
Measuring and Detecting Malware Downloads

in Live Network Traffic

Phani Vadrevu1, Babak Rahbarinia1, Roberto Perdisci1,2,
Kang Li1, and Manos Antonakakis3

1 Dept. of Computer Science, University of Georgia, Athens, GA, USA
2 School of Computer Science, Georgia Institute of Technology, Atlanta, GA, USA

3 Damballa, Inc.
{vadrevu,babak,perdisci,kangli}@cs.uga.edu, manos@damballa.com

Abstract. In this paper, we present AMICO, a novel system for mea-
suring and detecting malware downloads in live web traffic. AMICO
learns to distinguish between malware and benign file downloads from
the download behavior of the network users themselves. Given a labeled
dataset of past benign and malware file downloads, AMICO learns a
provenance classifier that can accurately detect future malware down-
loads based on information about where the downloads originated from.
The main intuition is that to avoid current countermeasures, malware
campaigns need to use an “agile” distribution infrastructure, e.g., fre-
quently changing the domains and/or IPs of the malware download
servers. We engineer a number of statistical features that aim to capture
these fundamental characteristics of malware distribution campaigns.

We have deployed AMICO at the edge of a large academic network
for almost nine months, where we continuously witness hundreds of new
malware downloads per week, including many zero-days. We show that
AMICO is able to accurately detect malware downloads with up to 90%
true positives at a false positives rate of 0.1% and can detect zero-day
malware downloads, thus providing an effective way to complement cur-
rent malware detection tools.

1 Introduction

Drive-by downloads and social engineering attacks have become one of the most
prevalent ways through which machines are compromised with malicious soft-
ware, or malware [10, 17, 19]. As a consequence, by simply browsing the Web,
users (or their browsers) may be either forced or lured to download and run mal-
ware samples, effectively relinquishing control of their machines to the attackers.

Users often rely on host-based anti-virus software (AVs) to protect themselves
from malware infections. However, it is known that AVs are only partially effec-
tive due to the sophisticated code polymorphism techniques adopted by malware
authors, and are not capable of protecting users from the latest threats [13]. To
compensate for this detection gap, modern browsers make use of URL blacklists,
such as Google Safe Browsing [8] (GSB). Essentially, GSB maintains a large list

J. Crampton, S. Jajodia, and K. Mayes (Eds.): ESORICS 2013, LNCS 8134, pp. 556–573, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Detecting Malware Downloads 557

of domain names and URLs that are known to be related to malware down-
loads. Therefore, every time the user visits a URL, before the browser fetches
the URL content, the GSB API is queried. If the URL is blacklisted, the browser
stops loading the URL’s content and the user will be notified, thus preventing
a possible malware download. Unfortunately, by nature, static blacklists such as
GSB also lag behind the threat, and suffer from a non-negligible number of false
negatives, as we show in Section 4.6.

In this paper, we present AMICO1, a novel system for measuring and detecting
malware downloads in live web traffic using download provenance information
(see Figure 1). Every time a network user downloads an executable file (we limit
ourselves to Windows executables, in the current implementation), AMICO per-
forms an on-the-fly reconstruction of the download from the network traffic, and
copies the file to a download history database. In addition, the database stores
information regarding who (i.e., what and how many machines) downloaded
the file and where the download came from. By leveraging the (partial) ground
truth provided by existing AV tools, we can label some of these downloads as
either malware or benign. Using these labeled download events collected during
an initial training period, AMICO learns the provenance characteristics of past
malware and benign executable files from the download behavior of the network
users themselves. This allows us to build a statistical classifier that, given a new
file download and its related provenance information, is able to accurately classify
whether the downloaded file is likely to be malicious or not. Unlike traditional
AV products, AMICO does not rely on searching for signs of malicious code in
the content of the downloaded files. Furthermore, the classification is performed
independently of whether third-party detection results may exist about the new
downloads, and can therefore be used to complement existing malware defense
techniques (see Section 3 for details).

The intuitions that motivate us to leverage provenance information for detect-
ing malware downloads are as follows. To avoid signature-based AV detection,
malware authors make heavy use of code polymorphism. Therefore, victim ma-
chines infected with the same malware may in fact have downloaded different
“variants” of the same malware file. Consequently, a given malware file may be
downloaded by only few machines. On the other hand, benign executable files
are fairly “stable”, and change only when a new release version is available.
Therefore, benign files may be downloaded, in time, by several different clients.

Furthermore, to avoid static blacklists, malware distribution sites need to
frequently relocate. For example, the attacker may register a large set of do-
main names that point to the distribution site. This allows for “advertising” the
malware downloads (e.g., though email spam, drive-by download exploit servers,
etc.) from frequently changing domains. Similarly, the IP address of the malware
distribution server may periodically change (although more slowly, compared to
the domain changes). On the other hand, benign executable files are typically
hosted at professionally-operated service providers with a fairly stable domain

1 Accurate Malware Identification via Classification of live network traffic
Observations.

558 P. Vadrevu et al.

name and network infrastructure. Even when the benign files are distributed via
content delivery networks (CDNs), both the domain name (especially the second-
level domain) and the IP address or BGP prefix of the distribution server may be
fairly stable, especially with respect to download requests originating from the
same local network. This causes malware downloads to have a download source
“footprint” that is noticeably different from benign downloads.

Once deployed, for each new executable file download event AMICO mea-
sures a number of provenance features specifically engineering to capture the
above observations, and is able to accurately classify the downloads into benign
or malicious. Notice also that while our current implementation of AMICO is
designed to monitor the traffic from the edge of a network, nothing prevents
us from deploying AMICO “within” a web proxy (e.g., using the ICAP proto-
col (RFC 3507)). This may be particularly useful in enterprise network envi-
ronments, which typically already deploy a web proxy, and often perform SSL
man-in-the-middle2 to enable fine-grained inspection of encrypted traffic. This
would allow AMICO to also observe possible file downloads over HTTPS, further
increasing its coverage.

