
Patrol: Revealing Zero-Day Attack Paths

through Network-Wide System Object
Dependencies

Jun Dai, Xiaoyan Sun, and Peng Liu

College of Information Sciences and Technology,
Pennsylvania State University, University Park, PA 16802

{jqd5187,xzs5052,pliu}@ist.psu.edu

Abstract. Identifying attack paths in enterprise network is strategically
necessary and critical for security defense. However, there has been in-
sufficient efforts in studying how to identify an attack path that goes
through unknown security holes. In this paper, we define such attack
paths as zero-day attack paths, and propose a prototype system named
Patrol to identify them at runtime. Using system calls, Patrol builds a
network-wide system object dependency graph that captures dependency
relations between OS objects, and identifies suspicious intrusion prop-
agation paths in it as candidate zero-day attack paths through forward
and backward tracking from intrusion symptoms. Patrol further identifies
highly suspicious candidates among these paths, by recognizing indica-
tors of unknown vulnerability exploitations along the paths through rule-
based checking. Our evaluation shows that Patrol can work accurately
and effectively at runtime with an acceptable performance overhead.

1 Introduction

1.1 Zero-Day Attack Paths

When deploying enterprise network security defense, it is important to consider
multi-step attacks. Given that today’s network is usually under basic protection
from security deployments like firewall and IDS, it’s not easy for attackers to
directly break into their final target. Instead, determined attackers patiently
compromise other intermediate hosts as stepping-stones. That is, attackers often

Web
Server

DMZ
Firewall

Intranet

NFS Server
(UNFS3)

SSH Server
(OpenSSL 0.9.8g)

Database
Server

DNS
Server

Email
Server

Workstation 2
(bzip2 1.0.5)

DMZ

Inside

Internet

Intranet
Firewall

Inside
Firewall

Attacker
Bruteforce

NFS mount

Workstation 1
(Linux kernel 2.6.24)

Trojan-horses

Fig. 1. An example attack scenario

have to go through an attack path be-
fore they achieve their goal. An attack
path is a sequence of vulnerability ex-
ploits on compromised hosts. It’s nec-
essary and critical to find the attack
paths hidden in the network.

Suppose that a host is compro-
mised by a local or remote exploit.
If this exploit is enabled by a known
vulnerability, it’s not zero-day. If this

J. Crampton, S. Jajodia, and K. Mayes (Eds.): ESORICS 2013, LNCS 8134, pp. 536–555, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Patrol 537

exploit is enabled by an unknown vulnerability, it is zero-day. If an attack path
includes one or more zero-day exploits, it is a zero-day attack path.

Fig. 1 illustrates an example attack scenario including three steps. Step 1, a
brute-force key guessing attack is used to exploit CVE-2008-0166 on SSH Server
to gain root privilege. Step 2, the export table on NFS Server is inappropriately
configured to allow any user to share files through a public directory (/exports),
so two crafted trojan-horses are uploaded to this directory. The trojan-horses
contain exploit code of CVE-2009-2692 and CVE-2011-4089. Step 3, once a
trojan-horse file is mounted and installed by an innocent user like Workstation
1 or 2, arbitrary code is executed to create a hidden channel. Hence, two attack
paths exist: p1{CVE-2008-0166, NFS misconfiguration, CVE-2009-2692} and
p2{CVE-2008-0166, NFS misconfiguration, CVE-2011-4089}. Let’s assume the
time now is August 1, 2009, then CVE-2008-0166 becomes the only known
vulnerability. If the attackers are still able to exploit all the vulnerabilities in
this scenario, then p1 and p2 both become zero-day attack paths.

Zero-day exploit problem is so important and challenging. Zero-day attack
path problem is beyond zero-day exploit problem. This paper aims to take the
first steps to address the zero-day attack path problem.

1.2 Possible Solutions

The literature is explored for possible solutions of zero-day attack path problem.
However, we find that no existing technique can well address this problem due
to the unknown nature of zero-day attack path.

Attack graph [1–3]. By considering vulnerabilities in combination (not merely
in isolation), attack graph can generate attack paths that show exploit sequences
to specific attack goals. But, this notion has been primarily applied to model
causality dependencies among known vulnerabilities. Unknown vulnerabilities
are not captured and zero-day attack paths will accordingly be missing in attack
graph. Notable exceptions are recent research [4] [5], which have pioneered the
attack graph based analysis and modeling of zero-day vulnerabilities. However,
a solution to identify zero-day attack paths at runtime is further expected.

Penetration test [6–8]. This solution uses real exploits to reveal some specu-
lated attack paths. It requires huge knowledge and operation input from human
intelligence. Hence, the cost is usually too expensive. Besides, the attack paths
in their discovery are largely known ones, because it’s very difficult to exploit
unknown vulnerabilities in penetration tests.

Alert correlation [9] [10]. This solution correlates isolated alerts to form poten-
tial attack paths. Although it has potentials to be automatic and inexpensive, it
may induce high false rates. The false rates are twofold: 1) The correlation itself
is inaccurate because it attempts to integrate possibly different contexts into a
unified “story”; 2) The alerts that the correlation largely depends on genetically
inherit false rates from security sensors like IDS. When the two folds of false
rates are combined together, the accuracy of the whole solution gets worse.

Techniques to detect zero-day exploits may help the identification of zero-day
attack path, such as anomaly detection [11–18] and specification-based detection

538 J. Dai, X. Sun, and P. Liu

[19] [20]. By profiling normal behavior and detecting deviations, these techniques
are capable of detecting novel exploits. However, they are hard to cope with
false positives. Besides, the identification of novel exploits doesn’t mean the
identification of zero-day attack paths. As pointed above, IDS alert correlation
needs to be involved and thus introduces one more fold of false rates.

1.3 Key Insights and Our Approach

This paper leverages a different strategy to identify the zero-day attack paths.
Instead of first collecting vulnerabilities or alerts and then correlating them into
paths, we first try to build a superset graph and identify the suspicious intrusion
propagation paths hidden in it as candidate zero-day attack paths, and then
recognize the highly suspicious candidates among these paths. Interested readers
can refer to Fig. 2 for an example of a superset graph (Fig. 2a) and the suspicious
intrusion propagation paths (Fig. 2b) hidden in it.

We make this decision for four key insights : 1) As the only way for programs
to interact with OS, system calls are found hard-to-avoid and attack neutral;
2) We find that a network-wide superset graph can be generated from system
calls, and zero-day attack paths are showing themselves in it. This graph is also
attack neutral. It exists no matter whether any vulnerability is exploited or not;
3) The superset graph is inherently a set of paths. We find a way to get its ap-
propriate subsets as candidate zero-day attack paths. These paths actually and
naturally correlate vulnerability exploitations, different from the logical correla-
tion in attack graph; 4) The candidate zero-day attack paths expose unknown
vulnerability exploitations along them, and thus can orientate us to recognize
such exploitations. With these paths serving as network-wide attack context, the
accuracy and performance of detecting unknown vulnerability exploitations can
be better than the detection with only isolated per-host context.

The following summarizes our main contributions:

1. We propose to build a network-wide system object dependency graph (SODG)
as the superset graph. Built from system calls, an SODG is made up of OS ob-
jects like processes/files/sockets (nodes) and dependency relations between
them (edges). It neutrally captures the occurrence of vulnerability exploits.

2. We propose to identify suspicious intrusion propagation paths (SIPPs) in
the network-wide SODG as candidate zero-day attack paths. The SIPPs
actually and naturally correlate known/unknown vulnerability exploitations.
We further coin the concepts of vulnerability shadow and shadow indicator
to help recognize the highly suspicious candidates among the SIPPs.

3. We implemented a prototype system, called Patrol, which can work accu-
rately and effectively at runtime with an acceptable performance overhead.

2 Models and Assumptions

We assume a network consists of Unix-like operating systems, in which system
objects can be mainly classified into processes, files and sockets. We propose to

Patrol 539

��������		��	
��
�

���������	�	
��
�

���������������������

� � � � � � � � � � � � � � 	 	
 �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

� �

� � � � � � � � � � � � � � 	 	
 �

� � � � � � � � � � � � � � � � � � �

 � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

 � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � �

� � �

 � � � � � � � � � � � � 	 � � � � � � � �

 � � � � � 	 � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � 	 �

� � � � � � � � � � � � � � � �
 ! � � � �� � � � � � � � � � � � � � �
 	 �

� � � � � � � � � � � � � � �
 	 �

 � � � � � � � � � � � � � � �
 	 �

 � � � � � � � � � � � � � �
 	 �

 � � � � � � � � � � � � � �
 	 �

 � � � � � � � � � � � � � �
 	 �

 � � � � � � � � � � � � � �
 	 �

 � � � � � � � � � � � � � �
 	 �

 � � � � � � � � � � � � � �
 	 �

 � � � � � � � � � � � � � � ! � � "
 � ! 	 � �

 � � � � � � � � � � � � � � ! � � "
 � ! 	 � �

 � � � � � � � � � � � � � � ! � � "
 � ! 	 � �

 � � � � � � � � � � � � � � # ! � 	 � 	 � �

 � � � � � � � � � � � � � � # ! � 	 � 	 � �

 � � � � � � � � � � � � � � # ! � 	 � 	 � �

 � � � � � � � � � � � � � � � �

 � � � � � � � � � � � � � � � � $ � % � " ! � � � �

 � � � � � � � � � � � � � � � � $ � % � " ! � � � �

 � � � � � � � � � � � � � � � � $ � % � " ! � � � �

 � � � � � � � � � � � � � � � $ � % � " ! � � � �

 � � � � � � � � � � � & � ! # � �

 � � � � � � � � � � � � � � $ � % � " ! � � � �

 � � � � � � � � � � � � � � $ � % � " ! � � � �

 � � � � � � � � � � � � & � ! # � �

 � � � � � � � � � � � � � � $ � % � " ! � � � �

 � � � � � � � � � � � � � � $ � % � " ! � � � �

 � � � � � � � � � � � � & � ! # � �

 � � � � � � � � � � � � � � � � $ � % � " ! � � � � � � � � � � � � � � � � � � �
 � ' � �

 � � � � � � � � � � � � � � � �
 � ' � �

 � � � � � � � � � � � � � � � �
 � ' � �

 � � � � � � � � � � � � � � � �
 � ' � �

 � � � � � � � � � � � � � � �
 � ' � �

 � � � � � � � � � � � � � � � �
 � ' � �

 � � � � � � � � � � � � � � � �
 � ' � �

 � � � � � � � � � � � � � � � �
 � ' � �

 � � � � � � � � � � � � � � � �
 � ' � �

 � � � � � � � � � � � � � � � �
 � ' � �

� � � � � � � � � � � � � � � �
 � ' � �

� � � � � � � � � � � � � � � �
 � ' � �

� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � ! � � "
 � ! 	 � �

� � � � � � � � � � � � � � � � � � " � � �

� � � � � � � � � � � � � � � � � � " � � �

� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � " � � �

� � � � � � � � � � � � � � � ! � � "
 � ! 	 � �

� � � � � � � � � � � � � � � � � � 	 � �

� �

� � � � � � � � � � � � � � � ! � � "
 � ! 	 � �

� � � � � � � � � � � � � � 	 � � � � ! � �

� � � � � � � � � � � � � � 	 � � � � ! � �

� � � � � � � � � � � � � � � 	 � � � � ! � �

� � � � � � � � � � � � � � � 	 � � � � ! � �

� � � � � � � � � � � � � � � 	 � � � � ! � �

� � � � � � � � � � � � � � � 	 � � � � ! � �

� � � � � � � � � � � � � � � 	 � � � � ! � �

� � � � � � � � � � � � � � � 	 � � � � ! � �

� � � � � � � � � � � � � � � 	 � � � � ! � �

� � � � � � � � � � � � � � � � 	 � � � � ! � �

� � � � � � � � � � � � � � � 	 � � � � ! � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � $ � � # �

� � � � � � � � � � � � � � � � � $ � � # �

� � � � � � � � � � � � � � � � $ � � # �

� � � � � � � � � � � � � � � � � $ � � # �

� � � � � � � � � � � � � � � � � $ � � # �

� � � � � � � � � � � � � � � � � $ � � # �

� � � � � � � � � � � � � � � � � $ � � # �

� � � � � � � � � � � � � � � � � $ � � # �

� � � � � � � � � � � � � � � � � $ � � # �

� � � � � � � � � � � � � � � � � $ � � # �

� � � � � � � � � � � � � � � � � $ � � # �

� � � � � � � � � � � � � � � � � $ � � # �

� � � � � � � � � � � � � � � � $ � � # �

� � � � � � � � � � � � � � � � � $ � � # �

� � � � � � � � � � � � � � � � � $ � � # �

� � � � � � � � � � � � � � � � $ � � # �

� � � � � � � � � � � � � � � � � $ � � # �

� � � � � � � � � � � � � � � � � $ � � # �

� � � � � � � � � � � � � � � � � $ � � # �

� � � � � � � � � � � � � � � � � $ � � # �

� � � � � � � � � � � � � � � � � $ � � # �

� � � � � � � � � � � � � � � � � $ � � # �

� � � � � � � � � � � � � � � � $ � � # �

� � � � � � � � � � � � � � � $ � � # � � � � � � � � � � � � � � � � � $ � � # �

� � � � � � � � � � � � � � � � $ � � # �

� � � � � � � � � � � � � � � � $ � � # �

� � � � � � � � � � � � � � # ! �
 �

� � � � � � � � � � � � � � � � 	 �

� � � � � � � � � � � � � � � 	 �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � 	 ! �

� � � � � � � � � � � � � � # ! �
 �

� � � � � � � � � � � � � � � � �
 � � � ()! � 	 � �

� � � � � � � � � � � � � � � 	
 � 	 �

� � � � � � � � � � � � � � � 	
 � 	 �

� � � � � � � � � � � � � � � 	
 � 	 �

� � � � � � � � � � � � � � 	
 � 	 �

� � � � � � � � � � � � � � � � &
 ! �

� � � � � � � � � � � � � � � � &
 ! �

� � � � � � � � � � � � � � � 	
 � 	 �

� � � � � � � � � � � � � � � � � �)� �

� � � � � � � � � � � � � � � � �)� �� � � � � � � � � � � � � � � � � �)� �

� � � � � � � � � � � � � � � � � �)� �

� � � � � � � � � � � � � � � � � �)� �

� � � � � � � � � � � � � � � � �)�)� �� � � � � � � � � � � � � � � � � �)� �

� � � � � � � � � � � � � � � � � �)� �

� � � � � � � � � � � � � � � � � �)� �

� � � � � � � � � � � � � � � � � �)� �

� � � � � � � � � � � � � � � � �)� �

� � � � � � � � � � � � � � � � 	 � ! 	 " � 	 �
 " � � � � �

� � � � � � � � � � � � � � � � �
 � � � ()! � 	 � �

� � � � � � � � � � � � � � � 	
 � 	 �

 � � � �
 ! � � � � � � � � � � � � 	 � � � � � � �

 � � � � � 	 � � � � � � � � � � � � � � � � � � � �

 � � � � � 	 � � � 	 � � � � � � � � � � �

 � � � �
 ! � � � * � � � ' � 	 � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � �

 � � � � � 	 �

 �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � ! � � �

� � � � � � 	 � � � ! � � 	 � � � � � � � � � � �

� � � � � � 	 � � � ! � � � � � � � � � � � � �

� � � � � � 	 � � � ! � � � � � � � � � ! � � � � � � � � � � �

� � � � � � 	 � � � � � 	 � � � � � � � � � � �

� � � � � � � � � � � � � � � ! � � �

� � � � �
 ! � � � � � � � � � � � � 	 � � � � � � �

� � � � � � � � � � � � � 	 � � * � � � � � � � � �

� � � � � � � � � �

� � � � � � &
 � ! 	 � � � � � � � � � � � �

� � � � � � 	 � 	 ! � � � � +� ! � � � 	 � ! � # , �

� �

� � � � � 	 � � � 	 � � - � � � � � � � � � � � �

� � � � � � 	 � � � 	 � � - � � � � � � � �

� � � � � � 	 � � � � �
 ! � � � � � � � � � � � � �

� � � � � � 	 � � � � �
 ! � � � � � � � $ � � � � " % � ! � � " � % � � � � � � � � �

� � � � � � 	 � � � � �
 ! � � � � � � � � � % � � 	 ")� 	 � � � � # � � � � � � � � �

� � � � � � 	 � � � � �
 ! � � � � � � � � �
 �
 � � � � � � � � �

� � � � � � 	 � � � � �
 ! � � � � � � �
 	 � � � � � � � � � � � � �

� � � � � � 	 � � � � �
 ! � � � � � � � � � % � � 	 " * ! � � � � � * * � ! � � � � � � � � �

� � � � � 	 � � � � �
 ! � � � � � � � ! � � � � � � � � � � � � � � � �

� � � � � � 	 � � � � �
 ! � � � � � � � � � � � � � � � � � � � � �

� � � � � � 	 � � � � �
 ! � � � � � � 	 � � � � � � (� �
 � � � � �
 ! � � � � � � � � � � � �

� � � � � � 	 � � � � �
 ! � � � � � � � � � % � � 	 � � � � � � � �

� � � � � � 	 � � � � �
 ! � � � � � � ! � " $ � � � � � � � � � � � � �

� � � � � � 	 � � � � �
 ! � � � � � � * � � � � � � � � � � � �

� � � � � � 	 � � � � �
 ! � � � � � � � � � " � � � � � � � � � � � � �

� � � � � � 	 � � � � �
 ! � � � � � � � � � % � � 	 " � � � � � � � � � � � � � �

� � � � �
 ! � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � $ � �

� � � � � � $ � � � � � $ � � � $ � � 	 (� � . � � � � � � �

� � � � � � � $ � � � � � $ � . � � � � � � � � � �

� � � � � � � $ � � � � � $ � . � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � $ � �

� � � � � � � $ � � � � � $ � . � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � $ � �

� � � � � � � $ � � � � � $ � . � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � $ � �

� � � � � � � $ � � � � � $ � . � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � $ � �

� � � � � � � $ � � � � � $ � . � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � $ � �

� � � � � � � $ � � � � � $ � . � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � $ � �

� � � � � � � $ � � � � � $ � . � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � $ � �

� � � � � � � � $ � � � � � $ � . � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � $ � �

� � � � � � � � $ � � � � � $ � . � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � $ � �

� � � � � � � � $ � � � � � $ � . � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � $ � �

� � � � � � � � $ � � � � � $ � . � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � $ � �

� � � � � � � � $ � � � � � $ � . � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � $ � �

� � � � � � � $ � � � � � $ � . � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � $ � �

� � � � � � � � $ � � � � � $ � . � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � $ � �

� � � � � � � � $ � � � � � $ � . � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � $ � �

� � � � � � � � $ � � � � � $ � . � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � $ � �

� � � � � � � � $ � � � � � $ � . � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � $ � �

� � � � � � � $ � � � � � $ � � � �

� � � � � � � �

� � � � �
 ! � � � � 	 � 	 � � � � � � � � � � �

� � �

� � � � � � � � � � � � � � �
 	 �

 � � � � � � � � � � � � � � �
 	 �

 � � � � � � � � � � � � � � �
 	 �

 � � � � � � � � � � � � � � �
 	 �

 � � � � � � � � � � � � � � �
 	 �

 � � � � � � � � � � � � � � �
 	 �

 � � � � � � � � � � � � �
 	 �

� � � � � � � � �)� � � � � � � � � � � �

� � � � � � � ! � � � � � � � � � " � � � � � � � � � � � �

 � � � � � � � � � � � � � � " � � � � � � �

 � � � � � 	 � �
 � � �)� � � � � � � � � �

 � � � � � � � � � � �
 � � �

 � � � � � � 	 � � # ! � �
 � � � � � � � � �

 � � � � � � � � � 	 � � � � � � � � � � � �

 � � � � � ! � � � � � * � � � � � � � � � � � �

 � � � � � � ! � � � � � & � ! # � � � � � � � � � �

 � � � � � � � � � � � � � � � � $ � % � " ! � � � � � � � � � � � � � � � � � � � $ � % � " ! � � � �

 � � � � � � � � � � � � � � $ � % � " ! � � � �

 � � � � � � � � � � 	 � � � � � � � �

 � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � 	 � � � � ! � �

 � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � �

 � � � � � � � ! � � � � � � � � � � � � � � �

 � � � � � � 	 � � � ! � � � � � � ' � �
 	 � � � � � � � � �

 � � � � � � � � � � � � � � ! � � "
 � ! 	 � �

� � � � � � � � � � � � � � � ! � � "
 � ! 	 � �

 � � � � � � 	 � � � ! � � � � � � ' � �
 	 � 	 � � � � � � � � � � �

 � � � � � � 	 � � � ! � � � � � � ' � � � � � � � � � 	 � � � � � � � � � � �

 � � � � � � 	 � � � ! � � � � � � ' � � # ! � 	 � 	 � � � � � � � � � �

 � � � � � � ! � � � � � � � # ! � 	 � 	 � � � � � � � � � �

 � � � � �
 ! � � � � � � � � � � � 	 � � � � � �

 � � � � � � 	 � � � # ! � 	 � 	 � � � � � * � � � � � � � � �

 � � � � � � 	 � � � # ! � 	 � 	 � � � � � � � � � � � �

 � � � � � � 	 � � � # ! � 	 � 	 � � � � � �
 � � � � � � � � � � �

 � � � � � � 	 � � � # ! � 	 � 	 � � � � �

 � ! 	 � � � � � � � � �

 � � � � � � 	 � � � # ! � 	 � 	 � � � � �
 	 � � � � � � � � �

 � � � � � � 	 � � � # ! � 	 � 	 � � � � �
 	 � 	 � � � � � � � � � � � �

 � � � � � � 	 � � � # ! � 	 � 	 � � � � � �
 � ' � � � � � � � � � �

 � � � � � 	 � � � � �)� 	 � � � � � � * � � � � � � � � �

 � � � � � � 	 � � � # ! � 	 � 	 � � � �

 � � � � � � � �

 � � � � � � 	 � � � # ! � 	 � 	 � � � � � � ! � % � �
 � ! � � � � � � � � �

 � � � � � � 	 � � � # ! � 	 � 	 � � � � � � � 	 	 � � � � � " �
 # ! � � � � � � � � � � � � �

 � � � � � � 	 � � � # ! � 	 � 	 � � � �)
 � (� � 	 � � � � � � � � � � � �

 � � � � � � � � � # , �
 � � � � � � � �

 �

 � � � � � � � ! � � � � � � � � $ � % � " ! � � � � � � � � � � � �

 � � � � � � � � � � � � � � � � $ � % � " ! � � � �

 � � � � � � 	 � � � � � 	 � � � � �
 � ' � � � � � � � � � �

 � � � � � � � � � � ! � � � $ � � � � � � �

 � � � � � � � � � � � � � � � � � � �

 � � � � � � 	 � � ! � � � � � � � � � � � �

 � � � �
 ! � � � � � � � � � � � � 	 � � � � � � �

 � � � � � � 	 � � ! � � � � � / � � � �
 � ' � � � � � � � � � �

 �

 � � � � �
 ! � � � � � � � � � � � 	 � � � � � � �

 � � � � � � 	 � � ! � / � � � � � � � � � � �

 � � � � �
 ! � � � � � � � � � � � 	 � � � � � �

 � � � � � � � ! � � � � � � � �
 � � � � � � � � � �

 � � � � � � 	 � � � � * � � 	 � � �
 � ' � � � � � � � � �

 � � � � � � 	 � � � � " � � � � " � # # � � # � � � � � � � � � � � �

 � � � � � 	 � � 	 � � � , � � � � � � � � � � �

 � � � � � � � � � � � 	 � � � � � � � �

 � � � � � � � � � � � �
 � � � ()! � 	 � � � � � � � �

 � � � � � � � ! � � � � � 	
 � 	 � � � � � � � � �

 � � � � � � � ! � � � � � � &
 ! � � � � � � � �

 � � � � � � 	 � � 	 � ! � � � * � � � � � � � � �

 � � � � � � � � � � � 	 � ! 	 " � 	 �
 " � � � � � � � � � � � � �

 � � � � �
 ! � � � � � � � � 	 � 	 � � � � �

� � � � � � � � � � � � � � � � �

� � � � � � � 	 � � ! � � � $ � � � � * � � � � � � � � �

� � � � � � 	 � � � � � 	 � � � � � � � � �

� � � � � � � 	 � � � �
 � � � �
 � � � � � � * � � � � � � � � �

� � � � � � � 	 � � � �
 � � � � � � � � � �

� � � � � � � 	 � � � �
 � �

 � � � � � � � � � �

� � � � � � � 	 � � � �
 � � � � � � � � � � � � �

� � � � � � � 	 � � � �
 � �
 ! � � 	 � ! � � � � � * � � � � � � � � �

� � � � � � � 	 � � � �
 � � � � � � � � � � $ � � � � � � � � � �

� � � � � � � 	 � � � �
 � � � �
 � "
 � * � � � � * � � � � � � � �

� � � � � � 	 � � � �
 � � � �
 � � � � � � * � � � * � � 	 � � � � � � � � �

� � � � � 	 � � � �
 � �
 � * 	 �
 � � � � � * � � � � � � � � �

� � � � � � 	 � � � �
 � � � � � � � 	 '
 � � � � � � � � � � �

� � � � � � 	 � � � �
 � � ! �)� � � � $ � � � � � � � � � �

� � � � � � 	 � � � �
 � � � � �
 � � � � * � � � � � � � �

� � � � � � 	 � � � �
 � � � � ! � ! � � � � � � � * � � � � � � � � �

� � � � � � 	 � � � �
 � � ! �)� 	 '
 � � � � � � � � � � �

� � � � � � 	 � � � �
 � �

 � � 0 12 �

 � � � � � � � �

� � � � � � � � � � � � �
 � � � � � � � �

� �

� � �

� � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � �

� � �

� � � � � � � � � � � � � � � � � � � � �

� � �

� � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � ! �
 ! � � � � � � � � � � � � 	 � � � � � �

� � � � � �
 ! � � � � � � � � * � � � � � � �

� � � � � � � $ � � ! � � � � � � � � � �

� � � � � � � 	 � � # � � � � � � * � � � � � � � � �

� � � � � � � 	 � � � � � � � � � (� � � 	 (! � � (% � ' � � � � � � � � �

� � � � � � � 	 � � � � � � � � � (� � � 	 (� � � (% � ' � � � � � � � � �

� � � � � � � 	 � �
 ! � 	 � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � �
 ! � � � � � � � � � � � � 	 � � � � � � �

� � � � � �
 ! � � � � � � � � * � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � �

� � � � � �
 ! � � � � � � � � * � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � � �

� � � � � �
 ! � � � � � � � � * � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � 	 � � � � � 	 � � � �)� � � � � � � � �

� � � � � � � 	 � � � � � 	 � � � � � ' � � � � � � � �

� � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � � �

� � � � � �
 ! � � � � � � � � * � � � � � � � �

� � � � � � � 	 � � � � � � � � � � � � � � � � � � � �

� � � � � � � 	 � � � � � 	 � � � � * � � � � � � � � �

� � � � � � � 	 � � � ! � � � � � � ' � � � � " � � � � � � � � � � �

� � � � � � � � � � � � � � � � � " � � �

� � � � � � � � � � � � �)� � � � � � � � �

� � � � � �
 ! � � � � ' � � % � ! � � � � # ! � �
 � (� � & � � � � � �

� � � � � � � � ! � � � � � � � � � � � � � � � � � �

� � � � � � � 	 � � � � �
 � 	 � � � � � * � # � � � � � � � �

� � � � � � � � ! � � � � � � � � � � � � � � � � �

� � � � � � � 	 � � � ! � � � � � � ' � � � � � 	 � � � � � � � � � �

� � � � � � � � ! �

� � � � � � � � � � � � � � � � � � � �

� � � � � � 	 � �
 � � � � � � � � � � � � �

� � � � � � 	 � �
 � � � � � � � � � � � � � � � � �

� � � � � � � 	 � �
 � � � � � � � � � � � " � � 	 � � � � � � � � � �

� � � � � � 	 � �
 � � � � � � � � � � � " � � � � � � 	 � � � � � � � �

� � � � � � � 	 � �
 � � � � � � � � � � � " � � � � � � � � � � � � � � � �

� � � � � � � 	 � �
 � � � � � � � � � � � "
 � � �)� ! � � � � � � � � � �

� � � � � � � 	 � �
 � � � � � � 	 � � ! � � � � � � � �

� 	 � � ! � , � � (% � ' � � � � � � � � � �

� �

� � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � �

� � � � �
 ! � � � � � � � � * � � � � � �

� � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � � �

� � � � � �
 ! � � � � � � � � * � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � � � 	 � � � � � � � �

� � � � � �
 ! � � � � � � � * � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � �

� � � � � �
 ! � � � � � � � � * � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � � �

� � � � � �
 ! � � � � � � � � * � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � � �

� � � � �
 ! � � � � � � � � * � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � � �

� � � � � �
 ! � � � � � � � � * � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � � � 	 � � � � � � � �

� � � � � �
 ! � � � � � � � * � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � �

� � � � � �
 ! � � � � � � � � * � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � �
 ! � � � � � � � � � � � � 	 � � � � � � � �

� � � � �
 ! � � � � � � � � * � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � � �

� � � � �
 ! � � � � � � � � * � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � � �

� � � � � �
 ! � � � � � � � � * � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � � �

� � � � � �
 ! � � � � � � � � * � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � �
 ! � � � � � � � � � � � � 	 � � � � � � � �

� � � � � �
 ! � � � � � � � � * � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � � �

� � � � � �
 ! � � � � � � � � * � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � �

� � � � �
 ! � � � � � � � � * � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � � �

� � � � � �
 ! � � � � � � � � * � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � � �

� � � � � �
 ! � � � � � � � � * � � � � � � � �

� � � � � � � 	 � � � � � � �)� � � � � � � � �

� � � � � � 	 � � � � � � ! � 	 ' � � � � 	 � � � � � * � � � � � � � � �

� � � � � � � 	 � � � � � � ! � 	 ' �
 � � (� � $ � � � � * � � � � � � � � �

� � � � � � � 	 � � � � $ � ! � � � � � 	 � � � � � � � � �

� � � � � � � 	 � � � � * � � 	 � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � * � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � � �

� � � � �
 ! � � � � � � � � * � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � � �

� � � � � �
 ! � � � � � � � � * � � � � � � � �

� � � � � � � � ! � � � � � � �
 � � � � � � � �

� � � � � � � 	 � � � ! � � � � � � ' � � 	 � � � � ! � � � � � � � � � �

� � � � � � � � � � � � � � � 	 � � � � ! � �

� � � � � � � � � � � � � � � 	 � � � � ! � �

� � � � � � � � ! � � � � � � �
 � � � � � � � �

� � � � � � � 	 � � # � � � � �)� � � � � � � � �

� � � � � � � � � � � * � � � � � � � �

� � � � � � � � ! � � � � � �)% � � � � � � � �

� � � � � � � ! � � � � � � �)% � � � � � � � � �

� � � � � � � � 	 3 * � � � � � �

� � � � � �
 ! � � � � � � � � � � � 	 � � � � � � � �

� � � � � � � � � � # ! �
 � � � � � � � �

� � � � � � � � ! � � � � � � � $ � � # � � � � � � � � �

� � � � � � � � ! � � � � � � � � � � � � � � � � � � � � �

� � � � � � � ! � � � � � � � ! � � � � � � � � � � � �

� � � � � � � � � � ! � � � � � � � � �

� � � � � � � � � � � $ � � � � � � � �

� � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � �

� � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � � �

� � � � �
 ! � � � � � � � � � � � � 	 � � � � � � � �� � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � � �

� � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � � �

� � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � � �

� � � � � � � � � � � � # !
 � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � �
 ! � � � � � � � � � � � 	 � � � � � � � �

� � � � �
 ! � � � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � � � 	 �
 � * � � 0 � 4 � � � � � � � � 	 � � � �

� �

� � � � � � � � � � � � � � � � � � �

� � � � � � � &
 � ! 	 � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � �

� � � � � � � � � � � � � � � � � �

� � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � &
 � ! 	 � � � � * � � � � � � � � �

� � � � � � � &
 � ! 	 � � � � * � � � � � � � � � �

� � � � � � � &
 � ! 	 � � � � * � � � � � � � � � �

� � � � � � � &
 � ! 	 � � � � * � � � � � � � � � �

� � � � � � � &
 � ! 	 � � � � * � � � � � � � � � �

� � � � � � � � �

� � � � � � � &
 � ! 	 � � � � * � � � � � � � � � �

� � � � � � � &
 � ! 	 � � � � * � � � � � � � � � �
� � � � � � &
 � ! 	 � � � � * � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � ! 	 � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

 � � �

 � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � 	 � � � � � � � �

� � � � � � � � � � � � � � � � � � � 	 �

� � � � � � � 	 � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �
 ! � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � 	 � ! �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � &
 � � 	 � � � �

� � � � � � � � � � � � � � �)� � � � ! � � ! (� �
 � ! �

� � � � � � � � � � � � � � �)� � � � ! � � ! (� �
 � ! �

� � � � � � � � � � � � � �)� � � � ! � � ! (� �
 � ! �

� � � � � � � � � � � � � � �)� � � � ! � � ! (� �
 � ! �

� � � � � � � � � � � � � � �)� � � � ! � � ! (� �
 � ! �

 � � � � � � � � � � � � � �)� � � � ! � � ! (� �
 � ! �

 � � � � � � � � � � � � � � �)� � � � ! � � ! (� �
 � ! �

 � � � � � � � � � � � � � � �)� � � � ! � � ! (� �
 � ! �

 � � � � � � � � � � � � � � � � � �

 � � � � � � � � � � � � � � � � � �

 � � � � � � � � � � � � � � � � � 	 � �

 � � � � � � � � � � � � � � � � � � 	 � �

 � � � � � � � � � � � � �)� � � � ! � � ! (� �
 � ! �

 � � � � � � � � � � � � � � � �

 � � � � � � � � � � � � � � � �

 � � � � � � � � � � � � � � � � 	 � �

 � � � � � � � � � � � � � � � � � 	 � �

 � � � � � � � � � � � � � �)� � � � ! � � ! (� �
 � ! �

 � � � � � � � � � � � � � � � � �
 ! � � � �

 � � � � � � � � � � � � � � � � �
 ! � � � �

 � � � � � � � � � � � � � � �

 � � � � � � � � � � � � �)� � � � ! � � ! (� �
 � ! �

 �

 � � � � � � � � � � � � � � � � � " ! � � � � ! �

 � � � � � � � � � � � � � � � " � � " 	 � � �

 � � � � � � � � � � � � � � � � � �

 � � � � � � � � � � � � � � � � " � � " 	 � � �

 � � � � � � � � � � � � � � � � � " ! � � � � ! �

 � � � � � � � � � � � � � � � � " � � " 	 � � �

 � � � � � � � � � � � � � � � � " � � " 	 � � �

 � � � � � � � � � � � � � � � � � � " ! � � � � ! �

 � � � � � � � � � � � � � � � � � " � � " 	 � � �

 � � � � � � � � � � � � � � � � � " � � " 	 � � �

 � � � � � � � � � � � � � � � � � � �

 � � � � � � � � � � � � � � � � � � �

 � � � � � � � � � � � � � � � � � �

 � � � � � � � � � � � � � � � � � � �

 � � � � � � � � � � � � � � � � � �

 � � � � � � � � � � � � � � � � � �

 � � � � � � � � � � � � � � � � � � �

 � � � � � � � � � � � � � � � � � � �

 � � � � � � � � � � � � � � � � � � �

 � � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � �

� � � � � � 	 � � � � � � � � � � � � � � � � �

� � � � � � � 	 � � � 	 � � � � � � � � � �

� � � � � � � � � � � � � � � 	 � � * � � � � � � � � �

� � � � � � � � � � �

� � �

� � � � � � &
 � ! 	 � � � � � � � � � � � �

� � � � � � � � 	 � 	 ! � � � � +� ! � � � 	 � ! � # , � �

� � � � � � � 	 � � � 	 � � - � � � � � � � � � � � �

� � � � � � � 	 � � � 	 � � - � � � � � � � �

� � � � � � � � � � � � � � � � � �

� � � � � � � 	 � � � � �
 ! � � � � � � � � � � �

� � � � � � � 	 � � � � �
 ! � � � � � � � � � " � � � � � � � � � � � �

� � � � � � � 	 � � � � �
 ! � � � � � � 	 � � � � � � (� �
 � � � � �
 ! � � � � � � � � � � �

� � � � � � 	 � � � � �
 ! � � � � � � �
 	 � � � � � � � � � � � �

� � � � � � � 	 � � � � �
 ! � � � � � � � $ � � � � " % � ! � � " � % � � � � � � � � �

� � � � � � � 	 � � � � �
 ! � � � � � � � � � � � � � � � � � � � �

� � � � � � � 	 � � � � �
 ! � � � � � � ! � " $ � � � � � � � � � � �

� � � � � � � 	 � � � � �
 ! � � � � � � � � �
 �
 � � � � � � � �

� � � � � � � 	 � � � � �
 ! � � � � � � � � � % � � 	 " * ! � � � � � * * � ! � � � � � � � �

� � � � � � � 	 � � � � �
 ! � � � � � � � � � % � � 	 " � � � � � � � � � � � � �

� � � � � � � 	 � � � � �
 ! � � � � � � � � � % � � 	 � � � � � � � �

� � � � � � � 	 � � � � �
 ! � � � � � � * � � � � � � � � � � �

� � � � � � 	 � � � � �
 ! � � � � � � � ! � � � � � � � � � � � � � � �

� � � � � 	 � � � � �
 ! � � � � � � � � � % � � 	 ")� 	 � � � � # � � � � � � � �

� � � � �
 ! � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � $ � �

� � � � � � � $ � � � � � $ � � � $ � � 	 (� � . � � � � � � �

� � � � � � � $ � � � � � $ � . � � � � � � � � � �

� � � � � � � $ � � � � � $ � . � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � $ � �

� � � � � � � $ � � � � � $ � . � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � $ � �

� � � � � � � � $ � � � � � $ � . � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � $ � �

� � � � � � � � $ � � � � � $ � . � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � $ � �

� � � � � � � � $ � � � � � $ � . � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � $ � �

� � � � � � � � $ � � � � � $ � . � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � $ � �

� � � � � � � $ � � � � � $ � . � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � $ � �

 � � � � � � � $ � � � � � $ � . � � � � � � � � � � � � � � � �

 � � � � � � � � � � � � � � � � $ � �

� � � � � � � $ � � � � � $ � � � �

� � � � � � � �

� � � � � � � � � � � � � � � � � � �

 � � � � � � � � � � � � � � � � � �

� � � � �
 ! � � � � 	 � 	 � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � �

� � � � � � � � $ � � � � % � � ' " � � � � � � � � � � � � * " � * � " � � � � " � � � � " � � � � � � � � � � � � � � �

� � � � � � � � � � � * � � 	 " � � � ! " �)� 	 � �

� � � � � � � � 	 � * ' � �

� � � � � � � � � � � � � � � � � 	 � � � �

� � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � �

� � � � � � � 	 � � * � 	 � � � � � � � � � �

� � � � � � � � $ � � � � �

� � � � � � � � $ � � � � � � � � � � �

� � � � � � � � $ � * � � � � � � � �

� � � � � � � � � � � ! � � �

� � � � � � 	 � � � ! � � 	 � � � � � � � � �

� � � � � � � 	 � � � ! � � � � � � � � � � � �

� � � � � � � 	 � � � ! � � � � � � � � � ! � � � � � � � � �

� � � � � � � 	 � � � � � 	 � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � �

� � � � � � � � � � � � � � ! � 	 � � 	 " � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � �
 � � � � � � � �

� � �

� � � � � �
 ! � � � � � � � � � � � 	 � � � � � � �

� � � � � �
 ! � � � * � � � ' � 	 � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � �

� � � � � � � � � � � � � ! � 	 � � 	 " � � � � 	 ! � � � � +� ! � � (� % � 	 � ! � # , � � � � � � � �

� � � � � � � � � � 	 � ! � � � � � � � �

� � � � � � � � � � � � � � ! � 	 � � 	 " � � � � 	 ! � � � � +� ! � � � � � � � � � �

� � � � � � � � � � � � � ! � 	 � � 	 " � � � � 	 ! � � � � +� ! � � � � � (� # � � � � � � � �

� � � � � � � � � � � � � � ! � 	 � � 	 " � � � � 	 ! � � � � +� ! � � � � � (� # � 	 ! � � � (� � � � � � � � � � � �

� � � � � � � � � � � � � � ! � 	 � � 	 " � � � � 	 ! � � � � +� ! � � � � � (� # � 	 ! � � � (& � � � � � � � � � �

� � � � � � � � � � � � � � ! � 	 � � 	 " � � � � 	 ! � � � � +� ! � � � � � (� # � 	 ! � � � (� � � � � � � � � � �

� � � � � � � � � � � � � � ! � 	 � � 	 " � � � � 	 ! � � � � +� ! � � �)� � � � ! � � ! (� �
 � ! � � � " � � 	 # , � � � � � � �

� � � � � � � � � � � � � � ! � 	 � � 	 " � � � � 	 ! � � � � +� ! � � �)� � � � ! � � ! (� �
 � ! � � � (� # � � � � � � �

� � � � � � � � � � � � � � ! � 	 � � 	 " � � � � 	 ! � � � � +� ! � � � 	 ! � � � � � � � � � �

� � � � � � � � � � � � � � ! � 	 � � 	 " � � � � 	 ! � � � � +� ! � � � � � � � � " � � 	 # , � � � � � � �

� � � � � � � � � � � � � � ! � 	 � � 	 " � � � � 	 ! � � � � +� ! � � � 	 ! � � � � � � � � � � �

� � � � � � � � � � � � � � ! � 	 � � 	 " � � � � 	 ! � � � � +� ! � � � � &
 � � 	 � � � � � � � � � �

� � � � � � � � � � � � � ! � 	 � � 	 " � � � � 	 ! � � � � +� ! � � �)� � � � ! � � ! (� �
 � ! � � � � � � � � � � �

� � � � � � � � � � � � � � ! � 	 � � 	 " � � � � 	 ! � � � � +� ! � � �)� � � � ! � � ! (� �
 � ! � � � � � � (� # � � � � � � � �

� � � � � � � � � � � � � � ! � 	 � � 	 " � � � � 	 ! � � � � +� ! � � �)� � � � ! � � ! (� �
 � ! � � � � � � (� # � 	 ! � � � (& � � � � � � � � � � � �

� � � � � � � � � � � � � � ! � 	 � � 	 " � � � � 	 ! � � � � +� ! � � �)� � � � ! � � ! (� �
 � ! � � � � � � (� # � 	 ! � � � (� � � � �)� � � � � � � �

� � � � � � � � � � � � � � ! � 	 � � 	 " � � � � 	 ! � � � � +� ! � � �)� � � � ! � � ! (� �
 � ! � � � � � &
 � � 	 � � � � � � � � � �

� � � � � � � � � � � � � � ! � 	 � � 	 " � � � � 	 ! � � � � +� ! � � �)� � � � ! � � ! (� �
 � ! � � � �)� � � � ! � � ! (� �
 � ! � � � � � � � � � � � � � �

� � � � � � � � � � � � � � ! � 	 � � 	 " � � � � 	 ! � � � � +� ! � � �)� � � � ! � � ! (� �
 � ! � � � �
)� % � ! � � � � � � � � � � � �

� � � � � � � � � � � � � � ! � 	 � � 	 " � � � � 	 ! � � � � +� ! � � �)� � � � ! � � ! (� �
 � ! � � � � � &
 � � 	 � � � � � � � �

� � � � � � � � � � � � � � ! � 	 � � 	 " � � � � 	 ! � � � � +� ! � � �)� � � � ! � � ! (� �
 � ! � � � � 	 , � � � 	 � � � $ � � � � � � � � �

� � � � � � � � � � � � � ! � 	 � � 	 " � � � � 	 ! � � � � +� ! � � �)� � � � ! � � ! (� �
 � ! � � � �
)� % � ! � � (& � � � � � � � � � � �

� � � � � � � � � � � � ! � 	 � � 	 " � � � � 	 ! � � � � +� ! � � �)� � � � ! � � ! (� �
 � ! � � � � � &
 � � 	 � � - � � � � � � � �

� � � � � � � � � � � � � ! � 	 � � 	 " � � � � 	 ! � � � � +� ! � � �)� � � � ! � � ! (� �
 � ! � � � �
)� % � ! � � � � � � � � � � � �

� � � � � � � � � � � � � ! � 	 � � 	 " � � � � 	 ! � � � � +� ! � � �)� � � � ! � � ! (� �
 � ! � � � � � &
 � � 	 � � � � � � � � � � �

� � � � � � � � � � � � � ! � 	 � � 	 " � � � � 	 ! � � � � +� ! � � �)� � � � ! � � ! (� �
 � ! � � � �
)� % � ! � � � � � � � � � � � � �

� � � � � � � � � � � � � ! � 	 � � 	 " � � � � 	 ! � � � � +� ! � � �)� � � � ! � � ! (� �
 � ! � � � � � &
 � � 	 � � � � � � � � � � � � � �

� � � � � � � � � � � � � ! � 	 � � 	 " � � � � 	 ! � � � � +� ! � � �)� � � � ! � � ! (� �
 � ! � � � �
)� % � ! � � � � - � � � � � � � �

� � � � � � � � � � � � � ! � 	 � � 	 " � � � � 	 ! � � � � +� ! � � �)� � � � ! � � ! (� �
 � ! � � � �
)� % � ! � � � � � � � � � �

� � � � � � � � � � � � � ! � 	 � � 	 " � � � � 	 ! � � � � +� ! � � � � � � � � " � � � � � � � �

� � � � � � � � � � � � � ! � 	 � � 	 " � � � � 	 ! � � � � +� ! � � � � � � � � " � � ! � � � � � � � � � � � �

� � � � � � � � � � � � � � ! � 	 � � 	 " � � � � 	 ! � � � � +� ! � � � � � � � � " � � � &
 � � 	 � � � � � � � � � �

� � � � � � � � � � � � � ! � 	 � � 	 " � � � � 	 ! � � � � +� ! � � � � � � � � " � � ! � � � � � � � � � � � � �

� � � � � 5 6676� �

� � � � � � � � � � # , �
 � � � � � � � �

� � � � � � � 	 � � � � �)� 	 � � � � � � * � � � � � �

� � �

 � � � � � � � � � � � � � � " � � � � � � �

� � � � � � � 	 � � # ! � �
 � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � � �

� � � � � � � � � � � � � ! 	 � 8 � �
 � 	 � � � � � � � � � �

� � � � � � � � � � � � � ! 	 � 	 ! � � � � +� ! � � � 	 � ! � # , � � � � � � � �

� � � � � � � � � � � � � ! 	 � 0 � � 	 � ! � � � � � � � � � �

� � � � � � � � � � � � � ! 	 � 9 � � � � � � � � � � � �

� � � � � � � � � � � � � ! 	 � :� � � � � � � � � � � � �

� � � � � � � � � � � � � ! 	 � / � ! � � � � � � 	 " �
 � # � � � � � � �

� � � � � � � � � � � � ! 	 �)� ! % � 	 � 	 � � � (�
 (� (� � � $ � � � � � � � � �

� � � � � � � � � � � � � ! 	 � :� ! 	 � � ;� & � :9 � �

� � � � � � � � � � � � � ! 	 � � &
 � ! � � � � 	 � 	 � � � � � � � � � � �

� � � � � � � � � � � � � ! 	 � / � ! � � � � � � 	 �
 � # � � � � � � � �

� � � � � � � � � � � � � ! 	 � 0 � � � � � � � � � � � �

� � � � � � � � � � � � � ! 	 � 1� � � � � � 	 � � � � � � � � �

� � � � � � � � � � � � � ! 	 � 1� � % 	 �
 � � � � � � � �

� � � � � � � � � � � � � ! 	 � 	 ! � � � � +� ! � � � � � � � � � �

� � � � � � � � � � � � � ! 	 � 5 & � �
 � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � ! � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � � �

� � � � � � � � � � � � � � � &
 � � 	 � � � �

� � � � � � � � $ � 	 	 ' � � � � � �

� � � � �
 ! � � � � � � � � * � � � � � � � � � � � �

� � � � � � � � � � � � � � �)� � � � ! � � ! (� �
 � ! �

� � � � � � � � � � � � � � ! � 	 � � 	 " � � � � 	 ! � � � � +� ! � � �)� � � � ! � � ! (� �
 � ! � � � �
)� % � ! � � � � � � � � � � � �

� � � � � � � � � � � � � � �)� � � � ! � � ! (� �
 � ! �

� �

� � � � � � � � � � � $ � � � � � � � �

� � � � � � � � � � � � � � ! � 	 � � 	 " � � � � 	 ! � � � � +� ! � � �)� � � � ! � � ! (� �
 � ! � � � �
)� % � ! � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � � �

� � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � � �

� � � � � � � � ! � � � � � % � � � � � � � � � � �

� � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � � �

� � � � � �
 ! � � � �

� � � � � �
 ! � � � � � 	 � 	 � � � � �

� � � � �
 ! � � � � � � 	 � 	 � � � � �

� � � � � �
 ! � � � � � � 	 � 	 � � � � �

� � � � � �
 ! � � � � � � 	 � 	 � � � � �

� � � � � �
 ! � � � � � � 	 � 	 � � � � �

� � � � � �
 ! � � � � � � 	 � 	 � � � � �

� � � � � �
 ! � � � � � � 	 � 	 � � � � �

� � � � � �
 ! � � � � � � � 	 � 	 � � � � �

� � � � � �
 ! � � � � � � � 	 � 	 � � � �

� � � � � �
 ! � � � � � � � 	 � 	 � � � � �

� � � � � �
 ! � � � � � � � 	 � 	 � � � � �

� � � � �
 ! � � � � � � � � 	 � 	 � � � � �

� � � � � �
 ! � � � � � � � 	 � 	 � � � � �

� � � � � �
 ! � � � � � � 	 � 	 � � � � �

� � � � � �
 ! � � � � � � � � 	 � 	 � � � � �

� � � � � �
 ! � � � � � � � � 	 � 	 � � � � �

� � � � � �
 ! � � � � � � 	 � 	 � � � � �

� � � � � �
 ! � � � � � � � � 	 � 	 � � � � �

� � � � � �
 ! � � � � � � � � 	 � 	 � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � �

� � � � �
 ! � � � � � � � � � 	 � 	 � � � � �

� � � � � �
 ! � � � � � � � � 	 � 	 � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � �

� � � � � �
 ! � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � 	 � 	 � � � � �

� � � � � �
 ! � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � 	 � 	 � � � � � �

� � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � �
 ! � � � � � � � � � 	 � 	 � � � � � � � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � � � � � � � � � � � � �

� � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � 	 � 	 � � � � � �� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � �

� � � � � �
 ! � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � � � � � � � � � � � � �

� � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � �

� � � � � �
 ! � � � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � 	 � 	 � � � � � �

� � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � 	 � 	 � � � � � �

� � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � �

� � � � � �
 ! � � � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � � � � � � � � � � � � �

� � � � �
 ! � � � � � � � � � 	 � 	 � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � �

� � � � � �
 ! � � � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � �

� � � � � �
 ! � � � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � �

� � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �� � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � � � � � � � � � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

� � � � � �
 ! � � � � � � � � � 	 � 	 � � � � �

� � � � � �
 ! � � � � � � � � � � � � � � � � � � � �

 � � � � � �
 ! � � � � � � � � 	 � 	 � � � � � �

 � � � � �
 ! � � � � � � � � 	 � 	 � � � � � �

 � � � � � �
 ! � � � � � � � � 	 � 	 � � � � � �

 � � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

 � � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

 � � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

 � � � � � �
 ! � � � � � � � � � � � � � � � � � � � �

 � � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

 � � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

 � � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � �

 � � � � �
 ! � � � � � � � � 	 � 	 � � � � �

 � � � �
 ! � � � � � � � � � 	 � 	 � � � � � � �

 � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � � �

 � � � � �
 ! � � � � � � � � 	 � 	 � � � � � � �

 � � � � �
 ! � � � � � � � � 	 � 	 � � � � � � �

 � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � � � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � � �

 � � � � �
 ! � � � � � � � � 	 � 	 � � � � � � �

 � � � � �
 ! � � � � � � � � � 	 � 	 � � � � � � �

 � � � � �
 ! � � � � � � � � � � � � � � � � � � � � �

 � � �

 � � � � � � � � � � � � 	 � � � � � � � �

 � � � � � �
 ! � � � � ' � � $ � � � � �
 (� � � (� � � ! � � � � �

 � � � � � � � � ! � � � � � � � � � � � � � � �

 � � � � � � 	 �
 � � � � <=& > � � � � � � � � � � � �

 � � � � � � 	 �
 � � � * 66� � ! � � � � � � � � � � �

 � � � � � � � � ! � � � � � # � � " � � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � �

 � � � � � � � � ! � � � � � � � � � � � � � � � � � � � 	 � � � � � � � � �

 � � � � � � 	 � � � 	 � ! � � 	 � $ � � � � � � � � � �

 � � � � � � � 	 � � � 	 � ! � � 	 � $ � � � � � � � � � � � �

 � � � � � � � � ! � � � � � # � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � � � � � � � � 	 � (� � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � � # � � � � � � � � � � � � �

 � � � � � � � ! � � � � � � � � * � � 	 � ! � � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � ' � � � � � * � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � � 	 � �)� ! � � � , � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � # � � � � 	 � � � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � # � � � � 	 � � � " � � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � � 	 � � � � # � � 	 � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � � 	 � � 	 '
 � � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � � 	 � � 	 '
 � � � , � � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � � 	 � � � � # � � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � 	 � � � � � � � � � � � � � �

 � � � � � � � ! � � � � � � � � � � 	 � � � � # � � * � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � � 	 � � � � # � � 	 � � � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � � 	 � � � � # � � � 	 � & 	 � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � � 	 � � � � # � 	 � � % � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � � 	 � �
 	 � ! � � � 	 '
 � � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � � 	 � � � � # 	 � ! � � � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � 	 � � � 	 � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � � 	 � �)� � � ! � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � 	 � � � � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � (?(� � � * � # � � � � � � � � � �

 � � � � � � � ! � � � � � � � �)� � � ! � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � � 	 � � � 	 � � � (� � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � � 	 � � � ' � (� ! ! � � 	 � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � 	 � � � � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � ' � � 	 '
 � � � � � � � � � � �

 � � � � � � � � ! � � � � �

 � � � � � � � � ! � � � � � � � � � � 	 � � � � � � � � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � ' � � � � � � 	 � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � � 	 � � � � � � 	 � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � � 	 � � 	 � � � � � � � � � � � �

 � � � � � � � ! � � � � � � � � � ' � � � ' � � � � ! � � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � � � � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � 	 ! � � # � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � ' � � * � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � * � � 	 � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � � 	 � � * � � 	 � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � ' � � � � � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � � 	 � � � � � � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � ' � � � � � � * � � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � ' � � � � � % � 	 � � � � � � � �

 � � � � � � � ! � � � � � � � � � ' � � � � � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � � 	 � � � � � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � � 	 � � � � � % � 	 � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � � � 	 � � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � � 	 � �
 � � � & (� � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � � 	 � � � � � (� � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � � � & � � � � 	 � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � � 	 � �
 � � � & � (� � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � � 	 � � � � � % � � � ! � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � � � � � � � % � 	 � � � � � � � � � � �

 � � � � � � � ! � � � � � � � � � � � � � � � % � � � � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � ' � � � � � ! � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � � � � 	 � � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � � 	 � �
 � � � & (�
 	 � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � � 	 � � � � � * � � � � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � # � 	 �
 	 � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � ' � �
 � ! � � � � � 	 ' � � � � � � � � � � � � � � � � � ! � � � � � � � � � � � � � � � �

 � � � � � 	 �
 � � � � � � * & � � � � � � � � � � � �

 � � � � � 	 �
 � � � � � @ / A# � � � � � � � � � � �

 � � � � � 	 �
 � � � � � � . � % � � � � � � � � � � �

 � � � � � 	 �
 � � � ?� 0 � +� � � � � � � � � � � �

 � � � � � � � ! � � � � � � � � � � � � � � �

 � � � � � � � ! � � � � � � � � � � � � � � � �

 � � � � � � � ! � � � � � � 	 ! �
 � � � � � � � � �

 � � � 	 �
 � � � =<
)B C� � � � � � � � � � �

 � � � � 	 �
 � � � A> � � � 	 � � � � � � � � � � �

 � � � � � � ! � � � � � � � � � ' � � � 	 � 	 � � � � � � � � � �

 � � � � � � ! � � � � � � � � � � 	 � � � 	 � 	 � � � � � � � � � �

 � � � � 	 �
 � � � 	 C4 �
 :� � � � � � � � � � �

 � � � � 	 �
 � � � 4 1� 8 5 ?� � � � � � � � � � �

 � � � � � 	 �
 � � � +)$ > A! � � � � � � � � � � �

 � � � � 	 �
 � � � . A� � � � � � � � � � � � � �

 � � � �
 � ! � � � � � 	 ' � 0 5 6(/ :6� �

 � � � � 	 �
 �
 � � � " � � ! 	 � � � � � � � � �

 � � � � � 	 �
 �
 � � � " � � ! 	 �
 � � � � � � � � � �

 � � � � � � � $ � � � � �
 � � � " � � � " � � � � � � � � � � � � � � � �

 � � � � � 	 �
 � � � � � " � � � � � � � � � � � �

 � � � � � 	 �
 � � � � � " � � � � � � � % � 	 � � � � � � � � �

 � � � � � � � � � � � � ! 	 � � � � � (� � 	 � � � � � � � � �

 � � � � � 	 �
 �
 � � � " � � ! 	 � � � 	 � $ � � � � � � � � � �

 � � � � � � � � � � � ! 	 � �
 � � � " � � � % � � � � � � � � � �

 � �

 � �

 � � � � � 	 �
 � � � � � * � � �
 � � 	 . � � � � � � � �

 � � � � � � � ! � � � � �
 � � � � � � � � � � � � � � � � �

 � � � � � � 	 � �
 � � � � � � * � � 	 �
 � � � � � � � � �

 � � � � � � 	 � �
 � � � � � � � � � � � � � � * � � � � � � � �

 � � � � �
 ! � � � � ' � � % � ! � � � � # ! � �
 � (� � & � � � � � �

 � � � � � � � $ � � ! � � � � � � � � � �

 � � � � � � � $ � � � � � � � � �

 � � � � � � � $ � � � � �
 � � � " � � � " � � � � � � � � � � � � � �

 � � � � � � � � � � � � ! 	 � �
 � � � � � � * � � 	 " � � � % � � � � � � � �

 � � � � � � � � � � � � ! 	 � �
 � � � � � � * � � 	 " � � � ! � � � � � � � � � �

 � � � � �
 ! � � � � � � � � * � � � � � � � �

 � � � � � � � � � � � � ! 	 � � <� � 	 � � ! � 	 ' � � � � � � � �

 � � � � � � 	 � � � � � 	 � � � � * � � � � � � �

 � � � � � � 	 � � ! � � � $ � � � � * � � � � � � �

 � � � � � 	 � � � � � 	 � � � � � � � �

 � � � � �
 ! � � � % � � ' � � � � � � � � � � � � �

 �

 � � � � � � 	 � � �
)� � � � % � � � � � � �

 � �

 � �

 � �

 � �

 � �

 � � � � � � 	 � � # ! � �
 � � � � � � � � � �

 � � � � � � 	 � � # ! � �
 � � � % � � � � � � �

 �

 � �

 � �

 � �

 � �

 � �

 � �

 � � � � � � 	 � � # ! � �
 " � � � � � � �

 � � � � � � 	 � � # ! � �
 3 � � � � � � �

 �

 � �

 � � � � � � � ! � � � � � � � � � ! � � � � � � � � � � � �

 � � � �
 ! � � � � � � � � � � 	 � � � � � � � �

 � � � � � � 	 � � � � * � � 	 � � � � ! � � � � � � � � � �

 � � � � � � 	 � � � # � � � � � * � � � � � � �

 � � � � �
 ! � � � � � � � � � � � 	 � � � � � � � �

 � � � � � � � � � � � � � � �

 � � � � � � � � � � � � � � � � �

 � �

 � � �

 � � � � � � � � � � � � � � � � � � � � � �

 � � � � � � � � � � � � � � � � � � � �

 � � � � � � � � � � � � � � � �

 � � � � � � � � � � � � � � � � � � � �

 � � � � � � � � � � � � � � � � � � �

 � � � � � � � � � � � � � � � � � �

 � � � � � � � � � � � � � � � �

 � � � � � � � ! � � � � � � � � � � � � � � � � � �

 � � � � �
 ! � � � � � � � � � � � 	 � � � � � � � �

 � � � � �
 ! � � � � � � � * � � � � � � � �

 � � � � � � 	 � � # � � � � � � * � � � � � � �

 � � � � � � 	 � � � � � � � � � (� � � 	 (! � � (% � ' � � � � � � � �

 � � � � � � � 	 � � � � � � � � � % � � 	 � 6/ D" � � � � � � � � � � � �

 � � � � � � 	 � � � � � � � � � (� � � 	 (� � � (% � ' � � � � � � � �

 � � � � � � � 	 � � � � � � � � � % � � 	 � 1/ D" � � � � � � � � � � �

 � � � � � � � 	 � �
 ! � 	 � � � � � � � � � �

 � � � � � � � 	 � � � � � 	 � � � �)� � � � � � �

 � � � � � � � 	 � � � � � 	 � � � � � ' � � � � � � �

 � � � � � � � 	 � � � � � � � � � � � � � � � � � � �

 �

 � �

 � � � � � � � � � � � � � � � � � � � �

 � �

 � � � � � � 	 � �
 � � � � � � � � � � �

 � � � � � � 	 � �
 � � � � � � � � � � � � � � � � �

 � � � � � � 	 � �
 � � � � � � � � � � � " � � 	 � � � � � � � � �

 � � � � � � 	 � �
 � � � � � � � � � � � " � � � � � � 	 � � � � � � �

 � � � � � � 	 � �
 � � � � � � � � � � � " � � � � � � � � � � � � � � �
 � � � � � � � 	 � �
 � � � � � � � � � � � "
 � � �)� ! � � � � � � � � �

 � � � � � � 	 � �
 � � � � � � 	 � � ! � � � � � � �

 � � � � � � � 	 � � � � � � ! � 	 ' �
 � � (� � $ � � � � * � � � � � � � �

 � � � � � � � 	 � � � � $ � ! � � � � � 	 � � � � � � �

 � � � � � � � 	 � � � � * � � 	 � � � � � � � � � � � �

 � � � � � � � 	 � � � � � � ! � 	 ' � � � � 	 � � � � � * � � � � � � � �

 � � � � � � � � � � � � � � � � � � " ! � � � � ! �

 � � � � �
 ! � � � � � � � * � � � � � � � �

 � � � � � � � 	 � � 0 � � � ' C� 	 � 0 � � � ' C� 	 � � � � * � � � � � �

 � � � � � � � 	 � �
 ! � * � � � � � � � �

 � � � � � � � 	 � �
 ! � * � � � � � � � � � � �

 � � � � � �
 ! � � � � � � � � � � � 	 � � � � � � � �

 � � � � � � � � ! � � � � � # ! � �
 � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � � � � � � � �

 � � � � �
 ! � � � � � � � � � � � 	 � � � � � � �

 � � � � � � � 	 � � 	 � ! � � � * � � � � � � � �

 � � � � � � � 	 � � � �
 � 	 ! � � � � � � � �

 � � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � � �

 � � � � � �
 ! � � � � � � � * � � � � � � � �

 � � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � �

 � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � � �

 � � � � � �
 ! � � � � � � � � * � � � � � � �

 � � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � �

 � � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � � �

 � � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � � �

 � � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � �

 � � � � � � � � ! � � � � � 	 � � � � � � � � � � � � �

 � � � � � � $ � ! � � � � � � � �

 � � � � � � � � � � 	 � � � � � � � � � � �

 � � � � � � � � ! � � � � �)� � � � � � � � � � � � � �

 � � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � � �

 � � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � � �

 � � � � � � � � � � ! � � � � � � � � �

 � � � � � �
 ! � � � � � � � � � � � � 	 � � � � � � � �

 � � � � � � � � ! � � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � � � � � � � �

 � � � � � � � � ! � � � � � � � � � � � � � � � �

 � � � � � � � ! � � � � � � � � � � � � � �

 � � � � � � � � � � � � � � � � � �

 � � � � � � � � � � � � � � � �

 � � � � � � � � ! � # � � � � � � � � � � � �

(a) An example 3-host SODG for the at-
tack scenario in Fig. 1, with 1288 OS
objects from 143120 system calls. The
SIPPs hidden in it is highlighted in red.

����������
�	��������

�����������

���

���

���

���

���

���

���

���

���
���

���
���

���

���

���

���

���

���

���

���

���

��

��
��

��

��
���

���

��� ���

���

��� ���

���

���

���

���
���

���

���

���

����

����

���

���

���

���

��������

����

����

���

���

���
���

���

���
���

���
���

���
���

���

���

���

���

���

���

���

���

��� ���

���
���

���

���

���

���
���

���

���

���

���

���

���

���

���

������

���

���

����

����

���

���

����

����

����

����

���

���

���

���

���

����
����

����

����

����

����

���� ����

����

����

����
����

����

����

����

����
����

����

���
����

���

���

���

����

����

����

����

����

����

���
���

���� ����

����

����

����

����

����

����
����

����

����

����
����

����

����

����

����

����

����

���

���

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

(b) The red colored SIPPs hidden in (a),
with 175 OS objects. The trigger node is
highlighted in red and other verified ma-
licious nodes in grey.

Fig. 2. This figure is to show what the SODG and SIPPs are like. A box contains a
per-host SODG, in which a rectangle denotes a process, a diamond denotes a socket,
and an ellipse denotes a file. They look unreadable because of the fine granularity at
OS-level and the scale of network. Readers are not expected to understand the details.
A main merit of Patrol is that it can dig out SIPPs from the network-wide SODG.

build a network-wide system object dependency graph (SODG) using system
call traces. Since a system call is designed to be the only way to get service from
OS in modern operating systems, attackers have to talk to the system via system
calls. Therefore, although unknown exploits could not be seen by us, they can
be seen by SODG. Fig. 2a gives an example of a 3-host SODG.

To build a network-wide SODG, we first need to construct the SODG for each
host, namely per-host SODG. As in Definition 1, a per-host SODG is a directed
graph made up of OS objects (nodes) and dependency relations (directed edges)
between them. System calls are parsed to generate these nodes and edges. There
are several types of dependency relations. For example, system call read infers
that a process depends on a file (denoted as file→process), while write determines
that a file depends on a process (process→file). Table 1 gives the dependency
rules to help generate dependency relations from system calls. start and end
respectively denote the timestamp at which a system call is invoked and returned.

Definition 1. per-host System Object Dependency Graph
If the system call trace for the i-th host is denoted as Σi, then the per-host
SODG for the host is a directed graph G(Vi, Ei), where:

– Vi is the set of nodes, and initialized to empty set ∅;
– Ei is the set of directed edges, and initialized to empty set ∅;
– If a system call syscall∈Σi, and dep is the dependency relation parsed from

syscall according to dependency rules in Table 1, where dep∈{(src→sink),
(src←sink), (src↔sink)}, src and sink are OS objects (mainly a process,

540 J. Dai, X. Sun, and P. Liu

Table 1. System call dependency rules

Dependency Events System calls
process→file process modifies file write, pwrite64, rename, mkdir, linkat, link, sym-

linkat, symlink, fchmodat, fchmod, chmod, fchownat,
mount

file→process process uses but does not modify
file

stat64, lstat64, fstat64, open, read, pread64, execve,
mmap2, mprotect, linkat, link, symlinkat, symlink

process↔file process uses and modifies file open, rename, mount, mmap2, mprotect
process→process process creation or termination vfork, fork, kill
process↔process process creation clone
process→socket process writes socket write, pwrite64
socket→process process checks or reads socket fstat64, read, pread64
process↔socket process writes socket mount, connect, accept, bind, sendto, send, sendmsg,

recvfrom, recv, recvmsg
socket↔socket process reads or writes socket connect, accept, sendto, sendmsg, recvfrom, recvmsg

file or socket), then Vi = Vi∪{src, sink}, Ei = Ei∪{dep}. dep inherits times-
tamps start and end from syscall ;

– If (a→b)∈Ei and (b→c)∈Ei, then c transitively depends on a.

As shown in Definition 2, the network-wide SODG is constructed by recur-
sively concatenating the per-host SODGs. If and only if at least one directed
edge exists between two nodes from two different SODGs, these two SODGs can
be concatenated together (by the ∪ operation in Cantor set theory).

