker to recover one of the two
input points, knowing the second input point and the pairing result. This prob-
lem is called Fixed Argument Pairing Inversion (FAPI) which can in-turn be
subdivided into two problems: first the Exponentiation Inversion (EI) problem
which consists in recovering the output of the ML; then the Miller Inversion
(MI) problem which aims at recovering the target point knowing the result of
the ML. These problems have been recently studied in [14] and [15] based on
the previous works of [16] and [17].

The EI problem can be stated as finding the unique correct preimage of the
reduced Tate pairing under the FE knowing one input point and the reduced final
result. Indeed, one may find the correct preimage knowing the final reduced result
with the additional information brought by the Miller Loop and the knowledge
of one input point.

Here we will not discuss about the Miller Loop and we will consider only the
final exponentiation on a random element f of F

∗
pk . In this context, knowing

the result of the exponentiation does not allow an attacker to recover f purely
mathematically since he cannot distinguish the correct preimage f from all other
preimages in this many-to-one relationship (with as many as p12−1

r preimages,
e.g. ≈ 22816 preimages for k = 12).

To find the result of the Miller Loop is not enough to solve the FAPI problem
since the MI problem still needs to be solved. But our approach brings us a step
closer to achieving the full pairing inversion by showing that it is possible to
invert the final exponentiation with fault attacks.

3.1 Fault Attacks against PBC

Our attack exploits the information brought by faults injected during the exe-
cution of the FE on a computing device.

A fault attack aims at disrupting the expected behaviour of an algorithm. Such
an attack may alter the data flow (corrupting a data) or the control flow (e.g.
modifying the number of iterations in a loop). Fault injection techniques range
from clock glitches, voltage glitches to more advanced techniques such as the
use of a laser beam or an electromagnetic pulse. A fault injection is not an easy
task as several parameters (intensity, spatial localisation, time of injection. . . )
have to be monitored in order to achieve the desired faulty behaviour without
damaging the target [18, 19].

Fault attacks on pairing have already been discussed in various contexts [5–
7]. Schemes have been proposed in order to reverse the Miller Loop by altering
the number of iterations in the loop [5, 7] or by altering the value at the last
iteration [6]. In these papers, to complete their attacks, the authors propose
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strategies to invert the FE: they consider pairings with either a simple FE [5] or
without any FE [6] at all, which are not relevant to Tate-like pairings on ordinary
curves. For the latter situation, the authors in [6] even conclude that the complex
FE is an inherent deterrent to the use of fault attacks on the entire pairing scheme
over ordinary curves since the exponentiation could not be reversed. For such a
situation, in [7], the authors propose to “short-circuit” the entire exponentiation
routine but this approach is tricky as it means that the attack must not only
bypass an entire routine but must at the same time have access to the result
of the Miller Loop. In this paper we propose what is in our opinion a more
“realistic” approach where, by using 3 independent faults (on 3 executions of the
same pairing calculation), the FE itself can be reversed.

3.2 Fault Model

In the binary representation, a fault effect can be represented with a bit-XOR
operation (bit-flip faults), bit-AND (stuck at zero faults) or bit-OR (stuck at one
faults) on the data (or control) value. One has then to translate the fault effect
as a valid mathematical operation in our field. As a consequence a fault value is
intrinsically dependent on the binary representation of an element in that field.

A fault must have a manageable limited effect. Typically, a simple fault model
is to consider random faults on a machine word-size data. An example would
be a random single-byte fault on an 8-bit microcontroller. Such a simple model
is compatible with some of the latest fault injection techniques proposed in the
literature: for example in [19], the authors illustrate how an electromagnetic
pulse might corrupt the execution of an instruction, modelled by an “instruction
skip”. With this method we can adopt a fault model where a data corruption, of
the size of a machine word, can be achieved by the “skipping” of an instruction.

To accommodate the diversity of existing platforms, we chose to consider a
random fault value on one word of an l-bit architecture. It can be modelled
as the addition with e where −2l < e < 2l if the fault occurs on the least
significant word of the binary representation of the field element. If a fault occurs
on another word (e.g. on the i-th word), the fault value e should be multiplied
by 2i·l to model the fault effect correctly (it may be necessary if the attacker
wants to inject two different fault values on the same intermediate result using
“instruction skips”).

For clarity, from now on we shall consider the fault model to be such that
0 < e < 2l (it is a valid model for random stuck at 1 faults on one word). The
extension of our fault attack to negative error values is straight forward since we
guess the value of e in our equations.

3.3 Motivations for Fault Attacks against the FE

Several elements hint at the potential efficiency of a fault attack on the FE. First
the result of the reduced Tate pairing is in μr which contains r elements. But this
result is represented as an element of the full Fpk field. To give an example, on a
Barreto-Naehrig (BN) curve over Fp12 with log2(p) ≈ 256, an element in μr has
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log2(r) ≈ 256 bits of information but it is represented over 12 · log2(p) ≈ 3072
bits! This means that 3072− 256 = 2816 bits are redundant.

