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Abstract. Beimel and Orlov proved that all information inequalities on
four or five variables, together with all information inequalities on more
than five variables that are known to date, provide lower bounds on the
size of the shares in secret sharing schemes that are at most linear on the
number of participants. We present here another negative result about
the power of information inequalities in the search for lower bounds in
secret sharing. Namely, we prove that all information inequalities on a
bounded number of variables only can provide lower bounds that are
polynomial on the number of participants.
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1 Introduction

Secret sharing schemes, which were independently introduced by Shamir [27]
and Blakley [6], make it possible to distribute a secret value into shares among
a set of participants in such a way that only the qualified sets of participants
can recover the secret value, while no information at all on the secret value is
provided by the shares from an unqualified set. The qualifed sets form the access
structure of the scheme.

This work deals with the problem of the size of the shares in secret sharing
schemes for general access structures. The reader is referred to [2] for an up-to-date
survey on this topic. Even though there exists a secret sharing scheme for every
access structure [20], all known general constructions are impractical because
the size of the shares grows exponentially with the number of participants. The
general opinion among the researchers in the area is that this is unavoidable.
Specifically, the following conjecture, which was formalized by Beimel [2], is
generally believed to be true. It poses one of the main open problems in secret
sharing, and a very difficult and intriguing one.

Conjecture 1. There exists an ε > 0 such that for every integer n there is an
access structure on n participants, for which every secret sharing scheme dis-
tributes shares of length 2εn, that is, exponential in the number of participants.

Nevertheless, not many results supporting this conjecture have been proved. No
proof for the existence of access structures requiring shares of superpolynomial
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size has been found. Moreover, the best of the known lower bounds is the one
given by Csirmaz [9], who presented a family of access structures on an arbitrary
number n of participants that require shares of size Ω(n/ logn) times the size of
the secret.

In contrast, superpolynomial lower bounds on the size of the shares have been
obtained for linear secret sharing schemes [1, 3, 17]. In a linear secret sharing
scheme, the secret and the shares are vectors over some finite field, and both
the computation of the shares and the recovering of the secret are performed
by linear maps. Because of their homomorphic properties, linear schemes are
needed for many applications of secret sharing. Moreover, most of the known
constructions of secret sharing schemes yield linear schemes.

Similarly to the works by Csirmaz [9] and by Beimel and Orlov [5], we analyze
here the limitations of the technique that has been almost exclusively used to find
lower bounds on the size of the shares. This is the case of the bounds in [7–9, 21]
and many other papers. Even though it was implicitly used before, the method
was formalized by Csirmaz [9]. Basically, it consists of finding lower bounds on
the solutions of certain linear programs. This method provides lower bounds on
the information ratio of secret sharing schemes, that is, on the ratio between
the maximum size of the shares and the size of the secret.

The constraints of those linear programs are derived from the fact that certain
linear combinations of the values of the joint entropies of the random variables
defining a secret sharing scheme must be nonnegative. These constraints can be
divided into two classes.

1. The first class is formed by the constraints that are derived from the access
structure. Namely, from the fact that the qualified subsets can recover the
secret while the unqualified ones have no information about it.

2. The second class is formed by constraints derived from information inequal-
ities that hold for every collection of random variables.

In the second class, the constraints derived from the so-called Shannon inequal-
ities are always considered. These basic information inequalities are equivalent
to the conditional mutual information being nonnegative, and equivalent also
to the fact that the joint entropies of a collection of random variables define a
polymatroid [15, 16].

Csirmaz [9] proved that, by taking only the Shannon inequalities in the sec-
ond class, one obtains lower bounds that are at most linear on the number of
participants. This was proved by showing that every such linear program admits
a small solution.

One may expect that better lower bounds should be obtained by adding to
the second class new constraints derived from the non-Shannon information
inequalities, which are the ones that cannot be derived from the basic Shannon
inequalities. The existence of such inequalities was unknown when Csirmaz [9]
formalized that method. The first one was presented by Zhang and Yeung [30]
and many others have been found subsequently [11, 13, 23, 29]. When deal-
ing with linear secret sharing schemes, one can improve the linear program by
using rank inequalities, which apply to configurations of vector subspaces or,
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equivalently, to the joint entropies of collections of random variables defined
from linear maps. It is well-known that every information inequality is also a
rank inequality. The first known rank inequality that cannot be derived from
the Shannon inequalities was found by Ingleton [19]. Other rank inequalities
have been presented afterwards [12, 22]. Indeed, better lower bounds on the
information ratio have been found for some families of access structures by
using non-Shannon information and rank inequalities [4, 10, 24, 25].

