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Abstract. Cloud storage, and more specifically the encryption of file
contents to protect them in the cloud, can interfere with access to these
files by partially trusted third-party service providers and customers.
To support such access for pattern-matching applications (e.g., malware
scanning), we present a protocol that enables a client authorized by the
data owner to evaluate a deterministic finite automaton (DFA) on a
file stored at a server (the cloud), even though the file is encrypted by
the data owner for protection from the server. Our protocol contributes
over previous work by enabling the client to detect any misbehavior of
the server; in particular, the client can verify that the result of its DFA
evaluation is based on the file stored there by the data owner, and in
this sense the file and protocol result are authenticated to the client.
Our protocol also protects the privacy of the file and the DFA from the
server, and the privacy of the file (except the result of evaluating the
DFA on it) from the client. A special case of our protocol solves private
DFA evaluation on a private and authenticated file in the traditional
two-party model, in which the file contents are known to the server. Our
protocol provably achieves these properties for an arbitrarily malicious
server and an honest-but-curious client, in the random oracle model.

1 Introduction

Outsourcing file storage to clouds is a dominant trend today that appears likely
to continue for the foreseeable future. However, cloud storage comes with in-
creased risks of data manipulation, since the data is stored outside the adminis-
trative control of the data owner. Numerous techniques have thus been developed
to enable third parties who search on the data to confirm that the cloud service
faithfully serves requests using the data owner’s intended data (e.g., [26,25,21]).

Such techniques, however, typically do not account for the privacy of searches
and the data itself. To protect cloud-resident files from disclosure, it is not un-
common for the data owner to encrypt her files before storing them. Special-
ized cryptographic protocols are then needed to permit third parties to perform
searches on that data. For example, a data owner may wish to enable an an-
tivirus vendor to perform malware scanning on her cloud-resident files without
decrypting the files in the cloud. Similarly, owners of a genome database may
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wish to enable qualified researchers to perform searches on the data (e.g., [1,2]),
again without decrypting the files in the cloud. These applications are espe-
cially challenging if the third parties should be given only limited access to the
data (versus disclosing all of it to them) and because the searches themselves
may be sensitive: malware signatures can be used to develop malware to evade
them [18,32] and searches on genome datasets may reflect proprietary research
directions.

Protocols for a third-party client to perform private searches on encrypted
data in the cloud, while revealing nothing to the cloud server and nothing but the
search result to the client, do exist for some types of searches (e.g., [27,11,30]).
To our knowledge, however, none also enforces that the cloud server employs
the data that the data owner stored at the cloud server. Indeed, the traditional
notion that a protocol is secure against arbitrarily malicious adversaries provides
no guarantees on what input a malicious party may use in the protocol.

In this paper, we provide a protocol that enables a client to evaluate a de-
terministic finite automaton (DFA) on a file encrypted at the cloud server so
that the authenticity of the file input by the server and the integrity of the
computation result are both enforced. At the same time, the protocol provably
protects the file contents (except for the result of the computation) from an
honest-but-curious client (and heuristically from even a malicious client) and
provably protects both the file contents and DFA from an arbitrarily malicious
server. To our knowledge, our protocol is the first example of performing secure
DFA computation on both encrypted and authenticated data.

Traditionally, one needs to know the file content and the signature to verify the
authenticity of a file, and so the main technical difficulty in our case is to ensure
computation on authenticated (signed) data without disclosing the plaintext
to either party. The most common approach one might first consider to solve
this problem is to leverage zero-knowledge proof techniques. By asking the data
owner to publish commitments of the file character signatures, the server might
then prove that his input used in the protocol is consistent with the published
commitments. In the ways we see to instantiate this intuition, however, it would
require much higher computation and communication costs than our protocol.
Instead, we introduce a new technique to enforce correct server behavior and
the authenticity of the input on which it is allowed to operate, without relying
on zero-knowledge proofs at all. At a high level, the protocol takes advantage of
the verifiability of the computation result to check the correctness of the server
behavior. The protocol is designed so that that legitimate outputs are encoded
in a small space only known to the client, and any malicious behavior by the
server will result in the final output lying outside this space, which is then easily
detected by the client. We prove this property (in the random oracle model) and
the privacy of both the file and the DFA against an arbitrarily malicious server.
We also prove the privacy of the file (except for the result of the DFA evaluation)
against an honest-but-curious client.

The rest of this paper is structured as follows. We discuss related work in Sec-
tion 2 and review our goals in Section 3. We detail our protocol and summarize
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its security proof in Section 4. We discuss the impact of file updates in Section 5.
We discuss extensions in Section 6 and conclude in Section 7.