A tempting approach for the attacker would be to use these bits to learn infor-
mation about the targeted preimage by inducing a fault that diverts intermediate
values from their subgroup.

4 Inverting the FE Using Fault Attacks

As mentioned in [6], the FE in Tate-like pairings is a complex calculation. We
show how precisely chosen faults can help in finding the critical intermediate
values to finally reverse the entire exponentiation.

Our work is based on the algorithms proposed by Scott et al. in [10]. It
focuses on FE in fields with an even embedding degree. We shall write d =
k/2. The optimisation technique described in [10], still widely used in pairing
implementations, is based on the decomposition of the FE into three stages.
As pk−1

r can be re-written as pk−1
r =

(
pd − 1

) · pd+1
Φk(p)

· Φk(p)
r , the FE can be

performed as a succession of three exponentiations. Two are “easy” (with
(
pd − 1

)

and pd+1
Φk(p)

) since they rely on exponentiations to the power pn for some n and
can hence be computed with the help of the Frobenius endomorphism which has
a low computational cost. The last step is the so-called “hard exponentiation”
(because it cannot rely on the use of the Frobenius) and is the exponentiation
to the power Φk(p)

r . For example, with k = 12, we have

p12 − 1

r
=

(
p6 − 1

) · (p2 + 1
) · p

4 − p2 + 1

r
(1)

Let f , the result of a Miller Loop, be a random value in F
∗
pk . We name these

intermediate results of each exponentiation

f1 = fpd−1 ; f2 = f
pd+1
Φk(p)

1 and f3 = f
Φk(p)

r
2 (2)

The attacker knows the result f3 and wants to recover f . Note that f1, f2 and
f3 belong to different subgroups of F∗

pk . Since f ∈ F
∗
pk , the following equations

hold

fpk−1 = 1 ; fpd+1
1 = 1 ; fΦk(p)

2 = 1 and f r
3 = 1 (3)

Thus f1 ∈ μpd+1, f2 ∈ μΦk(p) and f3 ∈ μr. These subgroups have sizes pd + 1,
Φk(p) and r respectively. As an example for k = 12, f1 contains ≈ 1536 bits of
information, f2 contains ≈ 1024 bits of information and f3 contains ≈ 256 bits
of information.

4.1 Recovering f1

In this section we shall show how a fault on the intermediate value f1 can help
to retrieve its value.
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Fig. 1. Algorithm for the FE in Fp12 . x is a public parameter of the curve

Extracting a Candidate. We first have the following lemma.

Lemma 1. Let Fpk = Fpd [w]/(w2 − v) be the construction rule for the Fpk

extension field. v is a quadratic nonresidue in Fpd and is a public parameter. Let
x ∈ Fpk be such that x = g+h ·w with g, h ∈ Fpd . Then xpd+1 = g2−v ·h2 ∈ Fpd .

Proof. We have xpd

= g−h ·w since xpd

= (g+h ·w)pd

= gp
d

+hpd ·wpd

= g+h ·
(−w). As a result xpd+1 = xpd ·x = (g−h·w)·(g+h·w) = g2−w2 ·h2 = g2−v ·h2

since w2 = v �	
Let f1 = g1 + h1 · w with g1, h1 ∈ Fpd . We have

fpd+1
1 = f r

3 = 1 (4)

Thus by Lemma 1

g21 − v · h2
1 = 1 (5)

But equation (4) holds only because f1 ∈ μpd+1. Let e ∈ Fpd be a fault injected
on f1 (say during the multiplication producing f1 or during the loading of f1
for the second “easy” exponentiation - see Fig. 1.) such that the faulty value f∗

1

equals

f∗
1 = f1 + e 
∈ μpd+1 (6)

We consider that the fault e occurs only on the g1 component1 (which is com-
patible with our fault model if 2l < p6), i.e

f∗
1 = (g1 + e) + h1 · w (7)

1 If on h1, the same argumentation can be done.
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(f∗
1 )

pd+1 can be computed by the attacker using the measured faulty result f∗
3

since r is public knowledge

(f∗
1 )

pd+1 = (f∗
3 )

r ∈ Fpd (8)

Using Lemma 1 and equations (5) and (7) we have

(f∗
1 )

pd+1 = (g1 + e)2 − v · h2
1

= g21 − v · h2
1 + 2 · e · g1 + e2

= 1 + 2 · e · g1 + e2

Finally, g1 can be written as:

g1 =
(f∗

1 )
pd+1 − 1− e2

2 · e (9)

Two possible values for h1 can hence be calculated using equation (5):

h+
1 =

√
g21 − 1

v
; h−

1 = −
√

g21 − 1

v
(10)

Verifying the Candidates. The two candidates f+
1 = g1 + h+

1 · w and f−
1 =

g1 + h−
1 · w can thus be verified by checking if (f+

1 )
pd+1

r = f3 or (f−
1 )

pd+1
r = f3.

If the value of e is unknown, the attacker must guess the injected fault. For each
guess, two candidates are computed and checked. A candidate is equal to the
correct f1 only when the correct e is guessed.