Definition 2. network-wide System Object Dependency Graph
If the per-host SODG for the i-th host is denoted as G(Vi, Ei), then the network-
wide SODG can be denoted as ∪G(Vi, Ei), where:

– ∪G(V2, E2)=G(V1, E1)∪G(V2, E2)=G(∪V2, ∪E2), iff ∃obj1∈V1, obj2∈V2

and dep1,2∈∪E2, where dep1,2∈{obj1←obj2, obj1→obj2, obj1↔obj2}. ∪V2 de-
notes V1∪V2, and ∪E2 denotes E1∪E2;

– ∪G(Vi, Ei)={∪G(Vi−1, Ei−1)}∪G(Vi, Ei)=G(∪Vi, ∪Ei), iff ∃obji−1∈∪Vi−1,
obji∈Vi and depi−1,i∈∪Ei, where depi−1,i∈{obji−1←obji, obji−1→obji, obji−1

↔obji}. ∪Vi denotes V1∪· · ·∪Vi, and ∪Ei denotes E1∪· · ·∪Ei.

The network-wide SODG is inherently a set of paths. A zero-day attack path
will be one of them if it exists. Hence, we propose to identify suspicious intrusion
propagation paths (SIPPs) in the network-wide SODG as candidate zero-day
attack paths.

As in Definition 3, the SIPPs are a subgraph of the network-wide SODG, of
which the OS objects are all “suspicious”: given a trigger node tn, they either
have affected tn through direct or transitive dependency relations before lat(tn),
or have been affected by tn after eat(tn). Trigger nodes refer to SODG objects
that are involved in the alerts from existing security sensors, such as Snort [21],
Tripwire [22], or our system itself.1 We assume trigger nodes can be noticed
by administrators. The SIPPs inherently reveal the attacker’s trace at OS level.

1 To reduce dependency on efficiency of security monitoring tools, Patrol implements
another mode: heavy mode, in which Patrol feeds itself with its own alerts as seeds.

Patrol 541

Fig. 2b gives an example of the SIPPs hidden in the 3-host SODG, using the
SSH socket (node 225) noticed from the Snort alert “SSH potential brute force
attack” as the trigger node.

Definition 3. Suspicious Intrusion Propagation Paths (SIPPs)
If the network-wide SODG is denoted as ∪G(Vi, Ei), where G(Vi, Ei) denotes
the per-host SODG for the i-th host, then the SIPPs are a subgraph of ∪G(Vi,
Ei), denoted as G(V ′, E′), where:

– V ′ is the set of nodes, and V ′⊂ ∪Vi;
– E′ is the set of directed edges, and E′⊂ ∪Ei;
– V ′ is initialized to include trigger nodes only;
– For ∀obj′∈V ′, if ∃obj∈ ∪Vi where (obj→obj′)∈ ∪Ei and start(obj→obj′)
≤lat(obj′), then V ′=V ′∪{obj} and E′=E′∪{(obj→obj′)}. lat(obj′) maintains
the latest access time to obj′ by edges in E′;

– For ∀obj′∈V ′, if ∃obj∈ ∪Vi where (obj′→obj)∈ ∪Ei and end(obj′→obj)
≥eat(obj′), then V ′=V ′∪{obj} and E′=E′∪{(obj′→obj)}. eat(obj′) main-
tains the earliest access time to obj′ by edges in E′.

A network-wide SODG can be unmanageably complex. A main merit of Patrol
is that it can dig out SIPPs from the network-wide SODG. The size of the
identified SIPPs is much smaller (see Table 4 in Appendix for the statistics of
the 3-host SODG and SIPPs in Fig 2). The SIPPs will include almost all the
zero-day attack paths. The only possible way for a zero-day attack path to escape
SIPPs is that it includes only zero-day exploits on all compromised hosts. This
is very rare and unlikely, because it’s almost impossible for attackers to exploit
only zero-day vulnerabilities along the path. Therefore, a zero-day attack path
will be a path in SIPPs if it exists. Section 3.5 will propose a method to help
recognize highly suspicious candidate zero-day attack paths among the SIPPs.

3 System Design

3.1 System Overview

Fig. 3 shows the overview of our system. It consists of four components:
System call auditing and filtering. We first perform system call auditing on

each host, and then send the system call traces from individual hosts to the
analysis machine after filtering (according to filtering rules). Among the four
components, only system call auditing and filtering is on the fly. The other three
are performed off-line, to reduce overhead imposed on individual hosts.

SODG graph generation. To construct a network-wide SODG, two steps are
needed: per-host SODG generation and inter-host SODG generation. First, the
collected system call logs are parsed based on dependency rules to build per-host
SODGs. Then, per-host SODGs are concatenated into a network-wide SODG.

SIPPs identification. To dig out the SIPPs “hidden” inside the network-wide
SODG, trigger nodes are used as seeds to track the forward and backward OS

542 J. Dai, X. Sun, and P. Liu

PATROL System

SODG Graph Generation

Host A

Host B

Host C

System call trace A

System call trace C

SODG A

SODG B

SODG C Alerts

SIPPs Matched Shadow
Indicators

Network-wide
SODG

System Call Auditing
and Filtering Per-host SODG Generation Inter-host SODG Generation

SIPPs Identification Shadow Indicator
Checking

Trigger Nodes Patrol Rules

On-line System Call Log Off-line Centric Analysis

System call trace B

Filtering
Rules

Dependency
Rules

Fig. 3. System overview of Patrol

dependencies across the boundaries of individual hosts. These dependencies iden-
tify the nodes and edges of SIPPs.

Shadow indicator checking. To help identify highly suspicious candidate zero-
day attack paths among the SIPPs, we also perform shadow indicator checking,
which is a new technique that we will present in Section 3.5.

3.2 System Call Auditing and Filtering

Several requirements are expected for system call auditing: 1) System call au-
diting should be done against all running processes, rather than against specific
processes. It’s hard to pre-determine which process to audit, so process-specific
system call auditing could miss important system calls that carry critical intru-
sion information. 2) System call auditing should be network-wide, meaning that:
first, all hosts of the network should be audited; second, the socket communi-
cations between hosts should be captured. Network-wide system call auditing is
the basis for identifying suspicious paths across hosts. 3) Sufficient OS-aware in-
formation should be preserved for accurate OS object identification. Due to the
reuse of process ID and file descriptor numbers, it’s inaccurate to identify system
processes and files solely by their IDs or descriptor numbers. 4) The time that
a system call is invoked and returned should be recorded. Time information can
later help determine whether a system call is involved in intrusion propagation.

Considering unfiltered data would cause more bandwidth/CPU costs on data
transfer and analysis, system calls are filtered before being sent to the analysis
machine. Some filtering rules are applied to prune system calls which involve
OS objects that are either highly redundant or possibly innocent. This is called
filtering preprocessing, which can boost the speed of graph generation and reduce
the complexity of resulted graphs. For example, we currently perform pruning
for the following objects: 1) The dynamic linked library files like libc.so.∗ and
libm.so.∗. They are loaded every time an executable is run, and thus cause a
lot of redundancy; 2) Dummy objects like stdin/stdout and /dev/null ; 3) Ob-
jects about pseudo-terminal master and slave (/dev/ptmx and /dev/pts); 4) Log
relevant objects like syslogd and /var/log/∗; 5) Objects relevant with system
maintenance (apt-get and apt-config). More filtering rules could be specified to

Patrol 543

prune more system calls, gaining better speed boosting. However, it also takes
more risk filtering out objects involved in vulnerability exploitations. Due to this
tradeoff, filtering rules for preprocessing are enabled as options.

After filtering, system call traces are sent to the analysis machine. Considering
accumulative data may cause bigger latency on data transfer and analysis, we
set a parameter called time window to tune the frequency of sending system call
logs. It is the periodic time span during which system calls are logged.

3.3 SODG Generation and Concatenation

System calls from individual hosts are used to construct per-host SODGs. A
per-host SODG can be constructed by first parsing system calls into OS objects
(process/file/socket) and dependency relations between them. OS objects then
become SODG nodes and dependency relations become SODG edges. Depen-
dency rules are proposed and used in related works [23–25] to help determine
dependency relation types according to specific system calls. Table 1 lists the
dependency rules used in Patrol. In addition to dependency rules, system call
arguments also contribute to the parsing. They are used to uniquely recognize
and name SODG nodes, and help infer the edge direction between them. For
example, system call “sys open, start:470880, end:494338, pid:6707, pname:scp,
pathname:/mnt/trojan, inode:9453574” from our trace is transformed to (6707,
scp)←(/mnt/trojan, 9453574), where pid and pname are used to recognize the
process, and pathname and inode are used to identify the file.

Hosts communicate with each other, hence a per-host SODG may have di-
rected edges to or from other per-host SODGs. This insight can be leveraged to
build the network-wide SODG by concatenating per-host SODGs. If and only
if there exists at least one directed edge between two nodes from two different
per-host SODGs, these two SODGs can be concatenated together. Such edges
can serve as the glue for concatenation. We find that directed edges between
per-host SODGs are usually caused by socket-based communications. A local
program can communicate with a remote program through message passing,
which can be captured by system call socketcall. Hence, two per-host SODGs can
be concatenated together by identifying and pairing socket objects. For exam-
ple, system call “sys accept, start:681154, end:681162, pid:4935, pname:sshd, sr-
caddr:172.18.34.10, srcport:36036, sinkaddr:192.168.101.5, sinkport:22” results
in a directed edge (172.18.34.10, 36036)→(192.168.101.5, 22), where a socket
object is denoted as a tuple (ip, port). This edge can be used to concatenate the
per-host SODGs of 172.18.34.10 and 192.168.101.5. The network-wide SODG
is constructed by recursively concatenating the per-host SODGs. First, two per-
host SODGs can be concatenated into a 2-host SODG. Then, the 3rd per-host
SODG can be glued to the 2-host SODG, the 4th per-host SODG glued to the
3-host SODG, and so on. The algorithm goes on recursively and ends when no
edge exists between any per-host SODG and the resulted network-wide SODG.

544 J. Dai, X. Sun, and P. Liu

3.4 SIPPs Identification

SIPPs identification is designed to dig out SIPPs from the network-wide SODG.
A benefit of the network-wide SODG is that intra-host forward and backward
dependency tracking can be extended across the boundaries of individual hosts.
Using trigger nodes as seeds, such inter-host dependency tracking identifies all
network SODG objects that have direct or transitive dependency relations to or
from trigger nodes, i.e. SIPPs by Definition 3. Hence, the SIPPs identification
begins with the recognition of trigger nodes. Trigger nodes could be files that
are deleted, added, or modified in unexpected ways, and processes that behave
in an unusual or malicious manner, such as conducting abnormal port scanning,
or making disallowed system calls. They are usually raised by security sensors
like Snort, Tripwire, etc., and noticed by administrators.

Trigger nodes are not necessarily the start of an intrusion. For example, what
an IDS detects could be later manifestation of the start. In that case, Patrol
will use trigger nodes to first perform backward tracking to find the intrusion
start, and then use the start to perform forward tracking. Basically, backward
dependency tracking is used to identify all the SODG objects that have directly
or transitively affected trigger nodes, and forward tracking is to identify objects
that have been affected by trigger nodes. In patrol, backward and forward de-
pendency tracking are both implemented based on breadth-first search (BFS)
algorithm [26], as depicted in Definition 3. In simple words, the SIPPs is initial-
ized to include only trigger nodes, and then BFS is recursively invoked to add new
nodes and edges from the network-wide SODG. For each object obj′ in SIPPs,
the latest and earliest access time are respectively maintained in lat(obj′) and
eat(obj′). In backward tracking, if obj′ depends on another object obj in SODG,
and the timestamp start of this dependency relation is earlier than lat(obj′), it
means that obj has affected obj′. So, obj and the dependency relation should be
added into SIPPs. Similarly, in forward tracking, if another object obj in SODG
depends on obj′, and the timestamp end of this dependency relation is later than
eat(obj′), it means that obj has been affected by obj′ and should be added into
SIPPs together with the dependency relation.

3.5 Shadow Indicator Checking

The SIPPs could still be complex. To further identify highly suspicious candidate
zero-day attack paths among the SIPPs, we propose the concepts of vulnerability
shadow and shadow indicator. These concepts are based on the observation that
vulnerabilities share some features. CWE [27] enumerates 693 common weak-
nesses, and CAPEC [28] classifies 400 common attack patterns. These common
features could exist in vulnerabilities found in a long time span, and even in
some future unknown vulnerabilities.

The concept of vulnerability shadow is much in the same spirit. But instead of
directly characterizing vulnerabilities, we propose to characterize exploitations
of them at the OS level. This is because, due to the existence of shared fea-
tures, exploitations of some vulnerabilities often result in similar characteristics

Patrol 545

shadow indicator:

node.name=page zero&

node.indegree>0&node.outdegree>0

CVE-2009-1897CVE-2009-1895 CVE-2009-2698CVE-2009-2695 CVE-2010-4346

unknown vulnerabilities
... ...
CVE-2009-2692

Fig. 4. A vulnerability shadow example: bypassing mmap min addr

in SODG. The insight here is that, the characteristics extracted from previous
exploitations of known vulnerabilities can be applied to detect the exploitation
of unknown vulnerabilities. We leverage this insight as follows: we define such
common characteristics as an indicator function, which is used to indicate mem-
bership of elements in set theory, and use this function to build a set. The
resulted set is a set of known and unknown vulnerabilities, whose exploitations
all have the common characteristics. Such a set is named vulnerability shadow,
and its set indicator function is called shadow indicator.

Definition 4. Vulnerability Shadow and Shadow Indicator
A vulnerability shadow is a Cantor set denoted as S ={v |p(SODG(v))}, where:
– v is a known or unknown vulnerability, whose exploitation is part of the

SODG represented as SODG(v);
– p, the shadow indicator for S, is a boolean-valued set indicator function:

SODG(v)→{true, false}. p can be a conjunction of several predicates, in a
form like p=p1&p2&· · ·&pn (n is a natural number), where for ∀1 ≤i≤ n, pi
is predicating an attribute of a node or edge in SODG(v), and & stands for
AND operation in logic (p is true, iff pi is true for ∀1 ≤i≤ n);

– v∈S, iff p(SODG(v))=true.