In summary, we make the following contributions:

– We present AMICO, a novel system that aims to efficiently measure and de-
tect malware downloads in live network traffic. In contrast to static blacklists,
AMICO builds a provenance classifier that can dynamically and accurately
detect malware samples based on the download behavior of the network
users.

– We have deployed AMICO at the edge of a large academic network serving
tens of thousands of users for almost nine months. Our measurements show
that, in spite of the widespread use of malware URL blacklists in modern
browsers, we continuously witness hundreds of new malware downloads per
week, including many zero-days. Surprisingly, a non-negligible number of
malware downloads originate from even the most popular websites.

– We perform an extensive evaluation of AMICO’s malware detection capa-
bilities. The experimental results show that our provenance classifier is able
to accurately detect malware downloads with up to 90% true positives at a
false positives rate of 0.1%.

2 Related Work

Malware Detection: Oberheide et al. [13] highlight the limitations of signature-
based AV tools, and propose a new system called CloudAV that leverages a com-
bination of AV tools to improve malware detection coverage. Some researchers
have proposed to improve the detection of malware file content using statistical
machine learning techniques [9, 14, 15], rather than signature matching. Others
have focused on measuring specific types of malware distribution tactics, such as
rogue AV campaigns and pay-per-install (PPI) operations, or on measuring and

2 For example, http://crypto.stanford.edu/ssl-mitm/

http://crypto.stanford.edu/ssl-mitm/

Detecting Malware Downloads 559

detecting drive-by malware downloads [5–7,10,16,17,21]. Our work is different,
because we do not focus on the file content or drive-by downloads. Rather, AM-
ICO aims to detect malware downloads in general by inspecting network traffic
in real-time, and by leveraging download provenance information.

Domain Reputation: A number of systems that aim to detect malicious, low-
reputation domain names have been proposed [2, 3]. These systems are able to
detect malicious domains in general (e.g., spam domains, phishing sites, mal-
ware download sites, etc.), with particular emphasis on malware command-and-
control (C&C) domains. Our work is different, because we specifically aim to
detect malware file downloads. We correlate many different features that go
beyond domain names and the IP addresses they resolve to, such as the file
download features, URL features, and download request features. Furthermore,
in Section 4.3 we show that domain reputation systems by themselves are not
sufficient to accurately detect malware downloads.

Google CAMP : CAMP [18] detects malware domains based on a reputation score
computed over a number properties of the download source (e.g., the domain
name of the download server, the server IP, etc.). Although, AMICO and CAMP
share similar goals, our AMICO system differs in many important aspects from
CAMP. First of all, AMICO is browser agnostic, whereas CAMP is built within
Google Chrome, and can only monitor downloads from Chrome users3. More
importantly, CAMP is a closed-source service: all download information and
decision rules are “owned” by Google, and a network administrator has no easy
way to gain a complete picture about executable file downloads happening in
his/her network. On the other hand, AMICO was designed to exactly fulfill
this network admins’ need, by offering network-wide information about what
clients in the monitored traffic are downloading malware files and from where.
This enables the administrators to promptly respond to security incidents and
limit potential damage to other network assets. Furthermore, unlike in CAMP,
by deploying AMICO the information about what machines may be infected
will not leave the local network. This may be particularly important in highly
sensitive enterprise or government networks, where shipping information such as
visited URLs, downloaded files, and potential malware infections to a third-party
may pose risks to the reputation of the institutions that operates the network.

AMICO and CAMP also differ with respect to their technical approach. For
example, we measure several statistical features that are not used in CAMP, and
empoly a different, machine-learning-based approach.

3 System Description

In this section, we discuss the internals of our system. AMICO consists of three
main components, shown in Figure 1: (1) the download reconstruction module,
(2) the download history database, and (3) the provenance classifier. In the
following, we provide details on how these components work.

3 It appears that Microsoft may also have built a similar proprietary system specific
to IE9 [12], although we were not able to find its technical details.

560 P. Vadrevu et al.

malicious
website

malware
download

download
reconstruction

download
history

Learn Malware
Provenance Models

ground truth

Provenance
Classifier

malware
download

alerts

AMICO

Fig. 1. AMICO System Overview

3.1 Reconstruction of Executable Files

The download reconstruction module aims to inspect all web traffic, and extract
a copy of Microsoft Windows executable files that are being downloaded by the
network users. To this end, AMICO monitors all traffic at the edge of a network,
and performs efficient real-time TCP flow reconstruction using a custom-built
multi-threaded software component. As TCP flows are being reconstructed, a
traffic identification module keeps track of all HTTP flows, and discards the
remaining non-HTTP traffic. HTTP request-response pairs are reconstructed
on-the-fly, and the responses are inspected to determine whether they carry a
portable executable (PE) file [11]. Every time a PE file is detected, AMICO
copies the reconstructed response on persistent memory, along with the related
HTTP request and some additional information, such as source and destination
IPs and ports, and a timestamp. Sensitive information, such as source IP ad-
dresses, cookies, and certain HTTP headers, are either anonymized or removed
outright, in accordance with policies set forth by our Institutional Review Board.

3.2 Download History Database

The download history database stores all information gathered by the download
reconstruction module. In our current implementation, as soon as a downloaded
file is stored, AMICO computes the SHA1 hash of the file and automatically
queries VirusTotal (VT) [1], to determine whether the file had ever been scanned
before and was found to be malicious by any AV. This is done merely for con-
venience, to avoid acquiring and running multiple local AV scanners.