In our fault model, 0 < e < 2l thus 2l − 1 attempts have to be made to find
f1 with 100% certainty. At this stage one may wonder what is the chance that
the attacker finds a valid f1 candidate (and an error value) which fits all his
observations but is not equal to f1 (i.e. a false positive). The f1 candidate is
noted f1c and the corresponding error guessed is ec.

fpd+1
1c = 1 (11)

(f1c + ec)
pd+1 = (f∗

3 )
r (12)

But, the attacker observes f3 = f
pd+1

r
1 and f∗

3 = (f1 + e)
pd+1

r . The question is
what is the probability that f1c 
= f1 but that

f3 = f
pd+1

r
1c (13)

f∗
3 = (f1c + ec)

pd+1
r (14)
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Using equation (11), the probability that equation (14) is verified can be inferred
as being equal to 1/r for a random f1c in μpd+1. Indeed we already know that

f
pd+1

r
1c is in μr and 1/r is the probability that one random element in μpd+1 maps

to a fixed value f3 in μr. Similarly, from equation (12), we can deduce that the
probability for equation (13) to be verified is equal to 1/r for a random f1c in
F
∗
pk since (f∗

3 )
r = (f1c + ec)

pd+1 ∈ μpd−1. Thus f∗
3 ∈ μr·(pd−1) and (f∗

3 )
r has

r preimages in μr·(pd−1). As a consequence, the probability that we obtain the
correct preimage is 1/r.

We can combine these two probabilities and evaluate the probability of hav-
ing an incorrect candidate for f1 that matches the attacker’s observations. The
probability that a random candidate satisfying equations (11) and (12) also sat-
isfies equations (13) and (14), corresponding to the observations of the attacker,
is equal to 1/r2. In the case where k = 12, typically r ≈ 2256, the probability of
finding a valid candidate which is not equal to f1 is 1/2512.

Hence we have shown how a fault injected on f1 can be used to recover the
latter’s value, with a high probability, using the correct output f3 and the faulty
one f∗

3 of the FE.

4.2 Recovering f

Knowing the value of f1, we shall now see how to recover f .

Extracting a Candidate. The strategy is to use similar equations to the ones
used previously and to include the new information about f1 obtained by the
attacker. Proof of the lemma is in Appendix A.

Lemma 2. Let f = g + h · w, f−1 = g′ + h′ · w and f1 = g1 + h1 · w.
Then g1−1

v·h1
= h′

g′ = −h
g ⇔ f1 = fpd−1.

In the following, let K be the known value (known because we know g1 and h1

from f1 found previously) K = g1−1
v·h1

= −h
g .

As a consequence, the knowledge of f1 allows to find random preimages by
taking a random g ∈ Fpd and choosing h = −K · g.

To recover f , the attacker creates a new fault e2 ∈ Fpd during the inversion
in the first easy exponentiation (see Fig. 1.). Then

f1 = fpd−1 = f̄ · f−1 and f∗
1 = f̄ · (f−1 + e2)

Let Δf1 be the difference: Δf1 = f∗
1 − f1 = f̄ · e2. Since e2 ∈ Fpd , we can write

Δf1 = Δg1 +Δh1 · w with

Δg1 = e2 · g and Δh1 = −e2 · h
As f∗

1 is not in μpd+1 with a high probability equal to (1− 1

2pd−1
), the attacker

can compute (f∗
1 )

pd+1 = (f∗
3 )

r ∈ Fpd .
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In this case

(f∗
1 )

pd+1 = (g1 +Δg1)
2 − v · (h1 +Δh1)

2

= (g1 + e2 · g)2 − v · (h1 − e2 · h)2

which gives the quadratic equation (using the relation h = −g ·K)

g2 · e22 · (1− v ·K2) + g · 2 · e2 · (g1 − v ·K · h1) + 1− (f∗
1 )

pd+1 = 0 (15)

We then solve this equation to obtain two solutions for g:

g+ =
v ·K · h1 − g1 +

√
(g1 − v ·K · h1)

2 − (1− v ·K2) · (1− (f∗
1 )

pd+1
)

e2 · (1− v ∗K2)

g− =
v ·K · h1 − g1 −

√
(g1 − v ·K · h1)

2 − (1− v ·K2) · (1− (f∗
1 )

pd+1
)

e2 · (1− v ∗K2)

h can be computed with g and K: h = −g · K. Thus we have two potential
candidates for f .

Verifying the Candidates. Even if e2 is unknown, this procedure gives two
candidates by guessing e2. Now, whether this guess is correct or wrong, every
potential candidate fc has the following property: fpd−1

c = f1 and therefore

f
pk−1

r
c = f3. The attacker has found several valid preimages of f3 and has to

decide which is the correct one.
By checking whether (f̄c ·(f−1

c +e2))
pd+1

r is equal to the faulty result f∗
3 allows

to eliminate one of the two candidates for this guess of e2. We finally obtain one
candidate for each e2 guessed and this candidate satisfies all observations made
by the attacker. Finally we obtain a set of candidates of the same size as the set
of possible error values.