Nevertheless, Beimel and Orlov [5] presented a negative result about the power
of non-Shannon information inequalities to provide better general lower bounds
on the size of the shares. Specifically, they proved that the best lower bound that
can be obtained by using all information inequalities on four and five variables,
together with all inequalities on more than five variables that are known to date,
is at most linear on the number of participants. Specifically, they proved that
every linear program that is obtained by using these inequalities admits a small
solution that is related to the solution used by Csirmaz [9] to prove his negative
result. They used the fact that there exists a finite set of rank inequalities that,
together with the Shannon inequalities, span all rank inequalities, and hence all
information inequalities, on four or five variables [12, 18]. By executing a brute-
force algorithm using a computer program, they checked that Csirmaz’s solution
is compatible with every rank inequality in that finite set. In addition, they
manually executed their algorithm on a symbolic representation of the infinite
sequence of information inequalities given by Zhang [29]. This sequence contains
inequalities on arbitrarily many variables and generalizes the infinite sequences
from previous works.

In particular, the results in [5] imply that all rank inequalities on four or five
variables cannot provide lower bounds on the size of shares in linear secret
sharing schemes that are better than linear on the number of participants.
Unfortunately, their algorithm is not efficient enough to be applied on the known
rank inequalities on six variables.

We present here another negative result about the power of information
inequalities to provide general lower bounds on the size of the shares in secret shar-
ing schemes. Namely, we prove that every lower bound that is obtained by using
rank inequalities on at most r variables is O(nr−2), and hence polynomial on the
number n of participants. Since all information inequalities are rank inequalities,
this negative result applies to the search of lower bounds for both linear and
general secret sharing schemes. Therefore, information inequalities on arbitrar-
ily many variables are needed to find superpolynomial lower bounds by using
the method described above.

The proof is extremely simple and concise. Similarly to the proofs in [5, 9],
it is based on finding small solutions to the linear programs that are obtained
by using rank inequalities on a bounded number of variables. These solutions
are obtained from a family of polymatroids that are uniform and Boolean. This
family contains the polymatroids that were used in [5, 9].

In some sense, our result is weaker than the one in [5], because for r = 4
and r = 5, our solutions to the linear programs do not prove that the lower
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bounds must be linear on the number of participants, but instead quadratic and
cubic, respectively. But in another sense our result is much more general because
it applies to all (known or unknown) rank inequalities. In addition, our proof
provides a better understanding on the limitations of the use of information
inequalities in the search of lower bounds for secret sharing schemes.

2 Polymatroids, Rank Inequalities and Information
Inequalities

Some basic concepts and facts about polymatroids that are used in the paper
are presented here. A more detailed presentation can be found in textbooks on
the topic [26, 28]. For a finite set Q, we notate P(Q) for the power set of Q, that
is, the set of all subsets of Q.

Definition 1. A polymatroid is a pair S = (Q, f) formed by a finite set Q, the
ground set, and a rank function f :P(Q) → IR satisfying the following properties.

– f(∅) = 0.
– f is monotone increasing: if X ⊆ Y ⊆ Q, then f(X) ≤ f(Y ).
– f is submodular: f(X ∪Y )+ f(X ∩Y ) ≤ f(X)+ f(Y ) for every X,Y ⊆ Q.

A polymatroid is called integer if its rank function is integer-valued.

The following characterization of rank functions of polymatroids is a straight-
forward consequence of [26, Theorem 44.1].

Proposition 1. A map f :P(Q) → IR is the rank function of a polymatroid with
ground set Q if and only if the following properties are satisfied.

– f(∅) = 0.
– If X ⊆ Q and y ∈ Q, then f(X) ≤ f(X ∪ {y}).
– If X ⊆ Q and y, z ∈ Q, then f(X∪{y, z})+f(X) ≤ f(X∪{y})+f(X∪{z}).