It is important to notice that the information obtained from the AVs is neces-
sary to build the ground truth used to label past download events and train the
provenance classifier, as discussed in Section 3.3. However, to this end AMICO
only submits the hash of downloaded files to VT, and does not need to submit
the URL and Referer of the download events, which may be considered as more
sensitive by the network administrator.

Detecting Malware Downloads 561

Notice also that if submitting the file hashes to a third-party services such
as VT still represents a concern, the network administrator can “conceal” the
origin of the file hashes by submitting them through a proxy located in a separate
network. In alternative, submitting the file hashes can be avoided completely by
scanning the downloaded files locally, using multiple different AV products. In
this latter configuration, AMICO would prevent any leakage of information from
the monitored network to third-parties.

3.3 Provenance Classifier

The provenance classifier aims to complement AV-based malware detection, by
identifying malicious file downloads based on how the file was downloaded, rather
than how the file “looks”. To this end, we extract a number of provenance
features that aim to capture the following facts: Has any of the network users ever
downloaded the same file in the past? Has any executable file been downloaded
from this domain name, server IP address, BGP prefix, etc.? If so, were the
previously downloaded files malicious (or at least suspicious)?

We first give a description of the detection features used by AMICO, and then
describe how the provenance classifier can be trained and deployed.

Provenance Features. Let e be an executable file download event occurred
at time te. Also, let Fe be the downloaded file, Hoste be the domain name
associated with the HTTP request for the file, URLe be the URL of the request
(i.e., the file path, file name, query string, etc.), and ServIPe be the IP address
of the server from which the file was downloaded. We translate each such event
into a feature vector #»v e as follows. We first consider only past download events,
namely events occurred at any time t < te, and measure the following main
groups of features (a complete list of features is given in Appendix):

– Past file downloads: We measure four different features as follows: the
number of times that the file Fe was downloaded in the past (we use the file’s
SHA1 to compute this more efficiently); the (estimated) number of distinct
clients that downloaded that file; how many days ago was Fe downloaded for
the first time; and how many times per day (in average) the client machines
in the monitored network downloaded the same file Fe.
Intuition : Many benign executable files are downloaded, in time, by several
different clients. Also, their hash is typically very “stable” and only changes
after a new version release. On the other hand, due to heavy polymorphism
applied by malware developers to evade signature-based AV detection, the
hash of a given malware will change frequently. Consequently, the same mal-
ware file will typically be downloaded by only few victims.

– Domain features: Let de be the domain name related to the download
request, and let 2LD(de) be its effective second-level domain4. Overall, we

4 For example, 2LD(www.bbc.co.uk) = bbc.co.uk. To compute the effective 2LDs we
use the Mozilla public suffix list (publicsuffix.org) augmented with a large list of
second-level domains related to dynamic-DNS providers.

publicsuffix.org

562 P. Vadrevu et al.

measure a set of twenty-four features, twelve of which are related to past
download events from de, and another twelve related to past downloads
from any domain under 2LD(de) (i.e., any domain that matches ∗.2LD(de)).
For example, we measure how many confirmed malware samples had been
previously downloaded from de; the number of confirmed benign files from
the same domain; the ratio between malware and benign downloads; the
total number of executable downloads from de (including the “unknown”
files that cannot be labeled either way), the average number of AV labels for
the confirmed malware samples (i.e., how many different AVs flagged the file
as malware), etc. We measure similar features for 2LD(de).
Intuition : To avoid static blacklists, attackers often register many differ-
ent domain names that can be used to “advertise” the malware downloads.
Each malware download domain is typically used for a short amount of time
before it is replaced with a new one, and may therefore serve only a small
number of malware downloads to a few victims. On the other hand, benign
executable files are typically hosted at professionally-run service providers,
and their server’s domain names (or their second-level domains) are usually
very stable, serving the same benign files to potentially many clients. Our
domain features attempt to capture such intuitions.

– Server IP features: In a way similar to the domain features, we measure
twenty-four different features, twelve of which are related to the ServIPe

and another twelve to its BGP prefix, BGP (ServIPe). For example, we
measure how many confirmed malware samples had been previously down-
loaded from ServIPe; the number of confirmed benign files from the same
IP; the ratio between malware and benign downloads; etc. We repeat the
same measurements for BGP (ServIPe).
Intuition : While malware samples are heavily polymorphic, the network
infrastructure used to distribute different variants of the same malware is
usually somewhat more stable. This is particularly true for the server IP
from which the downloads originated. In fact, while the attackers have a
good level of flexibility regarding registering new domain names to be used
for malware distribution, it is more difficult to change IP addresses with high
frequency. Therefore, we may see more than one malware download from the
same server IP, or the same BGP prefix.

– URL features: Given the URLe related to the download, we only consider
its path, file, and query string (i.e., we don’t consider the domain name as
being part of the URL). From URLe we measure six different features. For
example, we measure the number of total past file downloads that share
the same URL, the number of confirmed distinct files downloaded form that
URL, and the number of confirmed malware samples. Because URLs may
change frequently, especially if they contain name-value pairs in the query
string, we also measure similar features related to the URL structure. For
example, one way to derive the URL structure is to replace all alphanumeric
characters with wildcards, keeping special characters such as ‘/’, ‘.’, ‘?’, ‘=’,
‘&’, ‘:’, ‘;’,etc. We can then measure the total number of past downloads that
share the same URL structure, the number of confirmed malware, etc.

Detecting Malware Downloads 563

Intuition : The intuition here is that, unlike for benign downloads, malware
URLs may change frequently to avoid blacklists. Furthermore, we noticed
several malware distribution campaigns that advertise many different down-
load URLs with a similar “anomalous” structure, compared to URLs used
in benign file downloads. Therefore, if the current download’s URLe has the
same structure as URLs used in several past malware download, we should
increase the likelihood that URLe is also related to a malware download.
Our URL features attempt to capture these observations.