The attacker has then to generate a third fault e3, different from e2, at the
same location as the last one and intersect the two sets of candidates to find the
correct one. Unfortunately, this intersection does not necessarily contain only
one element. We can evaluate the size of this intersection set.

First we can neglect the probability that a random element of F∗
pk maps to

f1 (the probability is 1/(pd +1)). Equation (15) outputs one f candidate fc1 by
guessing e2 = 1. Then the set of candidates for this error is {fc1, fc2, . . . , fc(2l−1)}
with fci corresponding to the guess e2 = i. If we replace the product g · e2 by
g
i · (i · e2) in equation (15), we can see that the previous set can be rewritten as
{fc1, fc1

2 , . . . , fc1
2l−1

}.
Similarly with e3, equation (15) outputs one f candidate f ′

c1 by guessing
e3 = 1 and then f ′

ci = f ′
c1/i. The second set of candidates is {f ′

c1,
f ′
c1

2 , . . . ,
f ′
c1

2l−1}.
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Let e2t and e3t be the two faults truly injected. Since the correct value f is in
the two sets of candidates, first equal to fc1/e2t then equal to f ′

c1/e3t, we have

f =
f ′
c1

e3t
=

fc1
e2t

(16)

Writing a = e2t
e3t

, equation (16) can be transformed into f ′
c1 = fc1/a. The sec-

ond set of candidates can be rewritten as { fc1
a , fc12a , . . . ,

fc1
(2l−1)a

}. Thus a same
candidate is in the two sets each time the equation

a · i = j (17)

is satisfied with i, j ∈ [[1, 2l − 1]]. In our fault model, we can take e2t and
e3t as elements in N and the number of solutions to this equation becomes⌊
(2l − 1) · gcd(e2t,e3t)

max(e2t,e3t)

⌋
as shown in Appendix B.

Finally the size of the intersection, which also contains the correct candidate,
is

#intersection =

⌊
(2l − 1) · gcd(e2t, e3t)

max(e2t, e3t)

⌋
(18)

and the number of wrong candidates is

#intersection− 1 =

⌊
(2l − 1) · gcd(e2t, e3t)

max(e2t, e3t)

⌋
− 1 (19)

The intersection of the sets of candidates obtained with e2 and with e3 contains
at least one element if we get the two guesses correct once.

The computational cost of f recovery is low since the attacker has to use
the procedure to recover a candidate through equation (15) only once per fault
injected with guesses e2 = 1 and e3 = 1.

Then he stores the corresponding candidates and computes the ratio a =
fc1/f

′
c1. Finally he solves equation (17), trying all i ∈ [[1, 2l − 1]] and checking

that a · i ∈ [[1, 2l − 1]], which provides e2t and e3t (only solutions if there is no
wrong candidate). With e2t, he computes f = fc1/e2t. The memory used in the
recovery of f is just one element of Fpk per fault injected.

We cannot avoid the occurrence of wrong candidates. In order to conclude
our attack we must have a unique candidate which satisfies all our observations.

If more than one candidate is contained in the intersection of the two sets
then other faults must be generated at the same location until one candidate
only matches all the observations of the attacker.

4.3 Summary of Our Fault Attack on the Tate Pairing’s FE

At least four executions of the same pairing on the computing device are required
to perform our attack.

1. The computation is executed normally. The attacker stores f3 the correct
result of the exponentiation.
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2. A first fault is created on f1 according to Section 4.1. The attacker memorizes
f∗
3 , a first faulted result. f1 is found using equations (9) and (5).

3. A second fault e2 is created during the inversion in the first easy exponen-
tiation according to Section 4.2. The attacker stores f∗

3 , the faulted result
and extracts a candidate fc1 for f guessing e2 = 1 with equation (15) and
Lemma 2.

4. Similarly to the previous step, a third fault e3 
= e2 is created. With the
faulted result f∗

3 , the attacker extracts a new candidate f ′
c1 for f guessing

e3 = 1. The value a = fc1/f
′
c1 is then computed. A pair (i, j) solution to the

equation a ∗ i = j with i, j ∈ [[1, 2l − 1]] allows him to compute f = fc1/j.

If several pairs (i, j) are found, more faults may be needed to ensure the unique-
ness of the candidate for f . The important feature of this scheme is that only
one fault per execution is needed to recover f , no double or triple faults.

4.4 Practical Feasibility of Our Attack

This attack scheme has been experimentally checked with Sagemath [20] in Fp12

with parameters identical to [9]. Our fault model was the injection of a random
e with 0 < e < 2l.

For a random f ∈ F
∗
pk , we simulated 1000 fault injections for “f1 recovery”

with a random fault e ∈ [[1, 210 − 1]] and we made 210 − 1 guesses on the fault
value per injection. As a result, f1 was correctly found for every fault injection
and no wrong candidate was observed.