If S = (Q, f) is a polymatroid and α is a positive real number, then αS = (Q,αf)
is a polymatroid too, which is called a multiple of S. A polymatroid S ′ = (Q′, g)
is called an extension of a polymatroid S = (Q, f) if Q ⊆ Q′ and g(X) = f(X)
for every X ⊆ Q. In general, we will use the same symbol for the rank function
of a polymatroid and the rank function of an extension.

Let V be a vector space over a field IK and (Vx)x∈Q a tuple of vector subspaces
of V . For X ⊆ Q, we notate VX =

∑
x∈X Vx. Then the map f :P(Q) → ZZ

defined by f(X) = dim VX for every X ⊆ Q is the rank function of an integer
polymatroid S with ground set Q. Integer polymatroids that can be defined
in this way are said to be IK-linearly representable, or simply IK-linear or IK-
representable, and the tuple (Vx)x∈Q is called a IK-linear representation of S. A
IK-poly-linear polymatroid is the multiple of a IK-linear polymatroid.

For a finite set Q, consider a family of random variables (Sx)x∈Q, where Sx

is defined on a finite set Ex. For every X ⊆ Q, we use SX to denote the ran-
dom variable (Sx)x∈X on the set

∏
x∈X Ex, and H(SX) will denote its Shannon

entropy. Fujishige [15, 16] found out the following connection between Shannon
entropy and polymatroids.
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Theorem 1. Let (Sx)x∈Q be a family of random variables. Consider the map-
ping h:P(Q) → IR defined by h(∅) = 0 and h(X) = H(SX) if ∅ 	= X ⊆ Q. Then
h is the rank function of a polymatroid with ground set Q.

A polymatroid S = (Q, h) is said to be entropic if there exists a family (Sx)x∈Q

of discrete random variables such that h(X) = H(SX) for every X ⊆ Q. A poly-
entropic polymatroid is a multiple of an entropic polymatroid. It is well known
that, if IK is a finite field, then every IK-poly-linear polymatroid is poly-entropic.
Indeed, given a IK-vector space E, let E∗ be its dual space, which is formed by
all linear forms α : E → IK, and S the random variable given by the uniform
probability distribution on E∗. For every subspace V ⊆ E, consider the random
variable S|V on V ∗, the restriction of S to V . Clearly, H(S|V ) = log |IK| dimV .
Therefore, the IK-linear polymatroid given by a collection (Vx)x∈Q of subspaces
of E is a multiple of the entropic polymatroid defined by (Sx)x∈Q, where Sx =
S|Vx . The collections of random variables that can be defined in this way are
said to be IK-linear.

Consider a finite set M and a family (Mx)x∈Q of subsets of M . For every
X ⊆ Q, take MX =

⋃
x∈X Mx. Then the map defined by f(X) = |MX | for every

X ⊆ Q is the rank function of an integer polymatroid S with ground set Q. The
family (Mx)x∈Q is called a Boolean representation of S. Boolean polymatroids are
those admitting a Boolean representation. Boolean polymatroids are IK-linear
for every field IK. Indeed, the set IKM of all functions v:M → IK is a IK-vector
space. For every w ∈ M , consider the vector ew ∈ IKM given by ew(w′) = 1 if
w′ = w and ew(w′) = 0 otherwise. Clearly, (ew)w∈M is a basis of IKM . For every
x ∈ Q, consider the vector subspace Vx = 〈ew : w ∈ Mx〉. Obviously, these
subspaces form a IK-linear representation of S.

We say that a polymatroid S with ground set Q is uniform if every
permutation on Q is an automorphism of S. In this situation, the rank f(X)
of a set X ⊆ Q depends only on its cardinality, that is, there exist values
0 = f0 ≤ f1 ≤ · · · ≤ fn, where n = |Q|, such that f(X) = fi for every
X ⊆ Q with |X | = i. By Proposition 1, such a sequence (fi)1≤i≤n defines a uni-
form polymatroid if and only if fi − fi−1 ≥ fi+1 − fi for every i = 1, . . . , n− 1.
Clearly, a uniform polymatroid is univocally determined by its increment vector
δ = (δ1, . . . , δn), where δi = fi − fi−1. Observe that δ ∈ IRn is the increment
vector of a uniform polymatroid if and only if δ1 ≥ · · · ≥ δn ≥ 0. All uniform
integer polymatroids are linearly representable. Specifically, a uniform integer
polymatroid is IK-linear if the field IK has at least as many elements as the
ground set [14].