– Download request features: In addition to the features described above,
which look into the past, we measure five different features that look at the
present single download event e. We check whether the header of the HTTP
request that initiated the download contained a valid domain name in the
Host field, and whether a RefererURL was or not present. Also, we consider
the file extension (if any) extracted from the URLe as a feature, and we
measure the total length of the URL and the “depth” for the URL path
(e.g., /a/b/c/d.exe has a depth of four).
Intuition : These features are justified by the fact that we empirically ob-
served many cases in which malware download requests do not carry any
Referer string, or may report an IP address in the Host filed, instead of a
domain. Also, the URLs for malware downloads often “look” visually differ-
ent from the URLs related to benign downloads (e.g., the URL may have a
.gif or .jpg extension, although it serves an executable file). The download
request features attempt to capture these observations.

It is worth noting that none of the features (or groups of features) described
above are sufficient by themselves to accurately distinguish between malware-
related and benign file downloads. However, as we show in Section 4, each group
provides a meaningful contribution. Furthermore, in combination they yield high
classification accuracy. In Section 4, we also show that the overall accuracy does
not heavily depend on one single group of features. In turn, this makes AMICO
more robust to evasion, because an attacker would need to evade different types
of features at the same time, as discussed more in details in Section 5. In addition,
evading some groups of features such as the server IP and domain features,
may require the attacker to make heavy changes to her malware distribution
infrastructure, thus causing the attacker to incur a significant cost.

Training and Deploying the Classifier. To build the provenance classi-
fier, so that AMICO can automatically distinguish between benign and malware
downloads, we take a supervised learning approach. That is, we first collect a
set of labeled executable file download events, and use this initial training set to
learn the malware provenance models, as shown in Figure 1. The process used
to label the download events is described in Section 4.2.

The training phase proceeds in two high-level steps. We first monitor the net-
work traffic for a period of time Tf (one month, in our experiments), and record
a “bootstrap” set of download events. Essentially, the information collected dur-
ing Tf allows us to measure our detection features over new download events
(i.e., events that occur after Tf). After this initial Tf period, we are ready to

564 P. Vadrevu et al.

collect new downloads and compute the feature vectors necessary for training
the provenance classifier. To this end, we collect new download events for an
additional period of time Ttrain (two months, in our experiments). For each new
download event e at time te, we compute the related features using information
about all downloads observed until t < te. We label the download events gath-
ered during Ttrain for which ground truth is available (see Section 3.2), and use
their feature vectors to train the provenance classifier.

Once the classifier is trained, any new executable file downloaded after (Tf +
Ttrain) can be translated into a feature vector and classified by AMICO into
either malware or benign using the provenance classifier. Specifically, for each
new download event e, the classifier will output a malware score, s(e). If the
score s(e) is greater than a given threshold, AMICO labels the downloaded file
as malware, and raises an alert (e.g., notifies the network administrator). The
detection threshold can be chosen during training to produce the desired trade-
off between true and false positives. In Section 4 we show that AMICO can
achieve high true positives even at very low false positive rates.

It is important to notice that for each download event e observed at time te,
we extract its features by looking back at past downloads and their related past
ground truth. Namely, we only consider information about downloads observed
at any time t < te. To classify the new event e, we rely solely on the output of
the provenance classifier, and do not use any information from external sources
about e itself. Specifically, we do not consider any information that may be
obtained from VirusTotal or GSB about e. In Section 4.6, we show that AMICO
can in fact complement popular AV- or blacklist-based malware defense tools,
because it can detect many malware downloads missed by third-party systems.

4 Evaluation

4.1 Implementation and Deployment

We implemented AMICO using different languages. We custom-built the down-
load reconstruction module in C, to achieve high efficiency. Preliminary perfor-
mance experiments show that one single instance of the reconstruction module
can sustain over 300Mbps of traffic on commodity hardware. However, a machine
with a multi-core CPU can run multiple instances independently on different
network interfaces. For example, in our experiments, we run two instances of
the reconstruction module that receive traffic from two different traffic mirror-
ing sources on the same machine. We are currently monitoring over 600Mbps
of traffic (during peak time) from the campus-wide WiFi network of our entire
academic institution. The datasets and experiments we discuss below are derived
from approximately nine months of traffic, from July 2012 to March 2013.

The components of AMICO used to store the download events, extract the
detection features, and collect the ground truth, are written in Python. To build
the provenance classifier we use the Random Forest algorithm [4] implemented
in Weka [20], because it can be trained very efficiently and performs compet-
itively compared to more complex algorithms. Our prototype implementation

Detecting Malware Downloads 565

of AMICO is available under open-source license at http://www.cs.uga.edu/
~perdisci/amico/.

4.2 Experimental Setup

Measuring the Detection Features. To measure the detection features used
by AMICO, we follow the definitions given in Section 3.3. It is worth remember-
ing that some features measure things such as the number of malware, benign,
and total samples downloaded in the past from a given domain name or server
IP address, for example. To label past download events we proceed as follows.
During deployment, for each file download captured by AMICO, we compute its
SHA1 hash, and immediately submit the hash to VirusTotal (VT). If VT returns
“unknown” as an answer, i.e., nobody has ever submitted a file with that hash
before, we mark the downloaded file as unknown to VT. It is worth remembering
here that, as we discussed in Section 3.2, if submitting the file hashes to a third-
party system such as VT was a concern, we could simply scan the downloaded
files locally using multiple different AVs. In our current prototype, we chose to
rely on VT mainly because it made our system deployment easier.