2 Related Work

The topic on which we focus in this paper falls into the general paradigm of two-
party secure computation [31,15]. The specific problem of private DFA evaluation
was first studied by Troncoso-Pastoriza et al. [29] who presented a protocol for
honest-but-curious adversaries in which one party can evaluate its private DFA
on a string held by another party, without either party leaking any information
about its input beyond what is implied by the outcome of the evaluation. Since
then, the problem has been extensively studied. Frikken [13] presented a proto-
col that improved on the round complexity and computational costs. Gennaro et
al. [14] proposed a protocol that is secure against malicious adversaries. Mohassel
et al. [23] presented a protocol that significantly improves on the computational
costs of both participants. Blanton and Aliasgari [4] proposed protocols that
outsource the computation to two computational servers by secret sharing the
DFA and data between them (with extension to multiple servers). The work by
Wei and Reiter [30] is the most relevant to ours. They introduced new proto-
cols in the cloud outsourcing scenario where a client can evaluate a DFA on
the encrypted data stored on a cloud server, once authorized to do so by the
data owner. However, the protocol does not guarantee the authenticity of the
data input by the cloud server. The related problem of secure pattern matching
has also attracted attention [16,17,19], though again without treatment of data
authenticity as we consider here.

Secure computation on authenticated input was previously considered in the
context of private set intersection. Several works [7,10,9,28] studied private inter-
section of certified sets, in which the set elements of each party must be certified
by a trusted third party for use in performing the intersection. However, none
considered the scenario where the data input to one party is only in ciphertext
form and must remain hidden to it. In addition, to our knowledge we are the first
to consider secure computation on authenticated data in the context of private
DFA evaluation.

One of our protocol extensions (Section 6) secret-shares the file decryption
key between the server and client in order to perform DFA evaluation on the
encrypted data. In this respect, the protocols of Choi et al. [8] are related. They
developed protocols based on a garbled circuit technique that enable two parties
to compute any functionality after a secret decryption key is shared between
them. This work, however, did not enforce authenticity of the protocol inputs.

3 Goals

A deterministic finite automaton M is a tuple 〈Q, Σ, δ, qinit〉 where Q is a set
of |Q| = n states ; Σ is a set (alphabet) of |Σ| = m symbols ; δ : Q × Σ → Q
is a transition function; and qinit is the initial state. (A DFA can also specify a
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set F ⊆ Q of accepting states; we ignore this here to save space, though our
protocols can easily be adapted to accommodate it, similar to the techniques
suggested in previous work [30].) Our goal is to enable a client holding a DFA
M to interact with a server holding a file ciphertext to evaluate M on the file
plaintext. More specifically, the client should output the final state to which the
file plaintext drives the DFA; i.e., if the plaintext file is a sequence 〈σk〉k∈[�]

where [�] denotes the set {0, 1, . . . , � − 1} and where each σk ∈ Σ, then the
client should output δ(. . . δ(δ(qinit, σ0), σ1), . . . , σ�−1). We also permit the client
to learn the file length � and the server to learn the number of states n in the
client’s DFA. (Indeed, because the DFA output leaks log n bits about the file to
the client, the server should know n to measure the leakage to the client and to
limit the number of DFA queries the client is allowed, accordingly.) However, the
client should learn nothing else about the file; the server should learn nothing
else about the client’s DFA and nothing about the file plaintext.

An additional goal of our protocols — and their main contribution over prior
work— is to ensure that the client detects if the server deviates from the protocol.
More specifically, we presume that a data owner stores the file ciphertext at the
server, together with accompanying authentication data. We require that the
client return the result of evaluating its DFA on the file stored by the data
owner or else that the client detect the misbehavior of the server. In this paper
we do not explicitly concern ourselves with misbehavior of the client, owing to
the use cases outlined in Section 1 that involve a partially trusted third-party
customer or service provider (e.g., antivirus vendor). That said, we believe our
protocol to be heuristically secure against an arbitrarily malicious client.

4 Private DFA Evaluation on Signed and Encrypted Data

In this section we present a protocol meeting the goals described in Section 3:
the client learns only the length of the file and the output of his DFA evaluation
on the file stored at the server; the server learns only the number of states in the
client’s DFA and the length of the file; and the client detects any misbehavior
by the server that would cause him to return an incorrect result. Again, we do
not consider misbehavior of the client here; the client is honest-but-curious only.
In this section we consider the file as static. The impact of file updates will be
discussed in Section 5.

4.1 Preliminaries

Let “←” denote assignment and “s
$← S” denote the assignment to s of a

randomly chosen element of set S. Let κ be a security parameter. Let ParamGen
be an algorithm that, on input 1κ, produces (p, G1, G2, g, e) ← ParamGen(1κ)
where p is a prime; G1 and G2 are multiplicative groups of order p; g is a
generator of G1; and e : G1×G1 → G2 is an efficiently computable bilinear map
such that e(Pu, Qv) = e(P,Q)uv for any P,Q ∈ G1 and any u, v ∈ Z

∗
p.
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BLS Signatures. Our protocol makes use of the Boneh-Lynn-Shacham (BLS)
signature scheme [6]. Suppose (p,G1, G2, g, e) ← ParamGen(1κ) and let H1 be
a hash function H1 : {0, 1}∗ → G1. The BLS scheme consists of a triple of
algorithms (BLSKeyGen,BLSSign,BLSVerify), defined as follows.