For a positive integer r, we notate [r] = {1, . . . , r}. Given a collection (Ai)i∈[r]

of subsets of a set Q and I ⊆ [r], we notate AI =
⋃

i∈I Ai. An information
inequality, respectively rank inequality, on r variables consists of a collection
(αI)I∈P([r]) of real numbers such that

∑

I⊆[r]

αIf(AI) ≥ 0
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for every poly-entropic, respectively poly-linear, polymatroid (Q, f) and for every
collection (Ai)i∈[r] of r subsets of Q. Observe that the number r of variables may
be larger than the cardinality of the ground set Q.

Every information inequality is also a rank inequality [12]. By Theorem 1,
the polymatroid axioms are information inequalities, which are called Shannon
inequalities . The Ingleton inequality [19] was the first known example of a rank
inequality that cannot be derived from Shannon-type inequalities. Zhang and
Yeung [30] presented the first information inequality that cannot be derived
from the Shannon inequalities. Subsequently, many other rank and information
inequalities have been found in [11–13, 22, 23, 29] and other works. We need the
following technical result, which is a consequence of [5, Lemma 4.3].

Lemma 1. Let (αI)I∈P([r]) be a rank inequality. Then
∑

I : I∩J 	=∅ αI ≥ 0 for
every J ⊆ [r].

Proof. Take J ⊆ [r], a set M with |M | = 1, and the family (Mi)i∈[r] of subsets of
M given by Mi = M if i ∈ J and Mi = ∅ otherwise. Let ([r], f) be the Boolean
polymatroid defined by this family. Then

∑
I : I∩J 	=∅ αI =

∑
I⊆[r] αIf(I) ≥ 0

because Boolean polymatroids are linearly representable. 
�

3 Polymatroids and Secret Sharing

Let P be a finite set of participants, p0 /∈ P a special participant, usually called
dealer, and Q = P ∪ {p0}. This notation will be used from now on. An access
structure Γ on P is a monotone increasing family of subsets of P , that is, if
X ⊆ Y ⊆ P and X ∈ Γ , then Y ∈ Γ . To avoid anomalous situations, we assume
always that ∅ /∈ Γ and P ∈ Γ . The members of Γ are called qualified sets. An
access structure Γ is determined by the family minΓ of its minimal qualified
sets. For a polymatroid S = (Q, f) and an element p0 ∈ Q with f({p0}) > 0, we
define the access structure Γp0(S) on P = Q \ {p0} by

Γp0(S) = {X ⊆ P : f(X ∪ {p0}) = f(X)}.

We need also the parameter

σp0(S) =
maxx∈P f({x})

f({p0}) .

If Γ = Γp0(S) and, in addition, f(X ∪ {p0}) = f(X) + 1 for every unqualified
set X ⊆ P , then S is said to be a Γ -polymatroid.

A secret sharing scheme Σ on P with access structure Γ is a family (Sx)x∈Q

of random variables such that

1. H(SX∪{p0}) = H(SX) if X ∈ Γ and
2. H(SX∪{p0}) = H(SX) +H(Sp0) otherwise.
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The random variables Sp0 and (Sx)x∈P correspond, respectively, to the secret
value and the shares that are distributed among the participants in P . A secret
sharing scheme is IK-linear if it is a IK-linear collection of random variables. The
information ratio σ(Σ) of the secret sharing scheme Σ is the ratio between the
maximum length of the shares and the length of the secret. Namely,

σ(Σ) =
maxx∈P H(Sx)

H(Sp0)
.

The entropic polymatroid S defined by the collection (Sx)x∈Q is such that Γ =
Γp0(S) and, in addition, σ(Σ) = σp0(S).