Every file analyzed by VT is scanned with more than 40 different AV products.
However, we noticed that some of the AV scanners produced a non-negligible
number of false positives (e.g., marking some well known benign executable files
as malware). We noticed this was especially true for less well-known AV products.
Therefore, we decided to consider a “trusted” subset of nine AV products5 that
are very well known, and cover a large AV market share. Given this set of trusted
AVs, we use the following labeling rules on VT’s results:

Labeling Rules
1) if the SHA1 of the file was not present in VT, label the file as unknown
to VT, otherwise
2) label the file as malware if two or more “trusted” AVs flagged the file
as malware;
3) label the file as benign if none of the AVs (either trusted or non-
trusted) flagged the file as malware;
4) label the file as suspicious in all other cases.

Notice that when measuring the features from a new download event e ob-
served at time te, we only use the labels obtained from VT’s output over past
download events, i.e., at any time t < te. In other words, we do not use any
third-party information (from AVs or blacklists) related to e itself.

Establishing the Ground Truth. To evaluate the results of our deployment
of AMICO, we need to collect clean, reliable ground truth that contains as little
noise as possible. To achieve this goal, we proceed as follows. If a download was
labeled as unknown to VT, we submit the file ourselves to VT (we only submit
samples that pass a number of privacy-preservation criteria). For each sample

5
Avast, AVG, McAfee, F-Secure, Kaspersky, Sophos, Microsoft, TrendMicro, and Symantec.

http://www.cs.uga.edu/~perdisci/amico/
http://www.cs.uga.edu/~perdisci/amico/

566 P. Vadrevu et al.

that was either already present in VT or submitted by us, after one month time
we send a “re-scan” request to VT, so that the same file is scanned again by
all AVs. The intuition is that it may take some time for AV companies to build
signatures for new malware samples [13]. Therefore, even though a malware may
be missed by the AVs at the time of submission, after one month it is likely that
the AV companies may have developed the necessary detection signatures (we
did observe several of such AV label changes during our study).

It is important to notice that the one-month VT re-scan procedure described
earlier is used only for the purpose of collecting the ground truth “externally” to
AMICO, to enable a more reliable evaluation of our system’s accuracy. The re-
scan information is not used for the purpose of measuring the statistical features
used by the provenance classifier.

Cross-Validation Dataset (CVD). To collect the dataset of labeled down-
loads for cross-validation (see Section 4.4), we proceeded as follows. We first
collected one month (Tf) of “bootstrap” download events, to enable the mea-
surement of the detection features for future downloads. We then collected new
download events and computed the related feature vectors for the remaining
eight months. To label these feature vectors, we used the ground truth obtained
as explained above. Overall, we obtained 55,396 benign, and 4,928 malware fea-
ture vectors (the suspicious samples are excluded from the cross-validation).

Training Dataset (TRD). Besides cross-validation tests, we also performed
an evaluation of a real-world deployment of AMICO (see Section 4.5). To this
end, we followed the guidelines discussed in Section 3.3. Like for CVD, we first
collected one month (Tf) of initial download events. Then, we further collected
new download events and the related feature vectors for the following two months
(Ttrain), and we used these two-month data as a training dataset for the prove-
nance classifier. To label the feature vectors in the training dataset, we used the
ground truth gathered as explained earlier. Overall, the training data contained
16,074 benign, and 1,273 malware feature vectors.

Test Dataset (TSD). The test dataset consists of all download events collected
after the first three months (Tf + Ttrain) necessary to gather the “bootstrap”
download events and the training data. Essentially, this dataset consists of the
last six months of download observations. Overall, the test dataset contained
39,322 benign, and 3,655 malware feature vectors.

4.3 Live Traffic Measurements

In this section we report a number of measurements on the traffic observed
during the last six months of our deployment of AMICO. Notice that here we
discuss findings related only to the download reconstruction module and down-
load history database. We defer the evaluation of the provenance classifier (and
the entire AMICO system) to Sections 4.4 and 4.5.

Detecting Malware Downloads 567

1000 5000 10000 50000 100000 1000000
Number of top Alexa entries considered

10
2

10
3

10
4

10
5

N
u
m

b
e
r

o
f

P
E
 d

o
w

n
lo

a
d
s

Alexa Stats

Malware

Benign

(a)

0.0 0.2 0.4 0.6 0.8 1.0

FP

0.0

0.2

0.4

0.6

0.8

1.0

T
P

0.023, 0.268

0.036, 0.318

0.100, 0.323

(b)

Fig. 2. Downloads from top Alexa domains (a); Detection results using Notos (b)

During deployment, our sensors observed web traffic from several thousands
distinct source IP addresses per day within our network. Table 1 reports a num-
ber of statistics about the reconstructed download events. To label the downloads
we applied the “clean” ground truth labeling rules discussed in Section 4.2. Over-
all, we observed an average of 24 confirmed malware downloads per day, 67 daily
suspicious downloads, and 253 daily benign downloads.

Table 1. Overall live network download statistics for executable files

Malware Suspicious Benign
Total Daily

Avg.
Total Daily

Avg.
Total Daily

Avg
Download events 5,326 24 15,665 67 59,988 253
Distinct files 1,893 12 2,879 38 5,849 112
Distinct domains 849 10 1,009 27 1,338 43
Distinct server IPs 1,009 6 2,186 41 2,776 59

Figure 2(a) reports the number of confirmed malware and benign downloads
that we observed from the top 1,000, 5,000, 10,000, 100,000, and 1M most pop-
ular domains6, according to Alexa (alexa.com). Surprisingly, we found that
about 18% of all confirmed malware downloads originated from the top 10,000
domains, and we also observed 518 malware downloads originating from the top
1,000 domains. After investigating, we noticed that these malware samples were
downloaded from websites related to software distribution, file sharing, and cloud
services (e.g. softonic.com, hotfile.com, amazonaws.com, cloudfront.net,
etc.). Furthermore, we found that 40% of the domains from which benign down-
loads originated were “unpopular” sites outside of the top 1M rank. These two
facts make it difficult to implement a purely whitelist-based approach to pre-
venting malware downloads, because such an approach would likely cause a non-
negligible number of false positives and false negatives.