BLSKeyGen(p,G1, G2, g, e): Select x
$← Z

∗
p. Return private signing key 〈G1, x〉

and public verification key 〈p,G1, G2, g, e, h〉 where h← gx.
BLSSign〈G1,x〉(m): Return the signature H1(m)x.

BLSVerify〈p,G1,G2,g,e,h〉(m, s): Return true if e(H1(m), h) = e(s, g) and false oth-

erwise.

Paillier encryption. Our scheme is built using the additively homomorphic en-
cryption scheme due to Paillier [24]. This cryptosystem has a plaintext space
R where 〈R,+

R
, ·

R
〉 denotes a commutative ring. Specifically, this encryption

scheme includes algorithms PGen, PEnc, and PDec where: PGen is a randomized
algorithm that on input 1κ outputs a public-key/private-key pair (pek , pdk ) ←
PGen(1κ); PEnc is a randomized algorithm that on input public key pek and
plaintext m ∈ R (where R can be determined as a function of pek) produces a
ciphertext c ← PEncpek (m), where c ∈ Cpek and Cpek is the ciphertext space
determined by pek ; and PDec is a deterministic algorithm that on input a pri-
vate key pdk and ciphertext c ∈ Cpek produces a plaintext m ← PDecpdk (c)
where m ∈ R. In addition, E supports an operation +pek on ciphertexts such
that for any public-key/private-key pair (pek , pdk), PDecpdk(PEncpek(m1) +pek

PEncpek (m2)) = m1+R
m2. Using +pek , it is possible to implement ·pek for which

PDecpdk(m2 ·pek PEncpek(m1)) = m1 ·R m2.
In Paillier encryption, the ring R is ZN , the ciphertext space C〈N,g〉 is Z

∗
N2 ,

and the relevant algorithms are as follows.
PGen(1κ): Choose random κ/2-bit strong primes p1, p2; set N ← p1p2; choose
g ∈ Z

∗
N2 with order a multiple of N ; and return the public key 〈N, g〉 and private

key 〈N, g, λ(N)〉 where λ(N) is the Carmichael function of N .

PEnc〈N,g〉(m): Select r
$← Z

∗
N and return gmrN mod N2.

PDec〈N,g,λ(N)〉(c): Return m =
L(cλ(N) mod N2)

L(gλ(N) mod N2)
mod N , where L is a function

that takes input elements from the set {u < N2 | u ≡ 1 mod N} and returns
L(u) = u−1

N .
c1 +〈N,g〉 c2: Return c1c2 mod N2.

m ·〈N,g〉 c: Return cm mod N2.

We use pek

∑
to denote summation using +pek ; R

∑
to denote summation using +

R
;

and R

∏
to denote the product using ·

R
of a sequence.

4.2 Initial Construction without File Encryption

We denote the file stored at the server as consisting of characters σ0, . . ., σ�−1,
where each σk ∈ Σ. Prior to storing this file at the server, however, the data owner
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uses its private BLS signing key 〈G1, x〉 to produce sk ← BLSSign〈G1,x〉(σk||k) for
each k ∈ [�] — i.e., a per-file-character signature that incorporates the position
of the character in the file1 — and stores these signed characters at the server,
instead. (Here, “||” denotes concatenation.) Note that since sk = H1(σk||k)x,
anyone knowing the corresponding verification key 〈p,G1, G2, g, e, h〉 cannot only
verify sk but can also extract σk and k, by simply testing for each σ ∈ Σ and
k ∈ [�] whether e(H1(σ||k), h) = e(sk, g). As such, while in our initial protocol
description, the data owner stores s0, . . ., s�−1 at the server, this implicitly
conveys σ0, . . ., σ�−1, as well.

The basic structure of the protocol, which is borrowed from previous work [30],
involves the client encoding its DFA transition function δ as a bivariate polyno-
mial f(x, y) over R where x is the variable representing a DFA state and y is the
variable representing an input symbol. In our protocol, the client and server then
evaluate this polynomial together, using a single round of interaction per state
transition (i.e., per file character), in such a way that the client observes only
ciphertexts of states and file characters and the server observes only a randomly
blinded state. More specifically, in our protocol, if the current DFA state is q,

then the server observes only π(q) +
R
ϕ for ϕ

$← R chosen by the client and
where π : Q → R maps DFA states to distinct ring elements. The client, with
knowledge of π and ϕ, can calculate f(x, y) so that f(π(q) +

R
ϕ, σ) = π(δ(q, σ))

for each q ∈ Q and σ ∈ Σ. Then, starting with a ciphertext of π(q) for the
DFA state q resulting from processing file characters σ0, . . ., σk−1, the client can
interact with the server to obtain a ciphertext of f(π(q) +

R
ϕ, σk) [30].