Similarly, we simulated “f recovery” knowing f1. Two different errors in [[1, 2l−
1]] were injected for 100 fault injections, first for l = 7 and then for l = 10. The
number of wrong candidates reached, in average, 4.87 for l = 7 and 5.66 for
l = 10. These examples show that even when we “loosen” the constraints on the
possible errors (from 27 to 210) the number of wrong candidates, on average,
does not increase dramatically. But of course, the computational cost of the
attack increases with 2l. A detailed example of an implementation of the attack
is presented in Appendix C.

5 Countermeasures

So far in the literature, most countermeasures proposed against fault attacks on
pairings focus on protecting the Miller Loop for the good reason that it has been
the main target of the fault attacks [5, 21, 22]. With our attack on the FE, we
hope that other efficient countermeasures shall be proposed by the community
in addition to the suggestions made below.

Inversion of Unitary Elements: In some implementations, an efficient coun-
termeasure is already present. Indeed since normally f1 ∈ μpd+1, this element
is called “unitary” and has the following property: f−1

1 = f̄1. As a consequence,
all inversions besides the first one (necessary to compute f1) are replaced by a
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simple conjugation which has a far lower computational cost. As a consequence
a fault injected on f1 cannot be exploited since the resulting output is not equal
to the expected value (f∗

1 )
pd+1

r . The conclusion is that implementations should
ensure that the inversions of unitary elements are always replaced with conjuga-
tions. Additionally, the use of a Boolean variable stating if the element is unitary
and deciding which code (inversion or conjugation) is used for the inversion of
an element should be avoided since this could then become a target in order to
allow our fault injection. As an example, this latter Boolean variable is imple-
mented in the classic Miracl library [23].

Compressed Representation: A generalization of the previous countermea-
sure is to use a compressed representation of the elements during the exponenti-
ation as shown in [24, 25]. The effect is similar to the previous countermeasure.
A fault attack on an implementation with the compressed representation would
have to be specifically designed in order to work.

Checking Subgroup Membership: It is possible to deter this attack by check-
ing the subgroup membership of intermediate values. As an example, f1 should
be in μpd+1. To check this membership (checking fpd+1

1 = 1), one has to com-
pute fpd+1

1 at the price of a conjugation and a multiplication in F
∗
pk . Similarly

it should be possible to check that f
Φk(p)
2 = 1 and f r

3 = 1.

6 Conclusion and Perspectives

The possibility to invert the final exponentiation with a fault attack has been
shown. Even if we don’t have any strong restriction on the errors injected, recov-
ering the input of the FE with a high probability is feasible. Our experimenta-
tions with Sagemath [20] allowed us to propose bounds on the number of wrong
candidates obtained with this attack.

To settle the feasibility of inverting the FE with a fault attack, we must now
demonstrate that our attack scheme can be implemented in practice.

The next step from an attacker’s perspective would be to perform a full attack
on pairing which would definitely settle pairings vulnerability to fault attacks.
One possibility to achieve this is to consider double faults - two faults during one
execution of the pairing: one to invert the Miller Loop according to [5] or [7] and
another in the FE to access the faulted value of the Miller Loop. The possibility
of this attack scheme is yet to be proven but does not seem out of reach [26].
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A Proof of Lemma 2

f1 = fpd−1 ⇒ g1−1
v·h1

= h′
g′ = −h

g

Proof.

f1 = f̄ ·f−1 = (f −2 ·h ·w) ·f−1 = f ·f−1−2 ·h ·w ·f−1 = 1−2 ·h ·w ·(g′+h′ ·w)
Thus

g1 = 1− 2 · h · h′ · w2 = 1− 2 · h · h′ · v
h1 = −2 · h · g′

Finally
g1 − 1

v · h1
=

−2 · h · h′ · v
−2 · h · v · g′ =

h′

g′

Moreover
g′ =

g

g2 − v · h2

h′ =
−h

g2 − v · h2

So
g1 − 1

v · h1
= −h

g
�	

g1−1
v·h1

= h′
g′ = −h

g ⇒ f1 = fpd−1

http://www.sagemath.org
https://certivox.com/solutions/miracl-crypto-sdk/
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Proof. We write

f̄ · f−1 = (g − h · w) · (g′ + h′ · w) (20)
= g · g′ − v · h · h′ + (g · h′ + h · g′) · w (21)

with

g′ =
g

g2 − v · h2
=

1

g (1− v ·K2)
and h′ =

−h

g2 − v · h2
=

1

h (v − 1/K2)
(22)

As a consequence:

g · g′ − v · h · h′ =
1 + v ·K2

1− v ·K2
=

v · h2
1 + g21 − 2 · g1

v · h2
1 − g21 + 2 · g1 − 1

=
2 · g1 · (g1 − 1)