Fig. 4 shows an example vulnerability shadow bypassing mmap min addr,
with node.name=page zero&node.indegree>0&node.outdegree>0 as its shadow
indicator.2 This indicator was first observed in exploiting CVE-2009-1895 and
CVE-2009-1897, and then can be used to recognize the exploitations of CVE-
2009-2692, CVE-2009-2695, CVE-2009-2698, etc. A very intriguing implication
of vulnerability shadow is that, unknown vulnerabilities that do not have a CVE
ID yet could exist in this shadow, if and only if their exploitations can make the
shadow indicator become true.

Shadow indicators imply occurrence of an exploitation and should not appear
in legitimate paths. In addition to the trigger node, if other shadow indicators
appear on a path in SIPPs, the path is very likely to be an attack path. If

2 The kernel variable mmap min addr is tunable to specify the minimum virtual ad-
dress that a process is allowed to mmap. Bypassing mmap min addr makes a vi-
olation to map user-land page zero, which can be triggered later by null pointer
dereference to gain privileges. Page zero is parsed from mmap2 (null, 4096, ∗, ∗,
∗)=0 or mprotect(0, 4096, ∗)=0, where ∗ is the wildcard.

546 J. Dai, X. Sun, and P. Liu

no alerts from vulnerability scanners or traditional IDS can be associated with
any of these indicators, this path is reported as a highly suspicious candidate
zero-day attack path. Rule-based checking is employed to recognize the shadow
indicators in SIPPs. As Snort rules are developed for Snort to capture attack
signature at packet level, Patrol rules are invented for Patrol to capture shadow
indicators at OS level. A Patrol rule is like this: indicator indicator object (func-
tion: indicator function; msg: “vulnerability shadow name”).

Each rule specifies the object to check upon in indicator object. If no object is
specified, “any” is used to check on every object. Each rule contains the indicator
function in indicator function. The function specifies unexpected attribute values
of the nodes or edges in SIPPs. A message will display the name of the vulnerabil-
ity shadow when the function returns true. The following gives the Patrol rule for
checking the shadow indicator of bypsssing mmap min addr: indicator page zero
(function: indegree>0&outdegree>0; msg: “bypassing mmap min addr”).

The attributes used to specify indicator function include graph attributes and
system call attributes. The graph attributes like indegree (a node’s inward edge
number) and outdegree (outward edge number) allow us to characterize exploita-
tions from the perspective of graph. In addition to graph attributes, system call
attributes such as syscall (system call name), argument (arguments) and rtn
(return value) can also be taken into consideration. Patrol maintains associa-
tion between graph edges and corresponding system calls. Hence, system calls
can be revisited for inspection of its arguments and return values. For example,
the following Patrol rule is used to detect symlink inconsistency: indicator any
(function: outdegree=0&∃(syscall=linkat&rtn=0); msg: “symlink inconsistency
between request and creation”).3

4 Implementation

The system design is implemented into a prototype named Patrol, through ap-
proximately 5493 lines of code, which include about 2411 lines of C code for a
loadable kernel module auditing 39 system calls, and 3082 lines of gawk code for
data analysis which produces dot-compatible [29] output for graph visualization.

System Call Auditing and OS-Aware Reconstruction. Patrol hooks sys-
tem calls via a loadable kernel module, which can audit all running processes.
Interested system calls are audited, including those encapsulated in system call
socketcall, such as sys accept, sys sendto, etc. In the module, codes are inserted
to each system call to 1) record its arguments and return values; 2) refer OS
kernel data structures, retrieving process descriptor from task struct and file de-
scriptor from files struct. The OS-aware information such as process descriptors,
absolute file paths and inode numbers are preserved for accurate OS object iden-
tification. The timestamps start and end respectively record the time that the

3 If a symbolic link created is inconsistent with the one requested, an attacker can
exploit race condition to make arbitrary code executed as the requested link is ref-
erenced. Because linkat has other alternatives like symlinkat, link, and symlink, this
rule has several siblings.

Patrol 547

system call is invoked and returned. The resulted kernel module supports Linux
kernel versions 2.6.24 through 2.6.32.

Graph Representation and Edge Aggregation. We represent our graphs
with an adjacency matrix (Map) because during SODG generation and SIPPs
identification we need to quickly look up if there is already an existing edge
connecting two nodes. With adjacency matrix, the query takes only O(1) time,
while with other data structures it may take O(|v|) or O(|e|) time, where |v|
and |e| are respectively the number of nodes and edges in a graph. For each
pair of SODG nodes (srcObj and sinkObj), there could be a large number of
edges between them. The edges are caused by different system calls or the same
system call with different timestamps. Our implementation aggregates them into
a single one, maintaining the matrix cell (Map[srcObj, sinkObj]) to count the
number of edges, and a timestamp list (tMap[srcObj, sinkObj]) to associate this
aggregated edge with different timestamps.

Light Mode and Heavy Mode. To reduce dependency on efficiency of the
traditional security sensors, Patrol implements another mode: heavy mode, in
which Patrol feeds itself with its own alerts as seeds. In light mode, Patrol gets
fed with trigger nodes, identifies SIPPs, and continues with rule-based checking
against SIPPs to detect if shadow indicators exist. In heavy mode, it doesn’t use
any trigger nodes from other tools. Instead, it directly matches shadow indicators
against the whole network-wide SODG. If any shadow indicators are matched,
they are then used as trigger nodes to initiate the light-mode running. That is, a
heavy mode can be run to replace the role of security sensors, but it also causes
heavier workload. For example, the heavy mode can detect the brute-force attack
exploiting CVE-2008-0166 in seconds after the SODG is built, without relying
on any Snort alert. This paper focuses on illustration of light mode.

5 Evaluation

5.1 Experimental Setup

The ideal environment to evaluate Patrol is a real-world enterprise network. How-
ever, accesses to production kernels are tightly controlled by policy. We therefore
built a web-shop test-bed for evaluation. Fig. 1 illustrates the test-bed network,
which is set up with firewalls, Nessus [30], Oval [31], Snort, Wireshark [32],
Ntop [33] and Tripwire. The hosts are typically deployed with Dell PowerEdge
T310 with two 2.53GHz Intel(R) Xeon(R) X3440 quad-core processor and 4GB
of RAM running 32-bit Linux 2.6.24 through 2.6.32.

We implemented the attack scenario in Fig. 1. In order to produce zero-day
attack paths, the attacks have to exploit unknown vulnerabilities. However, a
typical zero-day attack can remain undisclosed for 312 days on average [34]. Due
to such lack of zero-day resources, we emulate unknown vulnerabilities by using
published vulnerabilities. Our strategy is to tune the “time” back to a history
date and assume vulnerabilities published after that date are still unknown.

548 J. Dai, X. Sun, and P. Liu

Step 1: brute-force attack to SSH server.
shadow indicator: brute-force attack

Step 2: trojan-horse file uploaded to /exports on NFS Server.
shadow indicator: illegal file write access

Step 3: page-zero triggered by null pointer dereference to gain privilege on Workstation 1.
shadow indicator: bypassing mmap_min_addr

Fig. 5. The zero-day attack path p1 dug out from the SIPPs (Fig. 2b) by Patrol,
capturing the 3-step attack in the attack scenario. The identified shadow indictors are
highlighted in red color. The grey nodes are proved to be malicious during verification.

Such emulation enables us to evaluate the correctness of our approach, because
1) timelines can be maintained for vulnerability shadows to make sure that no
specific knowledge of the emulated vulnerabilities is needed; 2) the exploit code
and other information about the emulated vulnerabilities can be available for
verification. This paper assumes that the time is tuned to August 1, 2009, so that
CVE-2008-0166 becomes the only known vulnerability in the attack scenario.

5.2 Correctness

Of all the vulnerabilities in the attack scenario, only the exploit of CVE-2008-
0166 triggered an alert “SSH potential brute force attack” from Snort. Hence,
both of the zero-day attack paths p1 and p2 in the attack scenario were missing.
In contrast, using the SSH socket (node 225 in the figures) noticed from the Snort

-2

-1

0

1

2

3

4

5

6

7

8

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425

of

 fa
lse

 n
eg

at
iv

es

 #
 o

f
fa

lse
 p

os
it

iv
es

brute-force threshold (in-degrees/minute)

1 request/6 seconds 1 request/5 seconds 1 request/4 seconds

1 request/3 seconds 1 request/2 seconds 1 request/1 seconds

Fig. 6. False positives and negatives of shadow
indicator checking for brute-force attack

alert as the trigger node, Pa-
trol successfully identified both p1
and p2 at the OS level. Fig. 5 and
Fig. 7 respectively illustrate p1 4

and p2. Since p2 and p1 share the
same Step 1 and Step 2, Fig. 7
only shows the Step 3 of p2.

We verified the correctness of
p1 and p2, by comparing the
nodes and edges on them with the

4 There were hundreds of socket communications coming from different ports of the
same malicious IP (192.168.202.2) to node 225. For simplicity, only three of them
are illustrated.

Patrol 549

Step 3: symlink inconsistency exploited

to win race condition on Workstation 2

shadow indicator: symlink inconsistency

between request and creation

Fig. 7. Step 3 of the zero-day at-
tack path p2 identified by Patrol.
The red and green dotted lines
respectively denote the execution
of the attack processes and in-
nocent processes. The red lines
replaced the requested symlink
/tmp/ls (79) with malicious code
/tmp/evil (78), which was later
referenced by the the innocent
process ls (115). The identified
shadow indictor is highlighted in
red color. The grey nodes are
proved to be malicious during ver-
ification.

intrusion knowledge extracted from the exploit code, the CVE entries in NVD
[35] and the documentation of corresponding vulnerable applications. We marked
the nodes in Fig. 5 and Fig. 7 with grey color if they were verified to be mali-
cious. It shows that Patrol correctly captured the malicious objects interacting
with each other to accomplish the intrusion break-in and propagation.

We also evaluated the false positives of the shadow indicator checking on the
two identified paths. For this, we kept Patrol running intensively for 72 hours
against a variety of applications and services in the test-bed. It turns out that the
false positive rate of shadow indicator checking is indicator-specific. For example,
the indicator checking for bypassing mmap min addr and symlink inconsistency
got 0 false positives, while the indicator checking for brute-force attack had
false positives varying with the setup of a parameter and the workload of the
host. The brute-force shadow indicator (node.indegree>thresholdbruteforce) uses
thresholdbruteforce to specify the maximum in-degree per minute allowed for a
SODG node. Fig. 6 illustrates the impact of thresholdbruteforce on false positives
and negatives for SSH Server. As the threshold increases, the false positives first
decrease and then stay at 0 until the false negative appears. As the request speed
increases, the false positives increase and a bigger threshold is needed.

Furthermore, the above false positives can be tolerated by Patrol to some
extent. For example, for brute-force shadow indicator checking, the false alarmed
objects include: 1) DNS related process (avahi-daemon) or sockets (port 53 or
5353); 2) uninitialized sockets (port 0); 3) dynamic linked library files. However,
none of them were on the same SIPPs with other shadow indicators. Hence, with
the help of SIPPs, most of the false positives could be eliminated.

5.3 Efficiency

Time window size and filtering preprocessing are two important factors impact-
ing the efficiency of Patrol data analysis. Time window is the periodic time span

550 J. Dai, X. Sun, and P. Liu

Table 2. Statistics for time window based tests on data analysis

time window size (mins) 5 15 25 35 45 55
of syscalls in filtered log 17550 52649 87748 122848 157947 193047
time overhead of SODG generation (s) 44.94 108.88 278.52 601.93 1097.33 1836.47
of objects in SODG 526 1425 2326 3227 4101 4977
time overhead of SIPPs identification (s) 0.91 7.54 22.75 48.79 76.75 107.02
of objects on SIPPs 374 1094 1811 2519 3209 3903
time overhead of indicator checking (s) 0.004 7.033 18.149 31.159 60.932 76.497
total overhead (s) 52.26 142.30 350.90 726.58 1291.95 2089.31
syscall generation speed (KB/s) 1.02 1.027 1.034 1.033 1.032 1.034
data analysis speed (KB/s) 5.839 6.498 4.418 2.985 2.157 1.634
storage size (raw)(MB) 2.731 8.189 13.65 19.107 24.568 30.026
storage size (compressed)(MB) 0.298 0.903 1.514 2.118 2.722 3.333

during which system calls are collected and analyzed. All the evaluation results
in this subsection use the arithmetic mean averaging over 10 runs of tests.

Impact of Time Window Size. We set the time window size to values from
5 mins to 55 mins. Table 2 illustrates the statistics of Patrol data analysis for
SSH server. To get overhead under heavy workload, requests were loaded to SSH
Server at the speed of 1 request per 5 seconds. Data analysis spends time mainly
on SODG generation, SIPPs identification and shadow indicator checking. Fig. 8
plots the time overheads. The results show that SODG generation dominates the
time overhead, and its computation cost increases approximately quadratic with
the time window size. The time overheads of SIPPs identification and shadow
indicator checking tend to be linear and relatively much smaller. Fig. 9 shows
that the speed of Patrol data analysis is maximized when time window size is 15
mins. This speed is far beyond the system call generation. We also noticed that
the caused latency is about 2.37 mins, and the storage requirement is about 0.085
GB/day. Today’s hard disk is large enough to accommodate this substantial
amount of log traffic. Considering the test is done in quite request-intensive
workload, both the time and storage overheads are reasonable. We therefore
determine the time window size for the test-bed network to be 15 mins.