The central innovation in our protocol is a technique by which the client, with-
out knowing sk, can compute an encoding of the file character σk that the server
must use in round k of the evaluation. If the server does not, it “throws off” the
evaluation in a way that the server cannot predict. As a result, if the server devi-
ates from the protocol, the end result of the evaluation will be an unpredictable
element of the ring R, which will not correspond to any state of the DFA with
overwhelming probability. To accomplish this, the client defines the encoding of
character σ ∈ Σ and position k ∈ [�] to be τ(σ, k, ψk) = H2(e(H1(σ||k)ψk , h)),
where H2 is a hash function H2 : G2 → R (modeled as a random oracle) and

where ψk
$← Z

∗
p is selected by the client in the round for the k-th char-

acter. If the client sends Ψk ← gψk to the server in the round for the k-th
character, then the server can compute τ(σk, k, ψk) for the file character σk as
τ(σk, k, ψk) = H2(e(sk, Ψk)). However, without ψk the server will be unable to
compute the encoding τ(σ, k, ψk) for any σ 	= σk.

The final difficulty to overcome lies in the fact that the client, by altering
the encoding of each character σ ∈ Σ per round k, must also recompute f(x, y)
to account for this new encoding. As such, the client recomputes f(x, y) to sat-
isfy f(π(q) +

R
ϕk, τ(σ, k, ψk)) = π(δ(q, σ)) per round k, for every q ∈ Q and

1 The file name or other identifier could be included along with the character position,
to detect the exchange of characters between files. Similarly, the length � can be
included to detect file truncation. These issues are discussed further in Section 5.
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σ ∈ Σ. In our algorithm, we encapsulate this calculation as 〈aij〉i∈[n],j∈[m] ←
ToPoly(Q,Σ, δ, π, k, ϕk, βk, ψk) where 〈aij〉i∈[n],j∈[m] are the coefficients forming

f, i.e., so that f(x, y) = R

∑n−1
i=0 R

∑m−1
j=0 aij ·R xi ·R yj. (The value βk will become

relevant in Section 4.3 and can be ignored for now.)
This protocol is shown in Figure 1. The protocol is written with the steps

performed by the client listed on the left (lines c101–c120), with those per-
formed by the server on the right (lines s101–s113), and with the messages ex-
changed between them in the middle (lines m101–m106). The client takes as
input the data owner’s public verification key 〈p,G1, G2, g, e, h〉, a public en-
cryption key ek ′, and its DFA 〈Q,Σ, δ, qinit〉. (For the moment, ignore the ad-
ditional input dk , which will be discussed in Section 4.3.) The server takes as
input 〈p,G1, G2, g, e, h〉, the DFA alphabet Σ, and the signed file characters s0,
. . ., s�−1, i.e., signed with the data owner’s private key 〈G1, x〉 corresponding
to 〈p,G1, G2, g, e, h〉. (Again, please ignore the bk values for now. These will be
discussed in Section 4.3.) Note that neither the client nor the server receives any
information about the private key dk ′, and so values encrypted under ek ′ (θ
in line c104, and ρ in line c109) are never decrypted or otherwise used in the
protocol. These values are included in the protocol only to simplify its proof and
need not be included in a real implementation of the protocol.

At the beginning of the protocol, the server generates the public/private key
pair (pek , pdk) (line s102) that defines the ring R for the protocol run. The
server conveys pek and the file length � to the client (m101). Upon receiving this
message, the client selects an injection π : Q→ R at random from the set of all
such injections, denoted Injs(Q → R) (c103). The client sends the number n of
states in his DFA in message m102. (To simplify our proofs, the client also sends
the chosen injection π encrypted under ek ′ to server, denoted by θ. We will not
discuss this further here.)

The heart of the protocol is the loop represented by lines c106–c117 for the
client and lines s104–s112 for the server. The client begins each iteration of this
loop with a ciphertext α of the current DFA state, which it blinds with the
blinding term ϕk (c107) using the additive homomorphic property of Paillier
encryption (c108). The client also selects ψk (c110) and creates Ψk (c111) as
described above, and sends the now-blinded ciphertext α and Ψk to the server
(m103). After decrypting the blinded state γ (s105) and using Ψk and sk to
create the encoding η = τ(σ, k, ψk) for the character σk being processed in this
loop iteration (s106), the server creates the encryption of γi ·

R
ηj for each i ∈ [n]

and j ∈ [m] (s107–s111). After the server sends these values back to the client
(m104), the client uses them together with the coefficients of f that it computed
as described above (c113) to assemble a ciphertext of the new DFA state (c116).