The above results may also have an impact on domain reputation systems.
Therefore, we performed experiments to verify if dynamic domain reputation

6 The list of domains we consider reports second-level domains.

alexa.com

568 P. Vadrevu et al.

0.000 0.002 0.004 0.006 0.008 0.010
FP

0.0

0.2

0.4

0.6

0.8

1.0

T
P

AUC=0.998, PAUC=0.939
TP | FP

0.899 - 0.001
0.940 - 0.003
0.957 - 0.005
0.968 - 0.007
0.978 - 0.010

All_Features

No_Domain

No_URL

No_Past_File

No_Download_Request

No_IP

(a) leaving one feature group out (b) one feature group only

Fig. 3. 10-fold cross-validation results (FPs in [0,1%])

systems, in particular Notos [2], would be sufficient to block malware downloads.
To this end, we fed all (domain name, server IP) pairs related to the malware
downloads observed by AMICO. We then queried Notos to obtain a reputation
score for each such pair. By varying a detection threshold over Notos’ scores, we
obtained the ROC curve in Figure 2(b) (notice that the FP rate is in [0,1]). As we
can see, Notos has a relatively low detection rate for malware download domains.
The reason why the ROC in Figure 2(b) is flat, is because many samples were
“rejected” by Notos and assigned a score of zero, because Notos did not have
enough information to compute a reliable score. We believe this is due to the
fact that the reputation system is “biased” towards accurately detecting malware
command-and-control (C&C) domains, rather than malware download servers.
It is also worth noting that the version of Notos we used was trained on domain
reputation information from a different network environment, and this may be
another cause for the relatively low detection rate.

From the above discussion we can extrapolate two important observations: (1)
using only domain name information to detect malware downloads may not be
sufficient; and (2) training on the traffic specific to the deployment environment
may yield better detection results. This further motivates the approach taken by
AMICO, which learns many different types of features related to the download
behavior of the users in the monitored live network.

4.4 Cross-Validation

To evaluate AMICO’s malware detection accuracy, we perform 10-fold cross-
validation tests using the entire CVD data (see Section 4.2). Figure 3(a) shows
the ROC curve we obtained by using all features, as well as the ROC curves
obtained by removing one of the feature groups described in Section 3.3 at a
time. Note that we only plot the partial ROC for false positive rates ranging from
0 to 1%, to highlight the classifier performance at low false positives. The small
table embedded in Figure 3(a) provides the trade-off between the true positive

Detecting Malware Downloads 569

(TP) rate and false positive (FP) rate for some selected operation points on
the “all features” ROC. It also reports the normalized area under the ROC and
partial ROC curves (AUC and PAUC). As we can see, we can achieve a TP rate
close to 98% at 1% FP rate. Furthermore, when we tune the detection threshold
to achieve a FP rate of 0.1%, the classifier still yields an TP rate close to 90%,
using all features. In addition, from Figure 3(a) we can see that the provenance
classifier is not overly reliant on a single group of features.

Figure 3(b) shows the results obtained using only one group of features at
the time. As we can see, each feature group gives a meaningful contribution to
accurately detecting malware downloads, with the server IP and domain features
providing the largest single contributions.

4.5 Train-Test Experiments

In this section, we discuss experiments performed to demonstrate the accuracy of
AMICO in a real-world deployment setting. To this end we train the provenance
classifier over the TRD dataset, and test it on the remaining TSD dataset.
Figure 4 reports the ROC curve computed by using a provenance classifier built
with all available features, as well as ROC curves related to separate tests in
which we eliminate one group of features at a time. Like for the cross-validation
results, we see that AMICO can achieve more than 90% TP rate for an FP
rate ≤ 1%. Also, we can see that no one particular feature group is critical to
obtaining good classification results.

Table 2 highlights the classification results for new malware downloads char-
acterized by a never-before-seen file (unseen SHA1), and/or domain (unseen
domain), and/or server IP (unseen sever IP). The “correct” column reports the
number of correctly classified malware downloads. The detection threshold is set
so to keep the overall FP rate (measured on benign TSD downloads) below 1%.
As we can see, even when AMICO observes a completely new file from a new
source (domain or server IP), it can still accurately classify the download event.

4.6 New Findings

In this section we discuss how AMICO can successfully complement existing mal-
ware detection approaches, such as AV scanners and static URL blacklists. All
results discussed below consider a configuration of AMICO’s detection threshold
that yields an FP rate ≤ 1%.
1) Malware “unknown” to VT: Of the 3,655 confirmed malware downloads
in the test dataset TSD (see Section 4.2), 1,031 malware samples were initially
unknown to VT. That is, the first time we submitted the file’s SHA1 to VT, the
file was not present in VT’s database. Of these, AMICO correctly classified 974
(94.5%) as malware at the time of download.
2) Zero-day malware: We also found 187 malware downloads for which all
nine “trusted” AV scanners in VT initially classified the file as benign (i.e.,
no AV label was attributed to the files, the first time they were scanned), and
then were labeled as malware after the one-month re-scan (see Section 4.2).