0

500

1000

1500

2000

2500

5 15 25 35 45 55

tim
e

ov
er

he
ad

 (i
n

se
co

nd
s)

time window size (in minutes)

SODG generation time

SIPPs identification time

shadow indicator
checking time

total time

Fig. 8. Time overhead of Patrol data
analysis varying with time window size

0

1

2

3

4

5

6

7

5 15 25 35 45 55

sp
ee

d
(K

B/
se

co
nd

)

time window size (in minutes)

syscall generation speed

data analysis speed

Fig. 9. Patrol data analysis speed vs. sys-
tem call generation speed

The above results are theoretically supported. SODG generation checks each
existing object to avoid duplication before adding new objects. Hence, the com-
putational complexity of SODG generation can be O(|v|2). The SIPPs identifi-
cation is using the BFS algorithm, thus its time complexity is O(|v| + |e|) [26],

Patrol 551

Table 3. Comparison results between filtered and unfiltered data analysis

SSH Server NFS Server Workstation 1
filtered/unfiltered filtered unfiltered filtered unfiltered filtered unfiltered
of syscalls in log 22249 82133 11761 14944 21722 46043
time overhead on SODG(s) 58.38 1812.966 42.286 48.447 51.012 101.138
of objects 650 15960 34 210 604 1007
of processes 230 273 7 121 106 138
of files 248 15515 17 79 473 844
of sockets 171 171 10 10 23 23
of dependencies 18697 97805 11813 15056 19649 43712

where |v| and |e| are respectively the number of nodes and edges in SODG.
The shadow indicator checking checks each object and dependency of SIPPs in
worst case, therefore its complexity is also O(|v′| + |e′|), where |v′| and |e′| are
respectively the number of nodes and edges in SIPPs.

Impact of Filtering Preprocessing. Table 3 summarizes the SODG genera-
tion time with filtering enabled and disabled respectively. The results show that
unfiltered data costs more time than filtered data. The worst case overhead is
the unfiltered SODG generation for SSH Server. It spent about half an hour.
The large overhead is mainly because the algorithm checks each existing object
to avoid duplication before adding new objects. When the system object number
reaches very high, such as 15960 in this case, the time cost rises very quickly.
We also noticed that among these objects, the number of files is extremely large
as 15515. The filtered SODG generation costs less than one minute because a
large number of these files are effectively pruned by filtering rules.

5.4 Performance Overhead

We use LMBench [36] to measure the performance impact of Patrol on individual
core kernel system calls. The outputs show that the addon overhead of most
modified system calls in Patrol is within 10%. Some of them are even working
with negligible overhead, such as sys read and sys write. The worst case overhead
is 52.7% for sys stat and 175% for sys fstat. These results are to be expected,
because of the relatively small amount of work done in each call compared to
the work of recording OS-aware object information. For example, 175% is larger
than 52.7% because of the smaller denominator, but in both cases the imposed
overhead was equally 0.3-0.4 microseconds. The common case is much better.

We use UnixBench to measure the slow-down of the whole system that or-
chestrates the above individual system calls together. The outputs show that
the performance overhead of Patrol is 20.8% for the whole system, with larger
overhead to I/O-intensive applications than CPU-intensive applications. We also
use kernel decompression and kernel compilation to measure the system perfor-
mance of Patrol in intensive workload. The results show that the two workloads
impose 15.93% overhead and 20.34% overhead on the system.

552 J. Dai, X. Sun, and P. Liu

5.5 Scalability

Regarding the scalability, let’s consider the main overhead imposed on band-
width, SODG generation and SIPPs identification for an enterprise network
equipped with 10000 hosts, 10 GB/s network bandwidth and a HPC cluster
of 640 processor cores (20 processors with 32 cores per processor).

With converging traffic from hosts to the cluster, the bandwidth cost will be
about 10000 times the system call generation speed for each host. Taking the
speed 1.027 KB/s from Table 2, the bandwidth overhead is about 10.029 MB/s
which only occupies less than 1% of total bandwidth.

The SODG generation costs time mainly on per-host SODG generation which
is a parallelizable task (α=0 in Equation 1). Given the data collected in 1 time
window, the SODG generation time for 10000 hosts is estimated to be 28.35
minutes according to the following Gustafson’s law, taking single-host SODG
generation overhead as 108.88 seconds from Table 2.

t1
tp

= p− α(p− 1) = α+ p(1− α) (1)

where p is the number of processors for parallel computing, α is the fraction
of running time a program spends on non-parallelizable parts, t1 is the execution
time of the sequential algorithm, and tp is the execution time with maximum
speed-up under parallelization of the program.

SIPPs identification from a trigger node is non-parallelizable (α=1) due to the
sequential nature of dependency tracking. Hence, the SIPPs identification time
increases linearly with the host-length of SIPPs (l). Its maximum can be esti-
mated by constructing service dependency transitive closure (“host A can reach
host B through one or more service dependencies”) in enterprise network. Let’s
suppose l=100, and the SIPPs identification time will be about 12.57 minutes,
taking time overhead of single-host SIPPs identification as 7.54 seconds from Ta-
ble 2. SIPPs identification from different trigger nodes and branching in SIPPs
identification can be done in parallel. As long as the number of trigger nodes
and branches don’t exceed p, SIPPs identification can be easily handled within
12.57 minutes. We make conservative estimation by α=1, hence the efficiency
for parallel computing can be better in reality than estimated.

6 Related Work

Patrol draws inspirations from previous research such as system call-based in-
trusion detection and system object dependency tracking.

System calls are used in pioneer works by Forrest et al. [11] and Lee et al. [12]
for intrusion detection. System call-based IDS mainly leverages statistical prop-
erties of system call sequence [13] [14] and system call arguments [16] [17].
Bhatkar et al. further takes into account the temporal properties involving ar-
guments of different system calls [18]. Instead of providing individual intrusion

Patrol 553

alerts, the aim of Patrol is to identify zero-day attack paths through network-
wide dependencies parsed from system calls. These paths provide network-wide
attack context, and help detect unknown vulnerability exploitations.

System object dependency tracking is first proposed by King et al. [23] to au-
tomatically identify sequences of intrusion steps. The follow-up works [37] [38]
further propose to integrate system object dependency tracking and alert correla-
tion techniques. Given a large number of existing IDS alerts, these works target
on identifying their correlations. In contrast, Patrol takes an inverse strategy
to first identify SIPPs hidden in the network-wide SODG, and then recognize
unknown vulnerability exploitations on these paths.

7 Discussion and Conclusion

In addition to the promising potentials, the current version of Patrol may face
challenges such as 1) If an attack path goes through a victim machine hosting
kernel mode service like nfs-kernel-server, Patrol may lose trace halfway since it
relies on system call interface; 2) If an attack is a long-term attack, Patrol may
successfully capture its intrusion propagation paths at different time spans, but
fail to correlate them.

In conclusion, this paper identifies the problem of zero-day attack paths in
practical network defense. This paper proposes a prototype system named Pa-
trol. By building a network-wide system object dependency graph, identifying
suspicious intrusion propagation paths in it, and recognizing shadow indicators
on these paths, Patrol can dig out the zero-day attack paths at runtime.

Acknowledgments. We want to thank the anonymous reviewers for their valu-
able and helpful comments. This work was supported by ARO W911NF-09-1-
0525 (MURI), NSF CNS-0905131, AFOSR W911NF1210055, and ARO MURI
project “Adversarial and Uncertain Reasoning for Adaptive Cyber Defense:
Building the Scientific Foundation”.

References

1. Sheyner, O., Haines, J., Jha, S.: Automated generation and analysis of attack
graphs. IEEE Oakland (2002)

2. Jajodia, S., Noel, S., O’Berry, B.: Topological analysis of network attack vulnera-
bility. Managing Cyber Threats: Issues, Approaches and Challanges (2003)

3. Ou, X., Govindavajhala, S., Appel, A.W.: MulVAL: A logic-based network security
analyzer. In: USENIX Security (2005)

4. Wang, L., Jajodia, S., Singhal, A., Cheng, P., Noel, S.: k-Zero day safety: A network
security metric for measuring the risk of unknown vulnerabilities. In: TDSC (2013)

5. Albanese, M., Jajodia, S., Singhal, A., Wang, L.: An efficient approach to assessing
the risk of zero-day vulnerabilities. In: SECRYPT (2013)

6. Long, J.: Google Hacking for Penetration Testers. Syngress (2007)
7. McClure, S.: Hacking Exposed: Network Security Secrets and Solutions. McGraw-

Hill (2009)
8. Network Penetration Testing. MosaicSecurity.com.

https://mosaicsecurity.com/categories

https://mosaicsecurity.com/categories

554 J. Dai, X. Sun, and P. Liu

9. Debar, H., Wespi, A.: Aggregation and correlation of intrusion-detection alerts.
In: Lee, W., Mé, L., Wespi, A. (eds.) RAID 2001. LNCS, vol. 2212, pp. 85–103.
Springer, Heidelberg (2001)

10. Valdes, A., Skinner, K.: Probabilistic alert correlation. In: Lee, W., Mé, L., Wespi,
A. (eds.) RAID 2001. LNCS, vol. 2212, pp. 54–68. Springer, Heidelberg (2001)

11. Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A sense of self for unix
processes. IEEE Oakland (1996)

12. Lee, W., Stolfo, S.J., Chan, P.K.: Learning patterns from unix process execution
traces for intrusion detection. In: AI Approaches to Fraud Detection and Risk
Management (1997)

13. Kosoresow, A.P., Hofmeyer, S.A.: Intrusion detection via system call traces. IEEE
Software (1997)

14. Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion detection using sequences of
system calls. Journal of Computer Security (1998)

15. Wagner, D., Dean, D.: Intrusion Detection via Static Analysis. IEEE Oakland
(2001)

16. Kruegel, C., Mutz, D., Valeur, F., Vigna, G.: On the detection of anomalous system
call arguments. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS,
vol. 2808, pp. 326–343. Springer, Heidelberg (2003)

17. Tandon, G., Chan, P.: Learning rules from system call arguments and sequences
for anomaly detection. In: ICDM DMSEC (2003)

18. Bhatkar, S., Chaturvedi, A., Sekar, R.: Dataflow anomaly detection. IEEE Oakland
(2006)

19. Sekar, R., Gupta, A., Frullo, J., Shanbhag, T.: Specification-based Anomaly De-
tection: A New Approach for Detecting Network Intrusions. In: ACM CCS (2002)

20. Ko, C., Ruschitzka, M., Levitt, K.: Execution Monitoring of Security-Critical Pro-
grams in Distributed Systems: A Specification-Based Approach. IEEE Oakland
(1997)

21. Snort. Sourcefire, Inc., http://www.snort.org
22. Tripwire. Tripwire, Inc., http://www.tripwire.com
23. King, S.T., Chen, P.M.: Backtracking intrusions. In: ACM SOSP (2003)
24. Xiong, X., Jia, X., Liu, P.: Shelf: Preserving business continuity and availability in

an intrusion recovery system. In: ACSAC (2009)
25. Goel, A., Po, K., Farhadi, K., Li, Z., de Lara, E.: The taser intrusion recovery

system. In: ACM SOSP (2005)
26. Knuth, D.E.: The Art Of Computer Programming (1997)
27. CWE. MITRE, http://cwe.mitre.org
28. CAPEC. MITRE, http://capec.mitre.org
29. Graphviz, http://www.graphviz.org
30. Nessus. Tenable Network Security, http://www.tenable.com
31. Oval. MITRE, http://oval.mitre.org
32. Wireshark. Wireshark Foundation, http://www.wireshark.org
33. Ntop, http://www.ntop.org
34. Bilge, L., Dumitras, T.: An Empirical Study of Zero-Day Attacks In The Real

World. In: ACM CCS (2012)
35. NVD. MITRE, http://nvd.nist.gov
36. McVoy, L.W., Staelin, C.: lmbench: Portable Tools for Performance Analysis. In:

USENIX (1996)
37. King, S.T., Mao, Z.M., Lucchetti, D.G., Chen, P.M.: Enriching intrusion alerts

through multi-host causality. In: NDSS (2005)
38. Zhai, Y., Ning, P., Xu, J.: Integrating IDS alert correlation and OS-Level depen-

dency tracking. In: IEEE Intelligence and Security Informatics (2006)

http://www.snort.org
http://www.tripwire.com
http://cwe.mitre.org
http://capec.mitre.org
http://www.graphviz.org
http://www.tenable.com
http://oval.mitre.org
http://www.wireshark.org
http://www.ntop.org
http://nvd.nist.gov

Patrol 555

Appendix

Table 4. Statistics for the 3-host SODG and SIPPs in Fig 2

metrics SSH Server NFS Server Workstation 1

time window size (in minutes) 15 15 15

of syscalls in unfiltered log 82133 14944 46043

of syscalls in filtered log 22249 11761 21722

growth rate of compressed syscall log (GB/day) 0.126 0.019 0.065

of objects in graph 650 34 604

of processes in graph 230 7 106

of files in graph 248 17 473

of sockets in graph 171 10 23

of dependencies in graph 18697 11813 19649

of inter-host dependencies from last host in graph 50 11 1

of inter-host dependencies to next host in graph 1 11 0

average indegree/outdegree in graph 29 347 33

max indegree in graph 8640 8478 12909

object index of max indegree in graph 543 661 1123

max outdegree in graph 9908 8294 12784

object index of max outdegree in graph 225 663 1153

of objects in SIPPs 26 6 143

of processes in SIPPs 8 1 62

of files in SIPPs 3 2 75

of sockets in SIPPs 15 3 5

of dependencies in SIPPs 8905 11664 4059

of inter-host dependencies from last host in SIPPs 14 1 1

of inter-host dependencies to next host in SIPPs 1 8 0

average indegree/outdegree in SIPPs 343 1944 28

max indegree in SIPPs 8581 8442 410

object index of max indegree in SIPPs 543 661 808

max outdegree in SIPPs 8686 8280 2373

object index of max outdegree in SIPPs 225 663 783

	Patrol: Revealing Zero-Day Attack Paths through Network-Wide System Object Dependencies
	1 Introduction
	1.1 Zero-Day Attack Paths
	1.2 Possible Solutions
	1.3 Key Insights and Our Approach

	2 Models and Assumptions
	3 System Design
	3.1 System Overview
	3.2 System Call Auditing and Filtering
	3.3 SODG Generation and Concatenation
	3.4 SIPPs Identification
	3.5 Shadow Indicator Checking

	4 Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 Correctness
	5.3 Efficiency
	5.4 Performance Overhead
	5.5 Scalability

	6 Related Work
	7 Discussion and Conclusion
	References