2 · (g1 − 1)
= g1

And

g · h′ + h · g′ = K

1− v ·K2
− 1

K · (v − 1/K)
=

2 ·K
1− v ·K2

=
2 · (g1 − 1) · h1

v · h2
1 − g21 + 2 · g1 − 1

=
2 · (g1 − 1) · h1

2 · (g1 − 1)
= h1

�	

B Size of the Intersection Set for the Candidates in f
Recovery

Let e2t and e3t be in our fault model: 0 < e2t, e3t < 2l − 1 and p >> 2l. Let
a = e2t

e3t
∈ Fp, we want to find the number of pairs (i, j) solutions to equation (17):

a · i = j with i, j ∈ [[1, 2l − 1]].
We can write

e2t
e3t

=
j

i

This fraction can be rewritten as u
v , reducing it to lowest terms:

u =
e2t

gcd(e2t, e3t)

v =
e3t

gcd(e2t, e3t)

All pairs solutions to equation (17) can be written as (k · u, k · v), k ∈ N
+. The

conditions i, j ∈ [[1, 2l − 1]] are equivalent to k ≤ 2l−1
u and k ≤ 2l−1

v which
combined give k ≤ 2l−1

max(u,v) .
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By the definition of u and v, we have: max(u, v) = max(e2t,e3t)
gcd(e2t,e3t)

.
Finally, we have a solution for each integer k in the range

[[1, (2l − 1) · gcd(e2t, e3t)

max(e2t, e3t)
]]

The upper bound gives us the number of possible solutions to our equation (17).

C Attack Example

In this section, we provide the numerical values for an attack that was success-
fully simulated based on the methodology proposed in this paper. We used the
same pairing parameters as in [9]. Our simulated fault injection creates error
values in [[1, 24 − 1]] (l = 4).

Let the secret value be

f = ( 15E4F6523E7C5649E05B9FB24E3C212274A268F39E5034331ED5071CFBDF3A05·v5

+ 1672D105A344B97BFBB195D6AAAAB2E1912272E000432FD0866F789DB489165B·v4

+ 21D0D8EFDE1A9DDC227267B13D7EE703699B5E3293BCE339DF0CB70AC4D0D099·v3

+ 13A0D208C4134E0012166F8E7813A8D1FFB69CEBE0AD873426C181A95A5087C8·v2

+ 037A116F6C8A9CC97A775F672E751B3999D246DA5B056D417DE18891ED95EAE6·v
+ 05A9CC966050A3477C3510DAD85A6A31253203446D8907E228602D0E2AC27060)·w
+ 06C9FA931438FD7122C35411049BE0D95CB2A1955AA51A653547560D8D01CD72·v5

+ 174072170F5121FE3658BE0CC4449CC7BBDA2298E5A3077885424861A9FD3DC2·v4

+ 13DED9A829FAD5568B466E7DFC42ECA52D8F6BCE25C635CE8A6E79155C56347F·v3

+ 20ECF9E9ED0A46FE32A4B5481C5D54A15C879B88B4A81C0AAE1254EEEAA4F226·v2

+ 147B7E0F2849E818D758194E503F0F691CC76207BF27065FDB18030E469F6533·v
+ 164C79AEC143A16DC5276597A89DFBF4D893B5D09D4A325301ACB45863A52AC0

C.1 Step 1: Normal Execution

First the attacker runs a normal execution, giving

f3 = ( 14FF0ED863C56B2CF6790E35919CF0A8D33877A282EDC87C8574597257487813·v5

+ 1A59AE711E38EEA5D384214718CE68315AD9996B2CBFD7ACEDA5F1958E9C7CF8·v4

+ 04147EDBE3C5643AC6028BC597E9665D7B07C948DF7BB6CC3E367ACA223B29E4·v3

+ 1F23F4F893B297ED3EB321AF4AD3F17AA580B4D5D80CE54AA42E826738271689·v2

+ 100B00759CADCB5221D4B7CCC5C68B7980A53CD947452FB94D1B969F40624AC9·v
+ 0CBEE77D4398468DC63D8A13175B2E4FCCA9E4790A471B3F86D835C25E0D1FC0)·w
+ 18C04751B8DFEA8F9CD7C813F15B5B37FB09738B04389D9CFBCBA4EABA9BB10E·v5

+ 21B35F3CA37C92BD73F88FA0249D736CF909208C12C32B5C22E42586E11B518E·v4

+ 09D3C014FE5AAA1F7F74AB0CC51793BFDA2551AC15B5040AF19586B22B6BA360·v3

+ 11A4EAB896B1C6D0F4D701D48C5C6F0D9D1148DE267A4A90A9258E0D112FDA23·v2

+ 13D2014FCE1AE043A88A108C969F9D658246962132901BAE75872DE5736ECF7D·v
+ 17C81BD9014A90D8964B3B864ABB83DF1225F513E49DD432D9459F22D4EBF7ED

C.2 Step 2: f1 Recovery

A first fault injection is performed according to Subsection 4.1. The observed
faulty value is
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f∗
3 = ( 14878AB9DA8D626472C222486B6BEAFCBB9D552E42C4A95F57CBE5DE0EB58A2B·v5