The optimal information ratio σ(Γ ) of an access structure Γ is the infimum
of the information ratios of all secret sharing schemes for Γ . Clearly,

σ(Γ ) = inf{σp0(S) : S is a poly-entropic Γ -polymatroid}.
Therefore, the parameters

κ(Γ ) = inf{σp0(S) : S is a Γ -polymatroid}
and

λ(Γ ) = inf{σp0(S) : S is a poly-linear Γ -polymatroid}
are, respectively, a lower and an upper bound for σ(Γ ). Observe that λ(Γ ) is
the infimum of the information ratios of the linear secret sharing schemes for
Γ . The value κ(Γ ) is the solution of a linear programming problem, and hence
the infimum is a minimum and κ(Γ ) is a rational number [25]. Most of the
known lower bounds on the information ratio, as the ones from [7–9, 21], are
lower bounds on κ(Γ ). In fact, this is the case for all lower bounds that can be
obtained by using only Shannon inequalities.

Information inequalities and rank inequalities can be added to the linear pro-
gram computing κ(Γ ) to find better lower bounds on σ(Γ ) and λ(Γ ), respec-
tively. This has been done for several families of access structures [4, 10, 24, 25].

A polymatroid S = (P, f) and an access structure Γ on a set P are said to
be compatible if S can be extended to a Γ -polymatroid S(Γ ) = (Q, f).

Proposition 2. An access structure Γ on P is compatible with a polymatroid
S = (P, f) if and only if the following conditions are satisfied.

1. If X ⊆ P and y ∈ P are such that X /∈ Γ and X ∪ {y} ∈ Γ , then f(X) ≤
f(X ∪ {y})− 1.

2. If X ⊆ P and y, z ∈ P are such that X /∈ Γ while both X ∪{y} and X ∪{z}
are qualified, then f(X ∪ {y, z}) + f(X) ≤ f(X ∪ {y}) + f(X ∪ {z})− 1.

Proof. Suppose that S can be extended to a Γ -polymatroid S(Γ ) = (Q, f). If
X /∈ Γ and X ∪ {y} ∈ Γ , then

f(X ∪ {y}) = f(X ∪ {y, p0}) ≥ f(X ∪ {p0}) = f(X) + 1.
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If X /∈ Γ and X ∪ {y} and X ∪ {z} are qualified, then

f(X ∪ {y}) + f(X ∪ {z}) = f(X ∪ {y, p0}) + f(X ∪ {z, p0})
≥ f(X ∪ {y, z, p0}) + f(X ∪ {p0})
= f(X ∪ {y, z}) + f(X) + 1.

For the converse, assume that S = (P, f) satisfies the conditions in the statement
and consider the extension of f to P(Q) determined by f(X ∪ {p0}) = f(X) if
X ∈ Γ and f(X ∪ {p0}) = f(X) + 1 otherwise. We have to prove that (Q, f) is
a polymatroid. Clearly, f(X) ≤ f(X ∪ {p0}) and f(X ∪ {p0}) ≤ f(X ∪ {p0, y})
for every X ⊆ P and y ∈ P . Therefore, the first condition in Proposition 1 is
satisfied. Moreover, it is not difficult to prove that the second condition holds
by checking that f(X ∪ {y, p0})+ f(X) ≤ f(X ∪ {y})+ f(X ∪ {p0}) and f(X ∪
{p0, y, z})+ f(X ∪{p0}) ≤ f(X ∪{p0, y})+ f(X ∪{p0, z}) for every X ⊆ P and
y, z ∈ P . 
�
The following result was presented by Csirmaz [9].

Proposition 3. An access structure Γ on P is compatible with a polymatroid
S = (P, f) if and only if the following conditions are satisfied.

1. If X ⊆ Y ⊆ P are such that X /∈ Γ and Y ∈ Γ , then f(X) ≤ f(Y )− 1.
2. If X,Y ∈ Γ and X ∩Y /∈ Γ , then f(X ∪Y )+ f(X ∩ Y ) ≤ f(X)+ f(Y )− 1.

Proof. Necessity can be proved in a similar way as in Proposition 2. Sufficiency
is obvious from Proposition 2. 
�

4 A Family of Uniform Boolean Polymatroids

We present a family of polymatroids that are uniform and Boolean. In addition,
every member of this family is compatible to all access structure on its ground
set. The following results are straightforward consequences of Proposition 2.

Proposition 4. A polymatroid S = (P, f) is compatible with all access struc-
tures on P if and only if the following conditions are satisfied.