570 P. Vadrevu et al.

0.000 0.002 0.004 0.006 0.008 0.010
FP

0.0

0.2

0.4

0.6

0.8

1.0

T
P

AUC=0.997, PAUC=0.855
TP | FP

0.783 - 0.001
0.858 - 0.003
0.898 - 0.005
0.938 - 0.007
0.958 - 0.010

All_Features

No_Domain

No_URL

No_Past_File

No_Download_Request

No_IP

Fig. 4. Performance of Provenance Classi-
fier on all test instances (FPs in [0,1%])

Table 2. Detection of “unseen” malware
downloads (FP=1%)

Unseen Feature Correct %

SHA1
90%

(895/994)

Domain
85%

(360/422)

Server IP
93%

(1139/1222)

SHA1 & Domain
85%

(328/386)

SHA1 & Domain & Server IP
85%

(295/346)

Therefore, we regard these file downloads as zero-days. Of these 187 zero-day
malware downloads, AMICO classified correctly 147 (78.6%).
3) Static blacklists: For each download event observed by AMICO, we queried
GSB at the time of the download to see if the domain name or URL associated to
the download was present in the blacklist (we query GSB only for the purpose of
enabling a comparison between our system and URL blacklists). Surprisingly, we
found that out of the 3,655 malicious downloads, at the time of download GSB
failed to detect 3,562 (97.5%). We believe this apparently high false negative
rate is likely due to the fact that many potential malware downloads are already
blocked by GSB, and therefore cannot be observed in the network traffic. How-
ever, many malware downloads that evade GSB’s static blacklist are observable
in the traffic, and can be captured by AMICO. Of the 3,562 malware downloads
missed by GSB, AMICO correctly detected 3,412 (95.8%).

5 Limitations

Our current implementation of AMICO focuses on inspecting HTTP traffic, be-
cause we mainly target malware downloads that happen via the browser. To
evade AMICO, malware developers may attempt to propagate their malware
samples over HTTPS, thus “hiding” the executable files from AMICO’s recon-
struction module. However, it is worth noting that switching to HTTPS may
have some drawbacks for the attacker. For example, because the domain names
associated with the malware distribution servers have to change frequently, to
avoid static blacklists, for each new domain the attacker would have to pur-
chase a signed SSL certificate from a certificate authority (CA), thus incurring a
non-negligible cost. In alternative, the attacker may use self-signed certificates.
However, in this case the browser will typically alert the user of a potential se-
curity problem, thus possibly scaring away a large fraction of potential victims.
Furthermore, AMICO could be deployed “within” a web proxy that performs
SSL man-in-the-middle.

Detecting Malware Downloads 571

Itmaybepossible for sophisticated exploit code to force thebrowser todownload
an encrypted PE file, which can then be decrypted before the original malware file
is executed. This scenario is analogous to detectingmalware updates initiated from
an infectedmachine, in which themethod for downloading the files can be (almost)
freely chosen by the already running malware instance. We therefore consider this
scenario outside the scope of this paper. Notice that this limitation also affects any
in-browser detection system, such asGoogle CAMP [18], because reporting the file
downloads to CAMP could be disabled by the browser exploit code.

An attacker may also attempt to evade the statistical features measured by
AMICO. However, while the attacker may be able to evade a few single features,
most of AMICO’s features are engineered to capture the fundamental charac-
teristics of current evasive behavior of malware download campaigns. Namely,
we attempt to capture those characteristics of malware downloads that the at-
tackers already uses to evade existing detection tools, for example by frequently
changing domain names, URLs, or the network infrastructure that supports the
malware download operations. Therefore, evading the majority of AMICO’s fea-
tures would likely force malware campaigns back into a more “stable” malware
distribution infrastructure, which may in turn be more easily blocked by static
blacklists, for example. Therefore, we believe AMICO provides a robust com-
plement to existing detection techniques, forcing attackers to incur a significant
cost to try to evade both AMICO and current detection tools at the same time.

6 Conclusion

We presented AMICO, a novel system for accurately measuring and detect-
ing malware downloads in live network traffic using download provenance in-
formation. To this end, AMICO uses a number of statistical features purposely
engineering to capture the fundamental characteristics of malware distribution
campaigns. We showed that AMICO is able to accurately detect malware down-
loads with up to 90% true positives at a false positives rate of 0.1%, including
many zero-day malware, thus complementing current malware detection tools.

Acknowledgments. This work would not have been possible without the help
of Christopher Workman, Jesse Bowling, Charles Leggett, and Alexander Merck,
who assisted us throughout the deployment of AMICO on our campus network.
We also thank the anonymous reviewers for their helpful comments. This mate-
rial is based in part upon work supported by the National Science Foundation
under Grants No. CNS-1149051 and OCI-1127195. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the au-
thors and do not necessarily reflect the views of the National Science Foundation.

References

1. Virustotal, https://www.virustotal.com
2. Antonakakis, M., Perdisci, R., Dagon, D., Lee, W., Feamster, N.: Building a dy-

namic reputation system for dns. In: Proceedings of the 19th USENIX Conference
on Security, USENIX Security 2010 (2010)

https://www.virustotal.com

572 P. Vadrevu et al.

3. Bilge, L., Kirda, E., Kruegel, C., Balduzzi, M.: Exposure: Finding malicious do-
mains using passive dns analysis. In: Proceedings of Annual Network and Dis-
tributed System Security Symposium, NDSS (2011)

4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
5. Caballero, J., Grier, C., Kreibich, C., Paxson, V.: Measuring pay-per-install: the

commoditization of malware distribution. In: Proceedings of the 20th USENIX
Conference on Security, SEC 2011 (2011)

6. Cova, M., Leita, C., Thonnard, O., Keromytis, A.D., Dacier, M.: An analysis of
rogue AV campaigns. In: Jha, S., Sommer, R., Kreibich, C. (eds.) RAID 2010.
LNCS, vol. 6307, pp. 442–463. Springer, Heidelberg (2010)