After this loop iterates � times, the client sends the state ciphertext to the
server (m105). The server decrypts the (random) state (s113) and returns it
(m106). The client checks to be sure that the result represents a valid state
(c118) and, if so, returns the corresponding state as the result (c120).
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client(〈p,G1, G2, g, e, h〉, server(〈p,G1, G2, g, e, h〉,
dk , ek ′, 〈Q,Σ, δ, qinit〉) Σ, 〈sk, bk〉k∈[�])

c101. n← |Q|,m← |Σ| s101. m← |Σ|
s102. (pek , pdk)← PGen(1κ)

m101.
pek ,��

c102. 〈N, g〉 ← pek , R← ZN s103. 〈N, g〉 ← pek , R← ZN

c103. π
$← Injs(Q→ R)

c104. θ ← Encek′(π)

m102.
n,θ �

c105. α← PEncpek (π(qinit))
c106. for k← 0 . . . �− 1 s104. for k ← 0 . . . �− 1

c107. ϕk
$← R

c108. α← α+pek PEncpek (ϕk)
c109. ρ← Encek ′(ϕk)

c110. ψk
$← Z

∗
p

c111. Ψk ← gψk

m103.
α,ρ,Ψk �

s105. γ ← PDecpdk (α)
s106. η ← H2(e(sk, Ψk))
s107. for i ∈ [n]
s108. for j ∈ [m]
s109. μij ← PEncpek (γ

i ·
R
ηj)

s110. endfor
s111. endfor

m104.
〈μij 〉i∈[n],j∈[m],bk�

c112. βk ← Decdk(bk)
c113. 〈aij〉i∈[n],j∈[m]

← ToPoly(Q,Σ, δ, π, k, ϕk, βk, ψk)
c114. if ∃i, j : aij �= 0 ∧ gcd(aij , N) > 1
c115. then abort

c116. α← pek

n−1∑

i=0

pek

m−1∑

j=0

aij ·pek μij
c117. endfor s112. endfor

m105.
α �

s113. γ∗ ← PDecpdk (α)

m106.
γ∗

�
c118. if γ∗ �∈ {π(q)}q∈Q
c119. then abort
c120. else return π−1(γ∗)

Fig. 1. Protocol Π , described in Section 4
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4.3 Adding File Encryption

As presented so far, our protocol guarantees the integrity of the DFA evaluation
against a malicious server. However, the confidentiality of the file content is not
protected from the server because the signatures of the file characters are known
to the server. With cloud outsourcing becoming increasingly popular, there is
need to enable a data owner to outsource her file to the cloud while protecting
its privacy, as well, against a potentially untrusted cloud provider. So, in this
section, we refine our protocol so that it provides the same guarantees while also
protecting the confidentiality of the file content from the server.

As we described our protocol so far, the server holds the BLS signature sk =
H1(σk||k)x, which enables him to learn σk by testing for each σ ∈ Σ whether
e(H1(σ||k), h) = e(sk, g). So, to hide σk from the server, it is necessary to change
the signature sk to prevent the server from confirming a guess at the value of σk.

To do so, in our full protocol the data owner randomizes the signature by

raising it to a random power, i.e., sk ← H1(σ||k)x·βk where βk
$← Z

∗
p. sk

then does not leak information about σk to the server because it is randomly
distributed in G1. However, this randomization also introduces new difficulties
for the server and client to perform the DFA evaluation, since both of them need
to be able to compute the same encoding for each σk despite sk being randomized
in this way.

To facilitate this evaluation, the data owner encrypts βk under a public key
ek of an encryption scheme whose plaintext space includes Z

∗
p and provides its

ciphertext, denoted bk, along with sk to the server; see the input arguments
to server in Figure 1. Of course, the server should not be able to decrypt bk,
since this would again enable him to reconstruct σk. As such, the data owner
provides the corresponding private decryption key dk only to the client; see the
input arguments to the client. Analogous to previous protocols [30], conveying dk
can serve as a step by which the data owner authorizes a client to perform DFA
queries on its file stored at the server. (In Section 6, we summarize an alternative
approach that does not disclose dk or 〈βk〉k∈[�] to the client.)

Given this setup, the full protocol Π thus executes the following additional
steps. First, the client defines the encoding of character σ ∈ Σ and position k ∈ [�]
to be τ(σ, k, βk , ψk) = H2(e(H1(σ||k)βkψk , h)), where again H2 is a hash function

H2 : G2 → R (modeled as a random oracle) and where ψk
$← Z

∗
p is selected by

the client in the round for character k. Note that the client needs to know βk to
compute τ(σ, k, βk, ψk), and recall that the client needs to know τ(σ, k, βk , ψk) for
each σ ∈ Σ in order to compute f(x, y) to satisfy f(π(q)+

R
ϕk, τ(σ, k, βk, ψk)) =

π(δ(q, σ)) for every q ∈ Q and σ ∈ Σ. Therefore, it is necessary for the client to
include βk as an argument to the ToPoly call (i.e., ToPoly(Q,Σ, δ, π, k, ϕk, βk, ψk)
in c113) and to delay that call until after receiving bk in m104 and using it to
obtain βk (c112).
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4.4 Communication and Storage

Protocol Π has a communication complexity of O(�mnκ) bits, dominated by
message m104 consisting of mn elements of Z∗

N2 sent by the server in each of
� rounds, where pek = 〈N, g〉 and N is κ bits in length. The storage cost on
the server is dominated by the size of 〈sk, bk〉k∈[�]. Now letting κ denote the
maximum of the security parameters for the BLS signatures (i.e., the sk values)
and the ciphertexts (i.e., the bk values), and assuming that the bit length of
each value type is linear in its security parameter (which is the case for BLS
signatures and, say, Paillier ciphertexts), the storage cost is O(κ�) bits.