+ 1869B2D29B7B9DF5F28DC92904EE751125E223938C87C836102954D49D1BDDB1·v4

+ 073C8E8ECA143AC26ACC2B4738414098EEADA9DD198390C6FD49567873224085·v3

+ 1F3FE27B71407EF9DBD68E5AD408F94941A11DE9B27B20DF3894E7711E2C4572·v2

+ 018CA3F1F35B050D25191996940189F351942EE6DD0D10F0FE63B7DBC8C2417A·v
+ 0DE59F30BBE780A0D738E3B707C0A48F8C600E63857D31DDB78D0852476DB845)·w
+ 18AD1088312DE86A6668FDA07CEEEE01137D06FF6F5402DD820B471FF42E2CDC·v5

+ 173D1A8CC7143964B7C6B3B17A5B14ABE25F22FBB74F779749FBE0DAE044D29B·v4

+ 023DACB18FBCAD8484A8FA8F35DDD57B124F48DF3B5676995821880FD6DD6485·v3

+ 08774A2A16C9CC6CA30D8BE07717B1234D075307097FC34F47DF6CB32CFF8B22·v2

+ 12AA1927DF8D8AD9DDD59A883D5918F685AAFB9ED2B196A16F0F3F8B8312F9AE·v
+ 0414DD150D1CA399A3AF8E5FD647423F9AD4A05624D74966835FE27ECAC42C9D

For each error guess e1 ∈ [[1, 24 − 1]], g1 is computed using equation (9) and h+
1

and h−
1 with equation (5). Then f+

1 = g1 + h+
1 · w and f−

1 = g1 + h−
1 · w are

constructed and checked against the observed f3 = f
pd+1

r
1 and f∗

3 = (f∗
1 )

pd+1
r . A

f1 is found which satisfies these criteria for error e1 = 7:

f1 = ( 1E6BC8B6919346B74846AF6D4303D1A79D229A442435EA28865BD478D31AB1A2·v5

+ 221EA2429ED6254894C99D32D5BBCA06F5018B9C64F9A62051C4919EA815B097·v4

+ 200C76138D0DACBE0C6BC874CB0548D84A5C367C7665A7EFA14309F52B955502·v3

+ 1446D8D4F4D3892C42B72799B17AF78E4570319545EA24A19B96B8E937E14E0F·v2

+ 02FFF74B0C285EF8CC82010A422E0ADD0300E6C67C362E220ABA9CECEC20E051·v
+ 0F1CEA1EF6E3CA90D3FEBB5B2954A90A3F96F036138766370C1CD161D83F1768)·w
+ 1DA86D419A0A0D17F20F0A96A2022160A35EAC0AC80B962A009908805CC5C8FE·v5

+ 02A30BA4FBE1821C659E5235C3375C55A5F715F521F6E32549A7314CE3C774AC·v4

+ 14297ECE1671FD16C3E57EB95F8DB69A53EEADBA16859E5EBC2184707BFBA1C2·v3

+ 17E7030B5FD4558F002D1F387B4180B9B989C813AF6B75FA5C4468297BF251A1·v2

+ 0270B45A029B9326291540F57B19A4093D197AA17BE66939EC67569EDE0168A3·v
+ 12065E0EFCFF4E4E25C594BCDC23F5D076FDC8003CB3F27618B523A6163D097A

C.3 Step 3: f Recovery

Two faults are injected according to Subsection 4.2. The observed faulty values
are

f∗
3 = ( 16F28C152154059E9DE6E9195258B8FC99E356EB1D9AEF299AC8FA826B33BBC6·v5

+ 08351B505C701E6E76CFFFB9877BE4B514A8138C1E0823860CF48777C359F5C5·v4

+ 20F5B35DD04E60CC85CB1AB1707C4045C19774512303F07BA4C259E545D2F9A1·v3

+ 22F43AF3353F93A45AF088D788D6EC32D0ADCF32CDB43B3C50378097B4665D46·v2

+ 2100931B1712BE28ECA6F35DF909828627C41AFB2352EA38E5D690526464B54A·v
+ 0AF16AD93F1FB968CC2C59FB0019982395985A10E8DEFAA7C11C18DF841ABB9E)·w
+ 223879E599390FD4DC285C9BA14BC1BAE64227C196B22CA2CF02DFA95AFC8E9B·v5

+ 0C78B0BB70A87D8BBCC72E84BA382FD4EC60AA11869D37BDAC82B639F9869B7B·v4

+ 1AE1AEA4A7B18D01340EB6017B5F7D0FD6134B07D764E819B64F529F07D6F980·v3

+ 1954E832F272C86EACA35DECC0A3F5CDA59E9D7A5F9C9EC7EF0FF51BC15DC125·v2

+ 151EF27A88585E1A229E81877B895642580D0623ED0BA264EF9DEA90E7FAECB1·v
+ 0A0BC9599DF18B044DE6522EE18E036DD76E875AC4E2C9007885C9F009F1E716

and
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f
′∗
3 = ( 23571DDFC0C6B8509B84F49A969AB7F7BA38A5D071BFA339AF5078303D7F92BB·v5