7. Curtsinger, C., Livshits, B., Zorn, B., Seifert, C.: Zozzle: fast and precise in-browser
javascript malware detection. In: Proceedings of the 20th USENIX Conference on
Security, SEC 2011 (2011)

8. Google. Google safe browsing API,
https://developers.google.com/safe-browsing/

9. Zico Kolter, J., Maloof, M.A.: Learning to detect and classify malicious executables
in the wild. J. Mach. Learn. Res. 7, 2721–2744 (2006)

10. Lu, L., Yegneswaran, V., Porras, P., Lee, W.: Blade: an attack-agnostic approach
for preventing drive-by malware infections. In: Proceedings of the 17th ACM Con-
ference on Computer and Communications Security, CCS 2010 (2010)

11. Microsoft. Microsoft PE and COFF specification,
http://msdn.microsoft.com/library/windows/hardware/gg463125

12. Microsoft. Smartscreen application reputation - building reputation,
http://blogs.msdn.com/b/ie/archive/2011/03/22/

smartscreen-174-application-reputation-building-reputation.aspx

13. Oberheide, J., Cooke, E., Jahanian, F.: Cloudav: N-version antivirus in the network
cloud. In: Proceedings of the 17th Conference on Security Symposium, SS 2008
(2008)

14. Perdisci, R., Lanzi, A., Lee, W.: Classification of packed executables for accurate
computer virus detection. Pattern Recogn. Lett. 29(14), 1941–1946 (2008)

15. Perdisci, R., Lanzi, A., Lee, W.: Mcboost: Boosting scalability in malware collection
and analysis using statistical classification of executables. In: Proceedings of the
2008 Annual Computer Security Applications Conference, ACSAC 2008, pp. 301–
310 (2008)

16. Provos, N., Mavrommatis, P., Rajab, M.A., Monrose, F.: All your iframes point to
us. In: Proceedings of the 17th Conference on Security Symposium, SS 2008 (2008)

17. Provos, N., McNamee, D., Mavrommatis, P., Wang, K., Modadugu, N.: The ghost
in the browser analysis of web-based malware. In: Proceedings of the First Confer-
ence on First Workshop on Hot Topics in Understanding Botnets, HotBots 2007,
p. 4. USENIX Association, Berkeley (2007)

18. Rajab, M.A., Ballard, L., Lutz, N., Mavrommatis, P., Provos, N.: CAMP: Content-
agnostic malware protection. In: Proceedings of Annual Network and Distributed
System Security Symposium, NDSS (February 2013)

19. Townsend, K.: R&d: The art of social engineering. Infosecurity 7(4), 32–35 (2010)
20. Weka. Weka 3: Data mining software in java, www.cs.waikato.ac.nz/ml/weka/
21. Zhang, J., Seifert, C., Stokes, J.W., Lee, W.: Arrow: Generating signatures to

detect drive-by downloads. In: Proceedings of the 20th International Conference
on World Wide Web, WWW 2011(2011)

https://developers.google.com/safe-browsing/
http://msdn.microsoft.com/library/windows/hardware/gg463125
http://blogs.msdn.com/b/ie/archive/2011/03/22/smartscreen-174-application-reputation-building-reputation.aspx
http://blogs.msdn.com/b/ie/archive/2011/03/22/smartscreen-174-application-reputation-building-reputation.aspx
www.cs.waikato.ac.nz/ml/weka/

Detecting Malware Downloads 573

A List of Features

(a) Domain Features

domain malware downloads integer
domain suspicious downloads integer
domain benign downloads integer
domain total downloads integer
domain malware ratio real
domain suspicious ratio real
domain benign ratio real
domain avg av labels real
domain avg trusted labels real
domain unknown hashes integer
domain total hashes integer
domain unknown hash ratio real
2ld malware downloads integer
2ld suspicious downloads integer
2ld benign downloads integer
2ld total downloads integer
2ld malware ratio real
2ld suspicious ratio real
2ld benign ratio real
2ld avg av labels real
2ld avg trusted labels real
2ld unknown hashes integer
2ld total hashes integer
2ld unknown hash ratio real

(b) Server IP Features

server ip malware downloads integer
server ip suspicious downloads integer
server ip benign downloads integer
server ip total downloads integer
server ip malware ratio real
server ip suspicious ratio real
server ip benign ratio real
server ip avg av labels real
server ip avg trusted labels real
server ip unknown hashes integer
server ip total hashes integer
server ip unknown hash ratio real
bgp malware downloads integer
bgp suspicious downloads integer
bgp benign downloads integer
bgp total downloads integer
bgp malware ratio real
bgp suspicious ratio real
bgp benign ratio real
bgp avg av labels real
bgp avg trusted labels real
bgp unknown hashes integer
bgp total hashes integer
bgp unknown hash ratio real

(c) Past File Downloads

hash life time integer
num dumps with same hash integer
hash daily dump rate per client real
estimated clients with same hash integer

(d) Download Request
Features

referer exists integer
host name exists integer
extension class string
url length integer
directory depth integer

(e) URL Features

url malware downloads integer
url total downloads integer
url distinct sha1s integer
url struct malware downloads integer
url struct total downloads integer
url struct distinct sha1s integer

	Measuring and Detecting Malware Downloads in Live Network Traffic

	1 Introduction
	2 Related Work
	3 System Description
	3.1 Reconstruction of Executable Files
	3.2 Download History Database
	3.3 Provenance Classifier

	4 Evaluation
	4.1 Implementation and Deployment
	4.2 Experimental Setup
	4.3 Live Traffic Measurements
	4.4 Cross-Validation
	4.5 Train-Test Experiments
	4.6 New Findings

	5 Limitations
	6 Conclusion
	References