4.5 Security

For brevity, we defer a full proof of security for Π to a forthcoming technical
report. In this section we simply highlight the central insights and lemmas needed
to complete that proof.

Privacy against server adversaries. The insight needed for arguing file and DFA
privacy against server adversaries is to notice that, aside from 〈bk〉k∈[�] provided
as input to the server and the encrypted function θ sent by the client (m102),
the values observed by the server are independent of the file contents or the
DFA state. That is, each sk = H1(σ||k)x·βk is distributed independently of σ

because βk
$← Z

∗
p, and the values γ ← PDecpdk (α) that the server recovers in

line s105 are independent of the current DFA state and the file contents, owing
to its blinding by the client (c107–c108). Similarly, γ∗ is independent of the
DFA and file contents because it is simply a random ring element determined
by the random selection of π in line c103, and no other output from π is ever
disclosed to the server. Also note that ρ and Ψk sent to the server (m103) are
independent of the file characters or DFA states. Consequently, any information
leakage about the file or DFA to the server must originate in a leakage either
from the ciphertexts 〈bk〉k∈[�] or from the ciphertext θ, for which the server holds
neither decryption key. Consequently, it is possible to reduce the DFA and file
privacy against server adversaries to the IND-CPA security [3] of encryption
under ek or ek ′, respectively.

Privacy against honest-but-curious client adversaries. The final state γ∗ of the
DFA evaluation is revealed to the client in line m106, but aside from this value,
the only other values sent to the client are a Paillier public key pek (m101),
ciphertexts 〈μij〉i∈[n],j∈[m] encrypted under that public key, and the ciphertext
bk. The plaintext βk of bk is independent of the file content, and so its disclosure
to the client (c112) does not reveal additional information about the file. Con-
sequently, any leakage about the file (beyond the final state γ∗ to which the file
pushed the DFA) must originate from the ciphertexts 〈μij〉i∈[n],j∈[m] and so can
be used to attack the IND-CPA security [3] of the Paillier encryption scheme.

This reasoning pertains equally well to malicious client-compromising adver-
saries and so we believe our protocol is heuristically secure against malicious
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client adversaries, as well. However, the simulation for the client adversary uses
the plaintexts of the values θ (m102) and ρ (m103) sent by the client, which are
correct only if the client is honest-but-curious. We could force the correctness
of these values against an arbitrarily malicious client through the addition of
zero-knowledge proofs, but we do not pursue that here.

Detection of server misbehavior. There are essentially two avenues by which
a server might attempt to misbehave while escaping detection. The first is to
create τ(σ, k, βk, ψk) = H2(e(H1(σ||k)βkψk , h)) for some σ 	= σk, and to use
τ(σ, k, βk, ψk) as η in the protocol. The second is to cause the client to execute a
state transition into an erroneous state in Q without computing τ(σ, k, βk , ψk)
for some σ 	= σk. We first show that the former implies the ability to break the
bilinear computational Diffie-Hellman assumption [6]:

Assumption 1. For any probabilistic polynomial-time adversary A,

P

(

v = e(g, g)z1z2z3

∣
∣
∣
∣
∣

(p,G1, G2, g, e)← ParamGen(1κ);

z1, z2, z3
$← Z

∗
p; v ← A(p,G1, G2, g, e, g

z1, gz2 , gz3)

)

is negligible as a function of κ.2

Lemma 1. Let H1 and H2 be random oracles. Under Assumption 1, there is
no probabilistic polynomial time server-compromising adversary S that computes
τ(σ, k, βk, ψk) for some k ∈ [�] and σ 	= σk with non-negligible probability, after
interacting with the client in protocol Π.

Proof. Suppose such a server adversary S exists. We build an adversary A that
takes in a challenge (p,G1, G2, g, e, g

z1, gz2 , gz3) as input, interacts with S, and
outputs e(g, g)z1z2z3 with non-negligible probability, violating Assumption 1. A
is defined as follows, where Z1 = gz1, Z2 = gz2 and Z3 = gz3 :

– Setup: A generates a public/private key pair (ek , dk) for an encryption
scheme, a file length � > 0, an alphabet Σ such that |Σ| > 1, and a se-
quence of plaintext file characters 〈σk〉k∈[�], σk ∈ Σ. A sets H1(σk||k)← gu

where u
$← Z

∗
p and then computes the encrypted file sequence 〈sk, bk〉k∈[�]

such that sk ← Zuβk

1 for βk
$← Z

∗
p and bk ← Encek (βk). A invokes

S(〈p,G1, G2, g, e, Z1〉, Σ, 〈sk, bk〉k∈[�]). Note that the file ciphertext 〈sk, bk〉k∈[�]

is well formed because e(sk, g) = e(Zuβk

1 , g) = e(gz1uβk , g) = e(g, g)z1uβk =
e(gu, gz1)βk = e(H1(σk||k), Z1)

βk , as in the real protocol. Finally, A chooses

k∗ $← [�] and σ∗ $← Σ \ {σk∗}.
– Simulation for S: After receiving pek and � from S (m101), A chooses
n > 0 arbitrarily and computes θ exactly as in the real protocol, using an
encryption key ek ′ of its own choosing. A sends n and θ to S (m102).