+ 152F585FE7767B3A185C3BFE5BFC9A69C9AB0089BE6CAD2BA4A2382AC1E5CCE6·v4

+ 09C432E52552CF26B4484ED21B37B5C73E389299673EF9490ED5C63DCD1936DC·v3

+ 1DD38AA3691BD907A78DDFC4FDB1270E1D192E97DF6ECFD49BC63EC156BBBFB8·v2

+ 1B7D2A41682147DCA380B21CFBED319F3AEEF3C01F1E986E22E50E9167858663·v
+ 003B7A90812730447FDF12CE78075BE98399209D5AFB602FDD5A5E84DBA98979)·w
+ 1377A70C46F2A429C0FD87941DEA17C3CCB29E84187D0952DCD9684651EC62B3·v5

+ 0F686B68CF92E4677259166B8D4C7F67E0DBAF18358826CFDF8462CF3E5BB747·v4

+ 015CCDF3776A4F4FDA9E02DF07C9F90E3D765C12DB3D25D49BC2CFF9401B105A·v3

+ 0FEB0A0E9229D1111C8BF20AE3A2638EB6FA4313020D2B341102CC6CC8F91560·v2

+ 0F72717DF131B16A8C69EC07A2EAE763DA688086C528EE7A9C09443B1BC0E4E0·v
+ 181A35AE9376E2DF2AA9BE6EA9807D24CEC537E834C9E80DDF5E810C84CD3AF6

By guessing that e2 = e3 = 1 and checking against observed f∗
3 and f

′∗
3 , two

candidates for f are saved using equation (15) and Lemma 2:

fc1 = ( 13D7C1CD2019B9E15AEA184A1DA41EEEA8AA745018D1D5C49CFB6004DAD90A28·v5

+ 18D4721BAB2536A450EFBF915D873EA6A92ACD9F8A5CAE4D41695D8B58D1C92E·v4

+ 14CFC849E4E70ECAC254D076F24E0D12CE6455C671A3FCFCE36F6F60EB575559·v3

+ 22E3763C6FA97F0768F181A01D1CE65C0962874A8619C0CF62CC0EF42CD4C604·v2

+ 1F4A9CEAD0DF83154E325AA0A21DF50668647DAD3330D74D6CEDCD215A454216·v
+ 0F873644C594ADC50F677D191448B978D1BFDE27C1D146F1ECE1357F80D5F35F)·w
+ 19A8D42718BFD93BEA67DA00A295E562C5456F0017CDED8D6101A679F5103901·v5

+ 200F1BB87794E33860D0297843F077BE299FFB1F9ABB433536D2AB6EF9E72BCD·v4

+ 01A0BFD2678C31535D2B5D733BE1468728FF8DFEDBF7E43B656061C03F07D872·v3

+ 0CCCF1146B5400FD54198AC4C81FE7A058B27DCD99E8FC542AA1FC663FCC834E·v2

+ 072287715853DA2809CA5EC62FBE7F6A91F73605405F39573B563B807B9A8EC6·v
+ 177B600DB91B5E2466140D5A4B14D0542C2628150F9BC4E39690771B80CE80BB

and

f ′
c1 = ( 2163C67F7EDE7355C9049330564D000DB10A4A9C9281A192FCA6B8E7DEF9D024·v5

+ 0261A11607E07D28553E29BAB2DC8BC518085ABF8A197E7CBAF9E4EDA448B2D3·v4

+ 166FEA5EA40D80ACEE58835E3BB42850E1CB36D3F5E719C482E31856268684C1·v3

+ 0F42A433AB96310756DB1211A5093D8A09ABEA5EA56C399B3C0A8D4AD2843E3C·v2

+ 1BD08B7B6454E64BD3BAFB3973A8D9CCCE9236D2D82B6A0BEF0C448F6CAF5730·v
+ 09DD69AE65440A7D93326C3E3BEE4F47AC8DDAE354483F0FC4810871561382FF)·w
+ 12DED9940486DBCAC7A485EF9DFA04896892CD6ABD28D3282BBA506C680E6B8F·v5

+ 08CEA9A16843C13A2A776B6B7FABDAF66DC5D886B5183BBCB190630D4FE9EE0B·v4

+ 1132E12EDAD26BBB205B098DC6835C2378726170CE31AE6E597248AAE2B1A3F4·v3

+ 0F50F22F1B8AC9BD6FEAF01532A79540792D2184FD40E04AFB10077755279129·v2

+ 16180466CD4B01CD80E8601066647242F232133D993832F8DEBE987234FB2994·v
+ 012EE65EF7D7BCB6A0ECA7C2A276D45F539272447251929094E3C2C31D2955FB

The ratio a = fc1
f ′
c1

is computed:
a = 1F02DBA40998EDC684A75745760861F94D61F758150000014EB0540000000002

And one solution is found which satisfies equation (17): 8 · a = 9.
Finally we find that f = fc1/9 = f ′

c1/8 and it is the correct answer!
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