1. f(X) ≤ f(X ∪ {z})− 1 for every X ⊆ P and z ∈ P \X.
2. f(X ∪ {y, z}) + f(X) ≤ f(X ∪ {y}) + f(X ∪ {z})− 1 for every X ⊆ P and

y, z ∈ P \X.

Proposition 5. Let P be a set with |P | = n and let S be a uniform polymatroid
on P . Then S is compatible with all access structures on P if and only if its
increment vector (δ1, . . . , δn) is such that δi ≥ δi+1 + 1 for i = 1, . . . , n− 1 and
δn ≥ 1.

Given a set P and an integer r ≥ 2, let M(P, r) be the set of all multisets of size
r of the set P . For example, if P = {a, b, c}, then

M(P, 3) = {aaa, aab, aac, abb, abc, acc, bbb, bbc, bcc, ccc}.
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Observe that |M(P, r)| = (
n+r−1

r

)
if |P | = n. For every x ∈ P , let Mx(P, r) be

the set of the multisets in M(P, r) that contain x. In the previous example,

Ma(P, 3) = {aaa, aab, aac, abb, abc, acc}.

Finally, we define Z(P, r) = (P, f) as the Boolean polymatroid on P defined by
the family (Mx(P, r))x∈P of subsets of M(P, r). As usual, we notate MX(P, r) =⋃

x∈X Mx(P, r) for every X ⊆ Q.
Clearly, every permutation on P is an automorphism of Z(P, r), and hence this

polymatroid is uniform. For every X ⊆ P , the multisets in M(P, r) \MX(P, r)
are the ones involving only elements in P \ X . That is, M(P, r) \ MX(P, r) =
M(P \X, r), and hence

f(X) = |MX(P, r)| = |M(P, r)| − |M(P \X, r)|
=

(|P |+ r − 1

r

)

−
(|P | − |X |+ r − 1

r

)

.

Therefore, if |P | = n, the increment vector (δ1, . . . , δn) of Z(P, r) is given by

δi =

(
n− i+ r

r

)

−
(
n− i+ r − 1

r

)

=

(
n− i+ r − 1

r − 1

)

for every i = 1, . . . , n. Observe that δ1 > · · · > δn > 0, and hence Z(P, r)
is compatible with all access structures on P . In particular, δi = n − i + 1 if
r = 2, and hence κ(Γ ) ≤ n for every access structure Γ on n participants [9].
The Csirmaz function introduced in [5, Definition 3.10] coincides with the rank
function of Z(P, 2). The rank function of Z(P, 2) is the smallest among the
rank functions of all uniform polymatroids on P that are compatible with all
access structures on P [5, Lemma 3.11]. Finally, observe that [5, Lemma 6.2] is a
straightforward consequence of the fact that Z(P, 2) is a Boolean polymatroid.

5 Main Result

This section is devoted to prove our main result, Theorem 2.

Proposition 6. Let P be a set of n participants and Γ an access structure
on P . For an integer r ≥ 3, consider Zr−1 = Z(P, r− 1) and the Γ -polymatroid
Zr−1(Γ ), an extension of Zr−1 to Q = P ∪{p0}. Then Zr−1(Γ ) satisfies all rank
inequalities on r variables.

Proof. Let f be the rank function of Zr−1(Γ ) and (αI)I∈P([r]) a rank inequality
on r variables. We have to prove that

∑
I⊆[r] αIf(AI) ≥ 0 for every r sub-

sets (Ai)i∈[r] of Q. Take Bi = Ai \ {p0}. If Bi ∈ Γ for every i ∈ [r], then∑
I⊆[r] αIf(AI) =

∑
I⊆[r] αIf(BI) ≥ 0 because Zr−1 is Boolean. If B[r] /∈ Γ ,

then
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∑

I⊆[r]

αIf(AI) =
∑

I⊆[r]

αIf(BI) +
∑

I : p0∈AI

αI ≥ 0

by Lemma 1 with J = {i ∈ [r] : p0 ∈ Ai}. From now on, we assume that
B[r] ∈ Γ and that Bi /∈ Γ for some i ∈ [r].