2 A function μ is negligible as a function of κ if for every positive polynomial p, there
is some κ0 such that μ(κ) < 1/p(κ) for all κ > κ0.
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In round k ∈ [�], A computes α to be the ciphertext of random element of
R. If k 	= k∗, then A generates the random challenge Ψk exactly as specified
in c110–c111. If k = k∗, then A sets Ψk ← Z3. In either case, A then sends
α and Ψk to S (m103).

After � such rounds, A computes α to be the ciphertext of a random
element of R, and sends it to S (m105).

– Hash queries to H1: For any query that was previously posed to H1, A
returns the value returned to that previous query, and for new queries, A
generates a return value as follows. If the query is σ∗||k∗, then A returns Z2.

For all other queries, A picks u
$← Z

∗
p and returns gu.

– Hash queries to H2: For any query that was previously posed to H2, A
returns the value returned to that previous query. For new queries, A picks

r
$← ZN and returns r to S.

The view that A simulates for S is indistinguishable from a real protocol
execution. If S computes

τ(σ∗, k∗, βk∗ , ψk) = H2(e(H1(σ
∗||k∗)βk∗ψk , Z1))

= H2(e(Z
βk∗z3
2 , Z1))

= H2(e(g, g)
z1z2z3βk∗ )

then A can output e(g, g)z1z2z3 with non-negligible probability by selecting a

random query χ that S made of H2 and returning χβ
−1
k∗ mod p. The probability

that A outputs e(g, g)z1z2z3 is then 1
(m−1)·�·#(H2)

times the probability that S
produces τ(σ, k, βk, ψk) for some k ∈ [�] and σ 	= σk, where #(H2) is the number
of queries that S poses to H2. If the latter probability is non-negligible, then the
former is, too. 
�

We now consider the second possibility, i.e., that the server causes the client
to execute a state transition into an erroneous state in Q without computing
τ(σ, k, βk, ψk) for some σ 	= σk. To prove that this happens with negligible
probability, we leverage properties specific to the Paillier cryptosystem.

Lemma 2. Let H2 be a random oracle, and let S be a server-compromising ad-
versary. If in no round k does S compute τ(σ, k, βk, ψk) for some σ 	= σk, then
the client outputs an incorrect state q ∈ Q with probability at most negligibly
more than n−1

N .

Proof. In round k, the client transitions to the next DFA state by encoding the
DFA transition function using a polynomial f satisfying f(π(q) +

R
ϕk, τ(σ, k,

βk, ψk)) = π(δ(q, σ)) for every q ∈ Q and σ ∈ Σ; let f(x, y) = R

∑n−1
i=0 R

∑m−1
j=0 aij ·R

xi·
R
yj . To cause a state transition to an erroneous state q′ ∈ Q, a server adversary

must therefore produce ciphertexts 〈μij〉i∈[n],j∈[m] with corresponding plaintexts
〈νij〉i∈[n],j∈[m] so that

π(q′) = R

n−1∑

i=0

R

m−1∑

j=0

aij ·R νij (1)
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without having any information about τ(σ, k, βk , ψk) for any σ 	= σk (since H2 is
a random oracle). Note that the distribution of 〈aij〉i∈[n],j∈[m] is not independent
of the DFA transition function δ and the injection π. That is, once π is fixed,
only certain values for 〈aij〉i∈[n],j∈[m] are possible.

We argue the result under the conservative assumption that δ and π uniquely
determine 〈aij〉i∈[n],j∈[m] (which in general they do not). Even then, for any
i′ ∈ [n] and j′ ∈ [m] such that ai′j′ 	= 0 and gcd(ai′j′ , N) = 1 (lines c114–c115
abort the protocol if gcd(aij , N) > 1 for some aij 	= 0), and for any choices
of 〈νij〉i∈[n],j∈[m] excepting νi′j′ , there is exactly one value for νi′j′ in ZN that
satisfies (1). Moreover, prior to the last message sent by the client (m105), the
server receives no information about π. So, the probability S succeeds in selecting
〈νij〉i∈[n],j∈[m] to satisfy (1) is 1

N , and since there are n − 1 possible erroneous
states q′, the probability S succeeds in causing an erroneous state transition to
any q′ ∈ Q is at most n−1

N .
Finally, while the server learns π(q) for one q ∈ Q in the last client-to-server

message (m105) — if it behaved thus far — it does so only for the correct state
q at this point. Again, it can then guess π(q′) for an incorrect q′ ∈ Q to return
as γ∗ with probability only n−1

N . 
�

5 On File Updates

Protocol Π is presented for a static file, and so in this section we consider the
impact of file updates. As we discuss below, these impacts are nontrivial, and so
our protocol is arguably most useful for static files.

To enable protocol Π , the data owner signs the file position k along with
σk when producing sk to detect the server reordering file characters, i.e., sk ←
H1(σ||k)x·βk where βk

$← Z
∗
p. Such a representation would require any character

insertion or deletion at position k to further require updating the signature sk′

for all k′ > k. If the total file length � is also included as an input to H1 to detect
file truncation, then insertions and deletions may require updating the signatures
sk′ for all k′ < k, as well. This latter cost can be eliminated by not including
� as an input to H1 but rather to have the data owner sign � and the server to
forward this signature along with � to the client in message m101. The former
cost can be mitigated somewhat by breaking each file into blocks (essentially
smaller files) so that insertions and deletions require only the affected blocks to
be rewritten. In this case, the block index within the file should presumably also
be included as an input to H1 to detect block reorderings by the server.

Even with these modifications, there remain other complexities in handling
file updates, in that a server could simply use a stale version of the file when
performing protocol Π with the client, ignoring any earlier updates to the file
by the data owner. Detecting a server that selectively suppresses updates seems
to require additional interaction between the data owner and the client and has
been the subject of much study (for file stores subject to reads and updates
only) under the banner of fork consistency [22]. We leave as future work the
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integration of our DFA evaluation techniques with these ideas, i.e., so that DFA
evaluations performed against stale files are efficiently detected when the client
subsequently interacts with the data owner.

6 Extensions

The protocol Π can be extended in various ways that may be of interest and
that we will discuss here. The first “extension” is simply the removal of the
file encryption step described in Section 4.3, which is suitable for the standard
two-party model where the server’s input need not be kept secret from the server
himself. This simplification eliminates the dk , βk and bk values from the protocol,
implicitly setting βk = 1.

A more interesting variant of the protocol addresses the concern that the
protocol as stated in Figure 1 discloses the decryption key dk and the values
〈βk〉k∈[�] to the client, either of which can be used to decrypt the file from its
ciphertext 〈sk, bk〉k∈[�]. While this file ciphertext is not disclosed to the client
during the protocol, it seems unnecessarily permissive to disclose its decryption
key to every client that performs a DFA evaluation on the file: if the file ciphertext
were ever unintentionally disclosed, then any such client could decrypt the file
if it retained the key. In the rest of this section we discuss an extension to the
protocol in Figure 1 to avoid disclosing dk and the values 〈βk〉k∈[�] to the client.

In order to avoid disclosing dk to the client, one alternative is for the data
owner to provide shares of dk to both the client and the server, so as to enable a
two-party decryption of each bk. Then, rather than sending only bk to the client
in message m104, the server can also send its contribution to the decryption of
bk, enabling the client to complete the decryption of bk without learning dk itself.

Still, however, this alternative would disclose βk to the client, which would
enable it to determine σk if sk were ever disclosed. To avoid disclosing βk, one
strategy is for the server to first blind βk with another random value tk, i.e.,
to execute the protocol with βktk in place of just βk. Of course, this factor tk
would also then need to be reflected in k-th file character used in the protocol,
i.e., so the server would use stkk = H1(σk||k)xβktk in place of sk in the protocol.
Because the server does not have access to βk but rather has access only to its
ciphertext bk, it is necessary that the encryption scheme used to construct bk
enable the computation of a ciphertext b̂k from bk and tk such that Decdk (b̂k) =

βktk mod N ′ for some valueN ′ such that p | N ′. In this case, selecting tk
$← ZN ′

suffices to ensure that βktk mod N ′ is distributed independently of βk and so
hides βk from the client when it learns βktk mod N ′.

An encryption scheme meeting our requirements (supporting two-party de-
cryption and homomorphism on ciphertexts) is ElGamal encryption [12] in a
subgroup of Z∗

N ′ . However, note that setting N ′ = p is inefficient: the security
parameter κ and so the size of p required for security is an order of magnitude
less for BLS signing than it would be for ElGamal encryption in a subgroup of
Z
∗
p [20], and so setting N ′ = p would add considerable expense to the protocol.
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As such, a more efficient construction would be to choose N ′ = pp′ for another
prime p′. ElGamal encryption is believed to be secure with a composite modulus
even if its factorization is known [5].

7 Conclusion

We presented a protocol by which a data owner can outsource storage of a
file to an untrusted cloud server while still enabling partially trusted third-party
clients (e.g., customers and service providers) to evaluate DFAs on that data. Our
protocol is novel in provably enabling the client to detect the server’s misbehavior
— including the use of a file other than the data owner’s in the protocol — in
the random oracle model, while simultaneously protecting the privacy of the file
and of the DFA from an arbitrarily malicious server. Moreover, our protocol
provably protects the privacy of the file (except for the DFA evaluation result)
from an honest-but-curious client (and heuristically does so from an arbitrarily
malicious one). We accomplish these goals without the use of zero-knowledge
proofs, yielding a protocol that is more efficient than alternatives of which we
are aware. We believe that our protocol has applications to malware scanning or
genome analysis on encrypted, cloud-resident data, and we plan to explore these
applications in ongoing work.
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