Consider the polymatroid S = ([r], g) determined by g(I) = f(BI) for every
I ⊆ [r]. In addition, consider the access structure Λ on [r] formed by the sets
I ⊆ [r] such that BI ∈ Γ . We prove next that S can be extended to a linearly
representable Λ-polymatroid S(Λ) = ([r] ∪ {0}, g). This concludes the proof.
Indeed, since S(Λ) is a Λ-polymatroid, f(AI) = g(I ∪{0}) if p0 ∈ AI , and hence

∑

I⊆[r]

αIf(AI) =
∑

I : p0 /∈AI

αIf(BI) +
∑

I : p0∈AI

αIf(AI)

=
∑

I : p0 /∈AI

αIg(I) +
∑

I : p0∈AI

αIg(I ∪ {0}).

Consider the family (Ci)i∈[r] of subsets of [r]∪{0} given by Ci = {i, 0} if p0 ∈ Ai

and Ci = {i} otherwise. Then

∑

I : p0 /∈AI

αIg(I) +
∑

I : p0∈AI

αIg(I ∪ {0}) =
∑

I⊆[r]

αIg(CI) ≥ 0

because S(Λ) is linearly representable.
The polymatroid S is Boolean. Indeed, take M = M(P, r − 1) and MX =

MX(P, r − 1) for every X ⊆ P . Then (MBi)i∈[r] is a Boolean representation
of S. Therefore, this polymatroid is linearly representable over every field, as
proved in Section 2. For a field IK, take a basis (ew)w∈M of IKM . Then the
subspaces (Vi)i∈[r] with Vi = 〈ew : w ∈ MBi〉 form a IK-linear representation
of S.

Consider the dual access structure Λ∗ = {J ⊆ [r] : [r] \ J /∈ Λ}. Take
J ∈ minΛ∗ and I = [r] \ J . Observe that BI /∈ Γ and BI ∪ Bj ∈ Γ for every
j ∈ J . In particular, this implies that J 	= ∅, [r]. Therefore, we can take an
element xj ∈ Bj \ BI for every j ∈ J . Consider a multiset wJ ∈ M(P, r − 1)
containing exactly the elements in {xj : j ∈ J}, repeating some of them if
necessary. Take the vector

v0 =
∑

J∈minΛ∗
ewJ ∈ IKM

and the subspace V0 = 〈v0〉. By adding this subspace to the collection (Vi)i∈[r],
an extension S(Λ) = ([r]∪{0}, g) of S is obtained. Obviously, S(Λ) is IK-linearly
representable.

Finally, we prove that S(Λ) is a Λ-polymatroid. Clearly, I ∈ Λ if and only
if I ∩ J 	= ∅ for every J ∈ minΛ∗. If I ∈ Λ, then wJ ∈ MBI (P, r − 1) for
every J ∈ minΛ∗. Indeed, if j ∈ I ∩ J , the element xj in the multiset wJ is
also in BI . Therefore, e

wJ ∈ VI for every J ∈ minΛ∗, and hence v0 ∈ VI and
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g(I ∪ {0}) = g(I). Suppose now that I /∈ Λ and take J ∈ minΛ∗ with I ∩ J = ∅.
Then wJ /∈ MBI (P, r − 1) because xj /∈ BI for every j ∈ J . Therefore, v0 /∈ VI

and g(I ∪ {0}) = g(I) + 1. 
�
Theorem 2. For an access structure Γ on n participants, the best lower bound
on λ(Γ ) that can be obtained by using rank inequalities on r variables is at most

(
n+ r − 3

r − 2

)

, (1)

and hence O(nr−2). As an immediate consequence, the same applies to the
lower bounds on the optimal information ratio σ(Γ ) that are obtained by using
information inequalities on r variables.

Proof. By Proposition 6, the polymatroid Zr−1(Γ ) is a feasible solution to any
linear program that is obtained from rank inequalities on r variables.
Therefore, every lower bound on λ(Γ ) derived from such a linear program is
at most σp0 (Zr−1(Γ )) = δ1, where δ1 is the first component of the increment
vector of Z(P, r − 1). 
�
Observe that we are not assuming r ≤ n in Theorem 2. A smaller value for the
bound (1) can be proved for the case r ≤ n by using in the same way the uniform
Boolean polymatroid defined by the set M of all subsets (instead of multisets) of
P with at most r − 1 participants and the subsets (Mx)x∈P , where Mx consists
of the subsets in M that contain x. Nevertheless, asymptotically the new bound
is not better than O(nr−2).
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